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Life expectancy associated with different ages at diagnosis 
of type 2 diabetes in high-income countries: 23 million 
person-years of observation
Emerging Risk Factors Collaboration*

Summary
Background The prevalence of type 2 diabetes is increasing rapidly, particularly among younger age groups. Estimates 
suggest that people with diabetes die, on average, 6 years earlier than people without diabetes. We aimed to provide 
reliable estimates of the associations between age at diagnosis of diabetes and all-cause mortality, cause-specific 
mortality, and reductions in life expectancy.

Methods For this observational study, we conducted a combined analysis of individual-participant data from 19 high-
income countries using two large-scale data sources: the Emerging Risk Factors Collaboration (96 cohorts, median 
baseline years 1961–2007, median latest follow-up years 1980–2013) and the UK Biobank (median baseline year 2006, 
median latest follow-up year 2020). We calculated age-adjusted and sex-adjusted hazard ratios (HRs) for all-cause 
mortality according to age at diagnosis of diabetes using data from 1 515 718 participants, in whom deaths were 
recorded during 23·1 million person-years of follow-up. We estimated cumulative survival by applying age-specific 
HRs to age-specific death rates from 2015 for the USA and the EU.

Findings For participants with diabetes, we observed a linear dose–response association between earlier age at diagnosis 
and higher risk of all-cause mortality compared with participants without diabetes. HRs were 2·69 (95% CI 2·43–2·97) 
when diagnosed at 30–39 years, 2·26 (2·08–2·45) at 40–49 years, 1·84 (1·72–1·97) at 50–59 years, 1·57 (1·47–1·67) at 
60–69 years, and 1·39 (1·29–1·51) at 70 years and older. HRs per decade of earlier diagnosis were similar for men and 
women. Using death rates from the USA, a 50-year-old individual with diabetes died on average 14 years earlier when 
diagnosed aged 30 years, 10 years earlier when diagnosed aged 40 years, or 6 years earlier when diagnosed aged 50 years 
than an individual without diabetes. Using EU death rates, the corresponding estimates were 13, 9, or 5 years earlier.

Interpretation Every decade of earlier diagnosis of diabetes was associated with about 3–4 years of lower life expectancy, 
highlighting the need to develop and implement interventions that prevent or delay the onset of diabetes and to 
intensify the treatment of risk factors among young adults diagnosed with diabetes.

Funding British Heart Foundation, Medical Research Council, National Institute for Health and Care Research, and 
Health Data Research UK.

Crown Copyright © 2023 Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
The prevalence of type 2 diabetes is increasing globally, 
driven mainly by behavioural and societal factors related 
to obesity, nutrition, and physical activity.1–3 In 2021, 
537 million adults were estimated to have diabetes 
worldwide, with increasing numbers diagnosed at 
younger ages.3,4

Previous estimates have suggested that adults with 
type 2 diabetes die, on average, 6 years earlier than their 
counterparts without diabetes.5–7 However, how this 
average reduction in life expectancy varies according to 
age at diagnosis is uncertain.8–19 Valid characterisation 
of this association requires prospective comparison of 
outcomes within the same cohorts of people with diabetes 
diagnosed at varying ages. However, few population 
cohorts have had sufficient statistical power, detail, and 
duration of follow-up to enable reliable estimation.20–25 
Moreover, previous modelling studies—which used 

state-transition models and life tables that rely on inputs 
from aggregated data—have considered diabetes only as 
a binary condition (ie, absent or present) when estimating 
its effect on life expectancy.7,26–29 Few published studies 
have therefore directly analysed the association of age at 
diagnosis of diabetes with mortality and life expectancy.17,18,25

We aimed to provide reliable estimates of the associ
ations of age at diagnosis of diabetes with all-cause 
mortality, cause-specific mortality, and reductions in life 
expectancy in high-income countries. We analysed indi
vidual records from 97 long-term, prospective cohorts, 
involving 1 515 718 participants followed up for a total of 
23·1 million person-years.

Methods
Study design, data sources, and participants
We conducted a combined analysis of individual-
participant data from two large-scale data sources, 

https://doi.org/10.1016/S2213-8587(23)00223-1
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each constituting prospective population cohort studies 
with information on age at diagnosis of diabetes 
(appendix pp 2–3, 24). The first data source, the 
Emerging Risk Factors Collaboration (ERFC), is a col
laboration of prospective cohort studies with 
information about various risk factors, cardiovascular 
disease outcomes, and mortality.30 Prospective cohort 
studies contributing to the ERFC were included in this 
analysis if they met all the following criteria: had 
recruited participants on the basis of informed consent; 
did not select participants on the basis of having 
previous chronic disease (including cardiovascular 
disease and diabetes); had recorded information on 
diabetes status and age at diagnosis of diabetes; had 
recorded cause-specific deaths; and had accrued more 
than 1 year of follow-up. The second data source was the 
UK Biobank, a single, large prospective study in which 
participants were recruited from 22 centres throughout 
the UK.31 After giving consent, participants provided 
biological samples and completed a touch-screen 
questionnaire, a computer-assisted interview, and 
a physical examination (appendix p 26). Data from 
participants in the UK Biobank have been linked with 
death records of the UK Office for National Statistics 
through National Health Service identification numbers. 
For all studies, written informed consent was obtained 
from participants and approval was obtained from 
relevant ethics committees.

We ascertained baseline diabetes status on the basis of 
self-report information, medical records, medication 
usage, or a combination of these factors (appendix 

p 4).5,32 To calculate age at diagnosis of diabetes, we used 
information recorded at the baseline enrolment survey 
in prospective cohort studies, supplemented, when 
available, by information on new-onset incident type 2 
diabetes recorded during follow-up (appendix p 27). For 
37 513 (79·1%) of 47 404 new-onset incident cases, age at 
diagnosis of diabetes was calculated using the date of 
diagnosis provided by the contributing cohorts. For the 
remaining 9891 (20·9%) new-onset incident cases, for 
which information was provided as diabetes status (yes 
or no) at date-stamped resurveys, we estimated the age at 
diagnosis as the participant’s age at the midpoint of the 
two consecutive surveys between which the participant 
developed diabetes (appendix pp 2–3). We also computed 
an accuracy indicator as the half-width of the time 
interval between the two surveys, and the average was 
2·4 years (SD 0·9; appendix pp 2–3).

We classified mortality according to the primary cause 
(or, in its absence, the underlying cause) on the basis of 
coding from the International Classification of Diseases 
(revisions 8–10) to at least three digits, or according to 
study-specific classification systems. Classification of 
deaths was based on death certificates, supplemented in 
76 studies by medical records, findings on autopsy, and 
other sources in the ERFC. The date of the latest mortality 
follow-up was Dec 31, 2015, in the ERFC and Nov 30, 2020, 
in the UK Biobank.

Statistical analysis
To be eligible for the analysis, recorded information about 
participants’ age, sex, and history of diabetes was required. 

Research in context

Evidence before this study
We searched MEDLINE for records published in English from 
database inception to Nov 30, 2022, that reported on 
associations of age at diagnosis or duration of diabetes with 
all-cause mortality and years of life lost according to age at 
diagnosis. Search terms related to exposure (diabetes, diabetes 
mellitus, age at diagnosis, age of onset, duration), outcomes 
(mortality, death, life expectancy, survival), study design (cohort 
studies, cohort, prospective) and association measures (relative 
risk, hazard ratio, risk ratio, rate ratio). Only a few studies have 
analysed these associations directly or had sufficient statistical 
power, detail, and duration of follow-up to enable reliable 
estimation. Findings generally showed higher mortality risk 
with younger age at diagnosis of type 2 diabetes, but 
interpretation was limited by different categorisations used.

Added value of this study
We used information from large-scale data sources covering 
19 high-income countries and containing individual records on 
1 515 718 participants, in whom deaths were recorded during 
23·1 million person-years of follow-up. We calculated age-
adjusted and sex-adjusted hazard ratios for all-cause mortality 
according to age at diagnosis of type 2 diabetes and estimated 

cumulative survival by applying the age-specific estimates to 
contemporary age-specific death rates. We found a steep linear 
dose–response association between earlier age at diagnosis of 
diabetes and higher risk of all-cause mortality. Our public health 
modelling suggested that, for individuals surviving to age 
50 years, those with diabetes diagnosed aged 30 years died 
14 years earlier, those diagnosed aged 40 years died 10 years 
earlier, and those diagnosed aged 50 years died 6 years earlier, on 
average, than individuals without diabetes—in other words, every 
decade of earlier diagnosis of type 2 diabetes was associated with 
about 3–4 years of reduced life expectancy. Our study provides 
reliable estimates of the associations of age at diagnosis of 
diabetes with all-cause mortality in high-income countries.

Implications of all the available evidence
Because earlier diagnosis of type 2 diabetes is associated with 
shorter life expectancy, high priority should be given to 
developing and implementing interventions that prevent or 
delay the onset of the condition, especially as its prevalence 
among younger age groups is increasing globally. The evidence 
also highlights the need for intensive treatment of risk factors 
for premature mortality among young adults diagnosed with 
diabetes.
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To focus the analysis on individuals with type 2 diabetes, 
we excluded 3695 participants who were diagnosed with 
diabetes at younger than 30 years and therefore would be 
more likely to have type 1 diabetes. To assess dose–
response relationships, we categorised participants 
according to their history of diabetes (yes or no) and their 
age at diagnosis in 10-year groups: 30 years to less than 
40 years, 40 years to less than 50 years, 50 years to less 
than 60 years, 60 years to less than 70 years, and 70 years 
or older. We also assessed the continuous shape of 
associations using fractional polynomials, then calculated 
adjusted associations, guided by the dose–response 
analyses results and previous evidence for other 
continuous covariates. The primary outcome was all-
cause mortality, with additional outcomes of deaths from 
cardiovascular disease, cancer, and causes other than 
cardiovascular disease or cancer (defined as other causes; 
appendix pp 5–6). Hazard ratios (HRs) for age at diagnosis 
of diabetes were calculated separately within each study 
using time-dependent Cox proportional hazards 
regression models (ie, allowing diabetes status, age at 
diagnosis, and other covariates to change during follow-
up, when reassessed). The timescale for the survival 
analysis was duration (in years) since entry to the study at 
baseline. Participants were included in analyses of 
mortality outcomes irrespective of previous non-fatal 
events. For each specific cause of death, participants’ data 
were censored if a participant was lost to follow-up, died 
from another cause, or reached the end of the follow-up 
period. HRs calculated in this manner for each cause of 
death are aetiologically interpretable and provide reliable 
assessments of the marginal cause-specific associations—
including in the case of competing risks with low to 
moderate correlations of failure times—that would be 
typical of most practical circumstances.33–35 Sensitivity 
analyses were conducted for cause-specific mortality 
considering death from causes other than the specified 
cause as competing risks using the Fine-Gray regression 
model. Study-specific estimates (ie, log HRs) were then 
pooled across studies by multivariate random-effects 
meta-analysis, because heterogeneity was expected as 
a result of analysing diverse data sources.36 To avoid 
model overfitting, studies with fewer than ten deaths for 
any outcome (ie, all-cause and cause-specific death) were 
excluded from the main analyses for relevant outcomes. 
Further sensitivity analyses excluded studies with fewer 
than 80 deaths (ie, applying a stricter ten events per 
variable rule at the study level). The proportional hazards 
assumption, assessed by meta-analysis of study-specific 
interaction of the coded exposure variable (indicators or 
continuous) and the survival analysis time in years, was 
met (p>0·05).

Because the principal objective of our study was to 
estimate reductions in life expectancy according to age at 
diagnosis of diabetes, for our main analysis we calculated 
HRs stratified by sex and adjusted for age only. A secondary 
objective was to explore the extent to which the age-specific 

relevance of diabetes could be related to other known 
factors associated with mortality risk. HRs were therefore 
sequentially adjusted for several variables mostly recorded 
after the diagnosis of diabetes: smoking status, BMI, 
systolic blood pressure, total cholesterol, measures of 
glycaemia, measures of renal function, measures of 
inflammation, level of education, and self-reported use 
of medications. These variables were selected considering 
subject matter knowledge and data availability. The 
order of sequential adjustment reflected prioritisation of 
a variable as a confounder, mediator, or indicator 
of severity of diabetes, consistent with principles of the 
modified disjunctive cause criterion reasoning.37 We 
investigated effect modification using tests for interaction 
for individual characteristics (age, sex, smoking, and 
history of cardiovascular disease) and by meta-regression 
of study-specific log HRs (ie, outcome) on study-level 
characteristics (diabetes diagnosis information available, 
median year of baseline, and median year of follow 
up) assuming normal error terms36 and using a 0·001 
significance threshold to make some allowance for 
multiple testing (ie, 0·01/7 for seven interactions assessed 
at 0·01 nominal significance each). Between-study 
heterogeneity of log HRs was assessed by the I2 statistic.38

Details of the methods used to estimate reductions in 
life expectancy by age at diagnosis of diabetes are 
provided in the appendix (p 28). In brief, estimates of 
cumulative survival from age 40 years onwards according 
to age at diagnosis of diabetes were calculated by applying 
the HRs for cause-specific mortality (specific to age at 
risk and sex) to respective mortality rates obtained from 
the detailed mortality component of the US Centers 
for Disease Control and Prevention’s CDC WONDER 
database,39 which recorded 2·7 million deaths among 
more than 320 million individuals during 2015.9,13 This 
method does not rely on the survival estimates from the 
cohort data; instead, it makes inferences by estimating 
age-at-risk specific HRs from the cohort data, which are 
then combined with external population age-specific 
mortality rates.11 Supplementary analyses used EU death 
rates for 2015. We calculated two-sided p values and used 
a significance level of p<0·05 unless stated otherwise. 
Analyses were done using Stata (version 15.1).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
Sufficient information for inclusion was available for 
1 515 718 participants from 97 prospective cohorts, 
comprising 1 017 695 participants from 96 ERFC cohorts 
and 498 023 participants from the UK Biobank (table 1, 
appendix pp 2–3). For participants from the ERFC, the 
median year of recruitment was 1990 (range 1961–2007) 
and the median year of latest follow-up was 2015 
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(range 1980–2013); the corresponding values for the UK 
Biobank were 2009 and 2020. In the ERFC, most 
participants were enrolled in Europe (52·0%) or the USA 
and Canada (39·8%). Overall, the mean age of participants 
at baseline was 55·0 years (SD 9·2); 690 596 participants 
(45·6%) were male and 825 122 (54·4%) were female. In 
the ERFC, the age at diagnosis was available for 23 335 
(56·7%) of 41 160 participants who had prevalent diabetes 
at baseline, and a further 45 585 participants were 
diagnosed with diabetes during follow-up (ie, new-onset 
disease). In the UK Biobank, the age at diagnosis was 
available for 24 981 (98·3%) of 25 416 participants who 
had prevalent diabetes, and a further 1819 participants 
were diagnosed with diabetes during follow-up. The 
mean age at diagnosis was 54·1 years (SD 9·0) for 
participants with prevalent diabetes and 64·9 years (8·5) 
for those with incident diabetes. Over a median follow-up 
of 12·5 years (5 – 95th percentiles 5·0–32·1; 23·1 million 
person-years at risk), 246 670 deaths were recorded, of 
which 84 443 were due to cardiovascular causes, 150 972 
due to non-cardiovascular causes, and 11 255 due to 
unknown or ill-defined causes. The non-cardiovascular 
causes could be further categorised into 85 014 due 
to cancer and 61 516 due to causes other than 
cardiovascular disease or cancer (hereafter termed other 
causes; mainly diseases of the respiratory system or 
nervous system, infections, and external causes); the 
remaining 4442 deaths in this category had been coded as 
non-cardiovascular causes without the possilibilty of 
further subdivision (appendix p 5).

In analyses adjusted for age, we observed a linear dose–
response association between earlier age at diagnosis of 
diabetes and higher risk of all-cause mortality, mortality 
due to cardiovascular disease, and mortality from other 
causes for each sex (figure 1). Findings were broadly 
similar in combined analyses adjusted for sex and 
continuous modelling with fractional polynomials 

(appendix p 13). In further adjusted analyses, we used data 
from 92 cohorts and 1 132 277 participants with complete 
information on age at diagnosis of diabetes, age, sex, 
smoking status, BMI, systolic blood pressure, and total 
cholesterol. Compared with participants without a history 
of diabetes, HRs for all-cause mortality, adjusted for age 
and sex only, were 2·69 (95% CI 2·43–2·97) for those 
diagnosed at age 30–39 years, 2·26 (2·08–2·45) at 
age 40–49 years, 1·84 (1·72–1·97) at age 50–59 years, 
1·57 (1·47–1·67) at age 60–69 years, and 1·39 (1·29–1·51) 
for those diagnosed aged 70 years and older (table 2). For 
participants diagnosed with diabetes aged 30–39 years, 
HRs were 4·20 (3·57–4·94) for vascular mortality, 
1·55 (1·30–1·85) for cancer mortality, and 3·99 (3·50–4·55) 
for mortality from other causes. Across all ages, HRs 
per decade of earlier diagnosis of diabetes were 
1·14 (1·08–1·19) for all-cause mortality, 1·19 (1·11–1·27) 
for vascular mortality, 0·95 (0·88–1·02) for cancer 
mortality, and 1·18 (1·10–1·27) for mortality from other 
causes (table 2).

HRs for all-cause mortality changed little after 
additional adjustment for other risk factors (BMI, systolic 
blood pressure, and total cholesterol; table 2). However, 
HRs were attenuated substantially after further 
adjustment for measures of glycaemia (ie, fasting glucose 
or HbA1c), a pattern also observed for cause-specific 
mortality (appendix p 7). HRs showed little change after 
adjustment for measures of renal function (ie, estimated 
glomerular filtration rate), inflammation (ie, C-reactive 
protein), or lipids (ie, non-HDL cholesterol, HDL 
cholesterol, and triglycerides; appendix p 7).

Broadly similar HRs to those reported in the previous 
paragraphs were observed in sensitivity analyses that 
compared results by study-level information available on 
diabetes (prevalent disease, incident disease, or both) and 
by participant characteristics (age, sex, smoking status, 
and history of cardiovascular disease; appendix p 14). HRs 

Figure 1: Sex-specific HRs for all-cause and cause-specific mortality according to age at diagnosis of type 2 diabetes
The mean age at diagnosis for the categories 30 to <40 years, 40 to <50 years, 50 to <60 years, 60 to <70 years and ≥70 years is plotted on the x axis. HRs are adjusted 
for age, and the reference (1·0) is people without diabetes. Studies with fewer than ten events of any outcome were excluded from the analysis of that outcome. 
The sizes of the boxes are proportional to the inverse of the variance of the log-transformed HRs. Vertical lines represent 95% CIs. HR=hazard ratio.
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differed slightly according to the study-level median year 
of the study enrolment or follow-up period (appendix 
pp 14–15) and by data source (ie, ERFC or UK Biobank; 

appendix p 16). Tests for interactions on an additive 
scale were generally supportive of positive interactions 
of female sex, current smoking, older age, and history of 
cardiovascular disease with diabetes status categorised 
according to age at diagnosis (appendix p 8). Associations 
were also broadly similar in analyses that estimated HRs 
for all-cause and cause-specific mortality according to 
duration of diabetes (ie, time since diagnosis) rather than 
age at diagnosis (appendix pp 9–10, 17). Supplementary 
analyses of mortality from causes other than cardio
vascular disease suggested broadly similar associations 
for cancer mortality components but notable variations in 
the magnitude of associations for components of 
mortality from other causes (appendix p 11)—eg, HRs per 
decade earlier diagnosis of diabetes were 1·46 (95% CI 
1·16–1·84) for renal disease mortality, 1·28 (1·07–1·53) 
for infection-related mortality, 1·21 (1·04–1·42) for 
external causes of mortality, 1·20 (1·03–1·40) for digestive 
system disease mortality, and 1·07 (0·96–1·19) for 
respiratory system disease mortality. Results of cause-
specific mortality were broadly similar when using 
competing risks-adjusted analyses (appendix p 12). Loss 
to follow-up was less than 10% in most studies, but the 
proportion of right-censored participants and cause-
specific deaths varied between cohorts (appendix 
pp 18–19). Sensitivity analyses that excluded studies with 
fewer than 80 cause-specific deaths showed similar 
findings to the main analyses that excluded studies with 
fewer than ten deaths for any outcome (appendix p 12).

Compared with the absence of diabetes at different 
attained ages, earlier age at diagnosis of diabetes was 
associated with greater reductions in life expectancy, 
using 2015 death rates from the USA (figure 2). For 
example, at age 50 years, individuals who were diagnosed 
with diabetes aged 30 years died, on average, about 
14 years earlier than individuals without diabetes; those 
diagnosed aged 40 years died around 10 years earlier, and 
those diagnosed aged 50 years died around 6 years earlier 
(figure 2). These estimates were slightly higher in women 
(16, 11, and 7 years) than in men (14, 9, and 5 years; 
figure 2). Depending on age and sex, deaths due to 
cardiovascular disease accounted for about 30–45% of the 
reduction in life expectancy associated with diabetes, with 
the remaining proportion being largely due to deaths 
from causes other than cardiovascular disease or cancer 
(appendix p 20). Findings were broadly similar in analyses 
using EU death rates from 2015, with corresponding 
estimates of death at around 13, 9, or 5 years earlier 
on average (appendix p 21). In supplementary analyses 
that included people diagnosed with diabetes before 
the age of 30 years, we found similar patterns in 
estimated reductions in life expectancy; the highest 
estimated reductions were in people diagnosed in the 
youngest age groups and were notably higher in women 
than in men (appendix pp 22–23). At age 50 years, the 
estimates corresponded to about 2–3 years reduction per 
decade of earlier diagnosis.

Number 
of events

Adjusted HR (95% CI)

Age and sex Age, sex, and 
smoking

Age, sex, smoking, 
and other risk 
factors*

All-cause mortality

Participants without diabetes 153 068 1 (ref) 1 (ref) 1 (ref)

Diagnosed aged 30 to <40 years 676 2·69 (2·43–2·97) 2·74 (2·49–3·02) 2·64 (2·41–2·90)

Diagnosed aged 40 to <50 years 2070 2·26 (2·08–2·45) 2·33 (2·14–2·53) 2·24 (2·06–2·43)

Diagnosed aged 50 to <60 years 4197 1·84 (1·72–1·97) 1·87 (1·75–1·99) 1·79 (1·69–1·90)

Diagnosed aged 60 to <70 years 4125 1·57 (1·47–1·67) 1·60 (1·51–1·70) 1·55 (1·46–1·64)

Diagnosed aged ≥70 years 3026 1·39 (1·29–1·51) 1·43 (1·33–1·55) 1·41 (1·31–1·53)

Per decade earlier 167 162 1·14 (1·08–1·19) 1·13 (1·08–1·19) 1·13 (1·07–1·19)

p value† ·· <0·0001 <0·0001 <0·0001

I2 (95% CI) ·· 67 (59–74) 68 (60–74) 67 (60–74)

Cardiovascular disease mortality

Participants without diabetes 53 857 1 (ref) 1 (ref) 1 (ref)

Diagnosed aged 30 to <40 years 278 4·20 (3·57–4·94) 4·26 (3·65–4·99) 3·93 (3·41–4·53)

Diagnosed aged 40 to <50 years 821 3·19 (2·80–3·64) 3·31 (2·90–3·76) 2·93 (2·60–3·30)

Diagnosed aged 50 to <60 years 1564 2·31 (2·10–2·53) 2·36 (2·16–2·58) 2·10 (1·94–2·27)

Diagnosed aged 60 to <70 years 1580 1·95 (1·78–2·14) 1·98 (1·82–2·17) 1·81 (1·67–1·97)

Diagnosed aged ≥70 years 1251 1·50 (1·35–1·67) 1·54 (1·38–1·71) 1·48 (1·33–1·65)

Per decade earlier 59 351 1·19 (1·11–1·27) 1·19 (1·11–1·27) 1·19 (1·11–1·28)

p value† ·· <0·0001 <0·0001 <0·0001

I2 (95% CI) ·· 58 (47–67) 59 (48–67) 59 (48–67)

Cancer mortality

Participants without diabetes 53 217 1 (ref) 1 (ref) 1 (ref)

Diagnosed aged 30 to <40 years 124 1·55 (1·30–1·85) 1·56 (1·31–1·86) 1·48 (1·24–1·76)

Diagnosed aged 40 to <50 years 433 1·28 (1·16–1·42) 1·32 (1·19–1·45) 1·25 (1·13–1·37)

Diagnosed aged 50 to <60 years 1211 1·33 (1·22–1·46) 1·37 (1·25–1·49) 1·35 (1·26–1·44)

Diagnosed aged 60 to <70 years 1178 1·27 (1·17–1·38) 1·29 (1·19–1·40) 1·28 (1·19–1·37)

Diagnosed aged ≥70 years 593 1·29 (1·18–1·42) 1·32 (1·20–1·44) 1·31 (1·20–1·42)

Per decade earlier 56 756 0·95 (0·88–1·02) 0·95 (0·88–1·02) 0·94 (0·88–1·02)

p value† ·· 0·18 0·16 0·13

I2 (95% CI) ·· 26 (2–44) 24 (0–43) 24 (0–43)

Other causes mortality

Participants without diabetes 35 986 1 (ref) 1 (ref) 1 (ref)

Diagnosed aged 30 to <40 years 250 3·99 (3·50–4·55) 4·04 (3·54–4·60) 3·90 (3·42–4·45)

Diagnosed aged 40 to <50 years 701 3·24 (2·88–3·64) 3·34 (2·96–3·76) 3·31 (2·95–3·71)

Diagnosed aged 50 to <60 years 1224 2·31 (2·09–2·54) 2·37 (2·15–2·60) 2·38 (2·16–2·64)

Diagnosed aged 60 to <70 years 1137 1·84 (1·67–2·02) 1·87 (1·70–2·05) 1·88 (1·71–2·06)

Diagnosed aged ≥70 years 861 1·66 (1·48–1·87) 1·71 (1·52–1·93) 1·76 (1·56–1·98)

Per decade earlier 40 159 1·18 (1·10–1·27) 1·18 (1·09–1·27) 1·16 (1·08–1·25)

p value† ·· <0·0001 <0·0001 <0·0001

I2 (95% CI) ·· 50 (35–61) 51 (36–62) 50 (36–62)

Analyses based on data from the Emerging Risk Factors Collaboration and the UK Biobank, including 92 cohorts and 
1 132 277 participants with complete information on age at diagnosis of diabetes, age, sex, smoking, and other risk 
factors. HR=hazard ratio. *Other risk factors were BMI, systolic blood pressure, and total cholesterol. †p value for linear 
analyses per decade earlier.

Table 2: Adjusted HRs for all-cause and cause-specific mortality according to age at diagnosis of type 2 
diabetes



Articles

www.thelancet.com/diabetes-endocrinology   Vol 11   October 2023	 737

Discussion
By analysing more than 23 million person-years of 
longitudinal data from population cohorts in 19 high-
income countries, we found a steep linear dose–response 
association between earlier age at diagnosis of diabetes 
and higher risk of all-cause mortality. Overall, every decade 
of earlier diagnosis of diabetes was associated with about 
3–4 years of reduced life expectancy. Our modelling has 
suggested that, for individuals surviving to age 50 years, 
those diagnosed with diabetes aged 30 years died 
14 years earlier than individuals without diabetes, those 
diagnosed aged 40 years died 10 years earlier, and 
those diagnosed aged 50 years died 6 years earlier. The 
strongest associations with earlier age at diagnosis of 
diabetes were for vascular (eg, myocardial infarction and 
stroke) and other non-neoplastic causes of death—mainly 
respiratory, neurological, and infectious diseases and 
external causes. Our estimates show that the reduction in 
life expectancy associated with diabetes is slightly greater 
for women than for men. These findings suggest that 
high priority should be given to developing and imple
menting interventions that prevent or delay onset of 
diabetes, especially as the prevalence of diabetes among 
younger adults is increasing globally.3

Our observation of higher HRs for mortality with 
earlier age at diagnosis of diabetes suggests that the 
relative effect of diabetes is greatest at ages at 
which the underlying risk of mortality in the general 
population is lowest. Such effects have previous been 
observed for other cardiovascular risk factors, including 
blood pressure40 and LDL-cholesterol.41 Conversely, in 
older adults, in whom the underlying mortality risk is 
high, the proportional relevance of diabetes is smaller. 
Previous studies have suggested that individuals who 
develop type 2 diabetes at younger ages might have 
more aggressive phenotypes42 (characterised by higher 
BMI, higher blood pressure, higher concentrations of 
proatherogenic lipids,43 and faster deterioration in gly
caemic control24,44) than individuals who develop diabetes 
at older ages, potentially leading to premature mortality.45 
Our findings are consistent with this hypothesis, 
suggesting that the large excess mortality associated with 
diabetes at younger ages could, in part, reflect cumulative 
exposure to worsened metabolic profiles. Furthermore, 
we observed substantial attenuation of excess mortality 
associated with diabetes after adjustment for glycaemic 
markers, suggesting that early detection of diabetes by 
screening and intensive glucose management are relevant 
to the prevention of long-term complications in adults 
with type 2 diabetes.46–48

Our study had several strengths and is distinctive and 
complimentary to previous studies.7–19,26–29 Our focus on 
age at diagnosis of diabetes avoided the inherent 
difficulties in defining age at onset of diabetes (which 
could require near continuous assessment of glycaemic 
status)49 and in defining the duration of diabetes (which 
could be confounded by the timing of entry into, and 

the duration of participation in, prospective cohort 
studies). Furthermore, our study estimated age at 
diagnosis of diabetes using information from people 
diagnosed with prevalent diabetes and those diagnosed 
with incident diabetes. Our access to individual-
participant data avoided the limitations of previous 
literature-based reviews, allowing extensive sensitivity 
analyses to assess potential sources of heterogeneity 
and interactions according to study-level and individual-
level characteristics. Our estimation of reductions in 
life expectancy relied on age-specific HRs directly 
estimated from individual-level data and applied to 
contemporary population-specific mortality rates. This 
approach was desirable because HRs are often less 
variable across similar populations and time and can be 
more precisely estimated in combined data synthesis as 
in our study. The generalisability of the findings was 

Figure 2: Estimated years of life lost by age at diagnosis of type 2 diabetes 
compared with people without diabetes
Estimates of cumulative survival from age 40 years onwards according to age at 
diagnosis of diabetes, calculated by applying hazard ratios (specific to age at risk) 
for all-cause mortality associated with age at diagnosis to 2015 US death rates at 
age 40 years or older.
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enhanced by inclusion of data from 97 prospective 
studies from 19 high-income countries recruited 
between 1961 and 2009, with latest follow-up between 
1980 and 2020.

Our study also had potential limitations. The con
tributing prospective studies defined diabetes in varying 
ways; however, we found no major differences in results 
across studies due to such variation. Between-study 
heterogeneity of associations was moderate to high, and 
was not explained by the characteristics assessed in 
subgroup analyses. We did not have information on the 
pathophysiological subtype of diabetes; however, given 
that we excluded participants who were diagnosed with 
diabetes at younger than 30 years, inferring that the large 
majority of participants had type 2 diabetes could be 
reasonable.50 We did not have information on whether 
individuals with diabetes were treated or followed-up 
differently depending on their age at diagnosis or 
duration of diabetes (eg, in terms of type of medication, 
dose or intensity of treatment)—such factors would be 
likely to affect long-term disease outcomes. Residual 
confounding due to measurement error in variables 
considered for adjustment (eg, smoking) has not been 
addressed. We also did not have information on other co-
morbidities (eg, mental health conditions) and 
socioeconomic variables that would have been useful to 
adjust for. Our analysis involved participants who were 
mostly of European continental ancestry; future studies 
should seek to evaluate these results in other ethnic and 
racial groups. Finally, although we found broadly similar 
results for cause-specific mortality using competing 
and non-competing adjusted models, the aetiological 
interpretation is limited for models adjusted for com
peting risk.51 However, non-competing risk-adjusted 
models might be subject to selection bias, because HRs 
are calculated conditional on those who have survived.52

In conclusion, this study suggests that every decade 
of earlier diagnosis of diabetes is associated with about 
3–4 years of lower life expectancy, highlighting the need 
to develop and implement interventions that prevent or 
delay the onset of diabetes and to intensify the treatment 
of risk factors among young adults diagnosed with 
diabetes.
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