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A B S T R A C T   

Operation notes are a crucial component of patient care. However, writing them manually is prone to human 
error, particularly in high pressured clinical environments. Automatic generation of operation notes from video 
recordings can alleviate some of the administrative burdens, improve accuracy, and provide additional infor
mation. To achieve this for endoscopic pituitary surgery, 27-steps were identified via expert consensus. Then, for 
the 97-videos recorded for this study, a timestamp of each step was annotated by an expert surgeon. To auto
matically determine whether a step is present in a video, a three-stage architecture was created. Firstly, for each 
step, a convolution neural network was used for binary image classification on each frame of a video. Secondly, 
for each step, the binary frame classifications were passed to a discriminator for binary video classification. 
Thirdly, for each video, the binary video classifications were passed to an accumulator for multi-label step 
classification. The architecture was trained on 77-videos, and tested on 20-videos, where a 0.80 weighted-F1 
score was achieved. The classifications were inputted into a clinically based predefined template, and further 
enriched with additional video analytics. This work therefore demonstrates automatic generation of operative 
notes from surgical videos is feasible, and can assist surgeons during documentation.   

1. Introduction 

Operation notes are the written documentation of an operation, 
providing details from basic patient identification to the procedural 
steps, and are important for patient care; clinical continuity; audit; 
research; education; and medico-legal processes [1]. However, they are 
often incomplete; inaccurate; lack detail; illegible; or late [1,2]. This is 
largely caused by human error, due to the ever-increasing administra
tive pressure on clinicians during surgery, and the limited time and re
sources available to them [1]. For example, a 2021 study of a hospital in 
Dublin found 80% of operation notes were incomplete, taking 10-mi
nutes to write an operation note on mean-average [2]. 

In recent years, recording footage of a surgery has become more 
common [3], and utilising these recordings has been shown to add 
important information beyond what is documented in operation notes 
[4]. In particular, it was found that important surgical steps were 
missing in the operation notes compared to the surgical videos of 
laparoscopic cholecystectomy, such as the critical view of safety not 

reported in 25% of surgeries where it did occur in the video [4]. Thus, 
surgical video analysis is able to improve operation note accuracy and 
granularity [5]. This is unfortunately a labour and time intensive task, 
and so not feasible in the contemporary clinical environment [6,7]. 
However, automation has the potential to overcome these barriers 
[6–8], and assist surgeons when writing operation notes [5,6]. 

A surgical video can be broken down into several surgical phases, 
which in turn can be broken down into several more granular surgical 
steps [9,10]. In recent years, artificial neural networks (ANNs) have 
been shown to be an effective method in automating the recognition of 
these phases/steps within a video, with a focus on laparoscopic chole
cystectomy due to the availability of publicly available annotated data 
[8,10]. It has also been achieved in videos of other surgeries, including 
endoscopic pituitary surgery [11,12]. The ANNs are able to predict the 
transition of one surgical phase/step to the next by using using a 
convolution neural network (CNN) for spatial recognition to classify 
which surgical phase/step a static frame of a recorded video belongs to 
[10,11]. Spatial-temporal recognition, such as using ANNs that utilise 
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the temporal information in a video, or using statistical techniques that 
utilise phase/step and frame ordering are able to improve performance 
further [10,11]. 

In these papers, it is often discussed that the information provided by 
phase/step recognition can be utilised to automatically generate oper
ation notes [6,8,10,11]. One such example is for laparoscopic chole
cystectomy videos, where it was shown that an increased uncertainty of 
the ANN phase transition prediction was correlated with an adverse 
event, and hence this could be used as a flag during operation notes 
generation [13]. However, the surgical steps found in operation notes of 
endoscopic pituitary surgery are more granular, with 27-steps compared 
to the fewer 8-phases present in these studies [13,14]. Moreover, some 
steps occur concurrently with one another, changing the recognition 
task from a single-label classification problem to a multi-label classifi
cation problem [14]. 

To overcome this particular challenge, a three-stage architecture has 
been created. In the first stage, for each step, a CNN is used as a binary 
image classifier for each frame in the video (either the step is present in a 
frame or not). In the second stage, for each step, a “discriminator” is used 
as a binary video classifier (either the step is present in the video or not). 
This is done by implementing a numerical threshold on the frame clas
sifications from the first stage: several discriminators were trailed. In the 
third stage, for each video, an “accumulator” is used as a multi-label step 
classifier. This is done by combining the binary video classifications 
from the second stage and ensuring predefined clinically-based re
lationships between the steps hold, such as a given step not being 
possible without another step also being present. 

The final classifications are then fed into a predetermined clinically- 
based operation notes template, and further enriched with a 3-phases 
duration chart. This paper’s contribution is therefore two-fold: 

1. The first automatic generation of operation notes in endoscopic pi
tuitary surgery using workflow recognition.  

2. A novel three-stage architecture used as a multi-label steps classifier 
to determine which surgical steps are present within a given video. 

2. Methods 

2.1. Dataset 

The 97-videos dataset of endoscopic pituitary surgery was collected 
from the National Hospital for Neurology and Neurosurgery (Queens 
Square, London, United Kingdom) between the 30th of August 2018 and 
the 20th of February 2021. This study was registered with the local 
governance committee, and all patients have provided written informed 
consent. Recordings were excluded if (i) the operation was a revision 
surgery within six months of the primary surgery or (ii) large sections 
were missing. The 97-videos have a median length of 74 minutes, with 
15 having minor footage losses. The surgeries were recorded using a 
high-definition endoscope (Hopkins Telescope), with resolutions vary
ing from 720p-2160p, at 25 frames per second (fps), and stored as mp4 
files. For consistency and reduced computational time, the video reso
lutions were dropped to 720p, and converted to jpeg images at 1fps. 

27 surgical steps were identified as key indicators for generating the 
operation notes. These steps were decided via a Delphi consensus of 
expert endoscopic pituitary surgeons, defined based on anatomical 
landmarks; surgical actions; and instrument usage [14]. Step to opera
tion notes statement mappings are given in Table 1. For simplicity of 
terminology, when referring to a particular step, “S” for “surgical step” is 
added as a prefix to the step number. For this study “instruments” were 
identified as: S08 (drill); S11 (stealth pointer); S12 (doppler); S18 
(surgiflo); S19 (biploar); and S20 (spongostan placement). These in
struments are used to perform a “core” step, and therefore can occur 
simultaneously with this core step, although they are still considered as 
a separate surgical step for classification purposes. 

All 97-videos were viewed by two expert surgeons and, by consensus, 

each surgical step was annotated with a timestamp. Within a video, a 
step may appear several times in non-consecutive frames, and these 
were also annotated with a timestamp. Moreover, the 27-steps vary in 
length (median range 1–11 minutes) and are not necessarily sequential, 
and so these variabilities will be needed to be accounted for during 
classification. 

The nomenclature for a video containing an annotated step is called a 
“positive video” and otherwise a “negative video”. Similarly, a frame 
considered to contain a step is called a “positive frame” and otherwise a 
“negative frame”. The distribution of annotations across all 97-videos 
per step is displayed in Fig. 1, where a wide range of annotation 
numbers are seen. The total number of annotations correlates with the 

Table 1 
Surgical step to operation notes statement mapping. Phases and are defined in 
Ref. [14]. A step referred in a statement within square brackets [] signifies a 
continuation of the original statement with the bracketed step statement. A 
reliant step is one that requires a separate step, as given in the “reliant” column, 
to be present. Note S09 and S10 are two different steps that lead to the same 
operation notes statement (written across both lines).  

Phase Step Category Reliant Operation notes statement 

01 01 core – The middle and superior turbinates 
were laterally displaced using a freer 
elevator. 

02 core – The sphenoid ostium was identified 
[03]. 

03 core 02 and opened using Kerrison’s rongeurs. 
04 optional – The septum was then displaced [05] 

until the opposite ostium was seen. 
05 optional – and a partial posterior septectomy 

performed. 
06 core – The sphenoid sinus was opened, with 

removal of sphenoid septations [07] to 
expose the face of the sella. [08] 

07 core – and mucosa. 
08 instrument – A high-speed drill was required to 

achieve this. 
02 09 core – The sella, carotid prominence, optic 

prominence, and optic-carotid recesses.. 
10 core – ..were then identified on both sides [11] 

[12]. 
11 instrument 09/10 and confirmed using neuronavigation. 
12 instrument 09/10 and confirmed using a Micro Doppler 

probe. 
13 core – The sella was carefully opened using a 

rongeurs. 
14 core – A cruciate durotomy was performed 

using a retractable scalpel. 
15 core – The tumour was seen immediately on 

entering the sella and. 
.removed in a piecemeal fashion using 
currettes and pituitary rongeurs. 

16 core – The cleared pituitary fossa was 
visualised, and the diaphragm had 
descended. 

03 17 core 18/19/ 
20 

Haemostasis was achieved with [18] 
[19][20]. 

18 instrument 17 a surgiflo. 
19 instrument 17 a bipolar cautery. 
20 instrument – and a spongostan placement. 
21 optional – A fat graft was harvested from the left 

lower quadrant of the abdomen and 
placed over the defect. 

22 optional – A MedPor implant was then sized and 
placed. 

23 optional – A fascia lata graft was then harvested, 
and placed over the construct. 

24 optional – Evicel was used. 
25 optional – Adherus dural sealant was applied. 
26 optional – Bismuth soaked ribbon gauze was then 

used to pack the nasal cavity and 
support the repair. 

27 core – Debris was cleared from the nasal cavity 
and choana.  
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number of positive videos, with some steps having several more anno
tations. Focusing on positive videos, core steps (e.g. S15) are present in 
the majority of the videos, whereas optional steps (e.g. S23) and in
strument steps (e.g. S19) are in far fewer videos. 

20-videos were randomly chosen as the testing dataset, and fixed for 
all stages in the classification architecture. For the remaining 77-videos, 
in order to account for the imbalance in the step distribution of positive 
videos, the training and validation videos changed depending on the 
step being classified and stage of the classification architecture, as 
described in the next section. 

2.2. Surgical step classification 

The aim is to automatically detect which of the 27-steps are present 
in a given video. To achieve this, a three-stage architecture was created, 
as displayed in Fig. 2. The three-stages are trained in sequence, with 
Stage I completing hyperparameter tuning on the validation dataset 
before Stage II is trained. All code is written in Python 3.82 [15], using 
PyTorch 1.8.13 [16], will be publicly available,4 and run on a NVIDIA 
Tesla V100 Tensor Core 32 GB GPU using CUDA 11.25 [17]. 

2.2.1. Stage I: Binary frame classification (CNN) 
The first stage is to create a binary frame classifier for each step. 

Frame-level 7-steps multi-class classification has been previously 
investigated on a 50-videos subset of this 97-videos dataset, where the 
optimal CNN was found to be ResNet50 [11,18]. For a given step, 
ResNet50 is able to distinguish between a positive and negative frame by 
identifying the key features within the image. For example, for S02 
(identification of the sphenoid ostium, Phase 1) ResNet50 will identify 
biological landmarks that differ from the other steps. Alternatively, for 
S17 (haemostasis, Phase 3), a repair technique will contrast the usual 
biological landscape, and this will be identified and differ from the other 
steps. An example of a saliency maps for these two example steps (S02, 
S17), where features are highlighted via a heatmap, are displayed in 
Appendix Figure A1. 

Hence, the chosen CNN is ResNet50 pre-trained on ImageNet, with 
the final layer replaced with a linear classifier and the softmax activation 
function. The loss function is cross-entropy, and the optimiser is sto
chastic gradient descent with a learning rate of 0.001 and momentum 
0.9, run with a batch size of 8 for 8 epochs. Training images were 
randomly resized; randomly cropped; and randomly horizontally flipped 
(validation images remain unchanged), before both training and 

validation images were colour normalised and resized to 224 × 224 
pixels to match the ImageNet dataset. The epoch with the highest 
weighted-F1 score on the validation dataset was kept, as weighted-F1 
score safeguards against both small precision and small recall. A sum
mary of the parameter/hyperparameter values used for training can be 
found in Appendix Table A1. 

As not all of the 77-videos in the non-test dataset contain every step, 
for a given step, only positive videos were used for training and vali
dation. An approximate 4-training to 1-validation random split was 
used, and ResNet50 was trained and validated on both positive and 
negative frames of the training and validation dataset respectively. For 
each annotated step, the current and following frames until the next 
non-instrument step were defined as positive frames. As negative frames 
outnumber positive frames, to prevent class imbalance, the number of 
negative frames were reduced to the match the number of positive 
frames. This was done by randomly choosing negative frames from a 
positive video until the number of positive frames and negative frames 
in the same video match. Frames from a negative video were not used for 
training or validation. 

For the discriminators used in stage II, all frames need to be classi
fied. For this evaluation, frames for all 97-videos were colour normalised 
and resized to 224 × 224 pixels to match the ImageNet dataset. Then, 
the frames were classified using the best performing CNN for that 
respective step, outputting both the binary classifications and the frame 
classification probabilities (before the 0.5 threshold for binary classifi
cation) as temporal-ordered sequences. 

2.2.2. Stage II: Binary video classification (discriminator) 
The second stage is to create a binary video classifier for each step. 

To achieve this, six custom discriminators were created and trained for 
each step. These discriminators were inspired by temporal smoothing 
functions, which have been shown to improve the performance of 7-step 
multi-class classifications when applied to CNN classifications on the 50- 
videos subset of this 97-videos dataset [11]. All discriminators are based 
on calculating a single “discrimination number” (δ) from a videos’ 
temporal-ordered sequential frame classifications and if δ is greater than 
or equal to a “discrimination threshold” (τ), that video is predicted to be 
positive. A list of the discriminators and the calculation for their 
respective discrimination number is given in Table 2. 

For each discriminator, τ is a hyperparameter to be determined. This 
was done via linear grid search starting from a minimum of τ = 0 for all 
discriminators, with varying maximums and strides for each discrimi
nator, as given in Table 2. Weighted-F1 score is the chosen evaluation 
metric as it accounts for the imbalanced dataset, and the value of τ that 
maximises the weighted-F1 score was set as the optimal τ value. A 
validation dataset is not required as τ is found in a singular pass, and so 
the training dataset was on all 77-videos in the non-testing dataset. For 
the accumulator used in stage III, for a given video, classifications are 

Fig. 1. A bar chart of the annotations across all 97-videos per surgical step. “Positive Videos” indicates the number of videos where a step is annotated at least once, 
and adding this to “Additional Annotations” indicates the total number of annotations. Note the annotations scale is logarithmic base 10. 

2 https://www.python.org/.  
3 https://pytorch.org/.  
4 https://github.com/dreets/pitnet-opnotes-public.  
5 https://developer.nvidia.com/cuda-toolkit. 

A. Das et al.                                                                                                                                                                                                                                      

https://www.python.org/
https://pytorch.org/
https://github.com/dreets/pitnet-opnotes-public
https://developer.nvidia.com/cuda-toolkit


Intelligence-Based Medicine 8 (2023) 100107

4

required for all steps. For this evaluation, for each step, a video was 
classified based on the respective step’s optimal value of τ, and then all 
step classifications for that video were outputted as a step-ordered 
sequence. 

2.2.3. Stage III: Multi-label steps classification (accumulator) 
The third stage is to create a multi-label steps classifier for each 

video. By taking the step-ordered classification sequence from stage II, 
an “accumulator” was created to ensure the relationships between steps 
do not contradict one another. These rules were created by clinical 
consensus and are given in the “Reliant” column in Table 1 or more 

clearly stated in Appendix Table A3. For example, S11 (“confirmed using 
neuronavigation”) cannot have a positive classification unless either S09 
or S10 (“The sella, carotid prominence, optic prominence, and optic- 
carotid recesses were then identified on both sides”) also has a posi
tive classification. If the discriminator positively predicts S11 but does 
not positively predict S09 or S10 then S11 is changed to a negative 
prediction. The finalised step classifications were then inputted into the 
operation notes template. 

2.3. Operation notes template 

The intended automatically generated “smart” operation notes 
template, as displayed in Fig. 3, was derived from three sources. Firstly, 
the Royal College of Surgeons in England Good Surgical Practice 
guidelines6 were used to define the minimum information set required 
for each operative note: basic information, surgical procedure, and post- 
operative plan [19]. Secondly, an existing international expert 
consensus [14] was used to define the components of the surgical pro
cedure for endoscopic pituitary surgery: phases; steps; instruments; and 
errors. In this section, the text is automated from the steps classifications 
output from the described three-stage architecture and the video ana
lytics (3-phases duration chart) from the preexisting multi-class classi
fications from the architecture described in Ref. [11]. Thirdly, any 
remaining sections of the operative note would require template-based 
or manual editing by surgical teams. 

3. Results and analysis 

3.1. Stage I: CNN 

Fig. 4 displays the weighted-F1 for all three-stages across the 27- 
steps. Focusing on CNN (stage I), for each step the first bar (green) 
displays the training dataset weighted-F1 score and the second bar 
(yellow) the validation dataset weighted-F1 score. The mean-average 
weighted-F1 across all 27-steps is 0.90±0.04 and 0.83±0.06 respec
tively. It is found that for a given step, ResNet50 is able to distinguish 
between the positive and negative frames with high performance, with a 
reasonable training to validation dataset translation. S19 (bipolar 
cutlery, instrument), has a particularly low weighted-F1 score of 0.65 on 
the validation dataset, although a high score of 0.91 on the training 
dataset. This poor translation is likely due to the small number of 

Fig. 2. A flow diagram representation of the architecture used to automatically generate the operation notes. In stage I: for each step, a convolution neural network is 
used as a binary image classifier on each frame of a video. In stage II: for each step, a discriminator is used as a binary video classifier. In stage III: for each video, an 
accumulator is used as a multi-label step classifier. In this diagram, a green outline represents a positive classification and a red outline represents a negative 
classification. Note in this representation, only 2-steps (S02 and S03) are classified, in the full version, all 27-steps are classified. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Definitions of the six discriminators created and trained for stage II. A 
discriminator predicts a positive video if the discrimination number is greater 
than or equal to the discrimination threshold (i.e. δ ≥ τ). The threshold stride 
and maximum values are also given. Note 16200 is the maximum discrimination 
threshold for integer-discriminators as the longest video in the training dataset 
has 16103 frames.  

Discriminator 
name 

Discrimination number (δ) Discriminator 
threshold (τ) 

Stride Maximum 

Binary integer 
∑

positive frames 100 16200 
Binary fraction 

∑
positive frames/

∑
frames 0.01 1 

Probability integer 
∑

frame probabilities 100 16200 
Probability 

fraction 

∑
frame probabilities/

∑
frames 0.01 1 

Chain integer longest period of positive frames 1 16200 
Chain fraction longest period of positive frames/ 

∑
frames 

0.001 1  

Table 3 
7-steps mean-averaged weighted-F1 scores for the six discriminators, before and 
after the use of the accumulator. Scores are given to two significant figures with 
standard deviation. Ensemble discriminator results can be found in Appendix 
Table A4.  

Discriminator name Discriminator Accumulator 

Training Testing Training Testing 

Binary integer 0.72 ± 0.15 0.73 ± 0.24 0.71 ± 0.15 0.73 ± 0.23 
Binary fraction 0.77 ± 0.13 0.77 ± 0.21 0.76 ± 0.13 0.77 ± 0.18 

Probability integer 0.72 ± 0.15 0.73 ± 0.24 0.71 ± 0.15 0.73 ± 0.23 
Probability fraction 0.76 ± 0.15 0.79 ± 0.20 0.76 ± 0.12 0.80 ± 0.18 

Chain integer 0.60 ± 0.21 0.61 ± 0.27 0.58 ± 0.21 0.60 ± 0.26 
Chain fraction 0.69 ± 0.19 0.72 ± 0.26 0.68 ± 0.18 0.72 ± 0.25  6 https://www.rcseng.ac.uk/standards-and-research/gsp/. 
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positive videos (see Fig. 1), leading to high variability in images. 

3.2. Stage II: Discriminator 

The “Discriminator” column in Table 3 displays the weighted-F1 
scores for the six discriminators, mean-averaged across the 27-steps for 
both training and testing datasets. The performances are high, with the 
best performing discriminator on the training dataset (binary fraction) 
scoring 0.77, and the best on the testing dataset (probability fraction) 
scoring 0.79. It is found that fraction-based discriminators outperform 
integer-based discriminators, likely due to the variability in the video 
lengths. It is also found that chain-based discriminators are worse per
forming than both probability-based and binary-based discriminators 
(which perform similarly). This is likely due to “step flickering” phe
nomena found in both [11,13], where occasionally a frame is seemingly 
randomly predicted a negative class when it is truly positive, due to 
occlusions of the endoscope/laparoscope. Hence a “chain” of positive 
frames breaking, and not leading to a consistent discrimination number. 

The weighted-F1 scores translate well from the training dataset to the 
testing dataset, with almost identical performance (although slightly 
higher standard deviations in the testing dataset), implying general
isability of the discriminators. The weighted-F1 scores for the 27-steps 
for the best performing discriminator, probability fraction, can be 
found in Fig. 4. The third bar (blue) displays the training dataset 
weighted-F1 and fourth bar (red) displays the testing dataset weighted- 
F1. Focusing on the step-specific performance, for the majority of the 
steps the training weighted-F1 score is high (>0.75), yet there is some 
score variability: e.g. S15 (tumour excision, core) has a score of 1.0 
whereas S11 (stealth pointer, instrument) has a score of 0.40. Addi
tionally, the weighted-F1 score is stable against small changes in the 
optimal discrimination threshold (τ±0.05). The optimal values for τ can 

be found in Appendix Table A2. The results for ensemble discriminators, 
created by combining the classifications of probability fraction with the 
remaining 5-discriminators with either an intersection (∩, and) or union 
(∪, or) operator, can be found in Appendix Table A4. The weighted-F1 
score for these ensemble discriminators show no improvement over the 
baseline probability fraction discriminator weighted-F1 score for both 
training and testing datasets. 

3.3. Stage III: Accumulator 

The “Accumulator” column in Table 3 displays the weighted-F1 
scores for the six discriminators after the accumulation stage, mean- 
averaged across the 27-steps for both training and testing datasets. On 
both datasets, the weighted-F1 score is changed by approximately 0.01 
in all cases, with a similarly small change in the standard deviation, 
showing that the accumulator has minimal impact on the classifications. 
This is expected as there are relatively few rules where the step classi
fications outputted by the discriminator will change. 

This observation is repeated in Fig. 4, where the weighted-F1 scores 
across the 27-steps are displayed after the accumulator has been applied 
to the probability fraction discriminator binary video classifications 
when reliant (see Table 1). The fifth bar (dashed blue) displays the 
training dataset weighted-F1 score and sixth bar (dashed red) displays 
the testing dataset weighted-F1 score. The only major changes are a 
decreased performance in S03 (anterior sphenoidotomy, core) and an 
increased score in S11 (stealth pointer, instrument). The direction of 
changed performance is in the direction of the performance of the reliant 
step at the discrimination stage. Specifically (see Table 1), S03 is reliant 
on S02 which has a worse performance and S11 is reliant on S09 or S10 
which both have better performances. 

Fig. 3. Flow diagram of how the automatically generated “smart” operation notes template is intended to be created. The template is derived from three sources: the 
Royal College of Surgeons [19], an international Delphi consensus study [14], and manual editing from surgical teams. Note final checks are always to be completed 
by the surgical team. 

Fig. 4. A bar chart of the weighted-F1 scores for all three-stages across the 27-steps, as displayed in the legend. Stage I: CNN (ResNet50) binary frame classifications; 
Stage II: Discriminator (probability fraction) binary video classifications; Stage III: Accumulator multi-label classifications applied to discriminator classifications for 
reliant steps (see Table 1). 
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4. Discussion 

4.1. Principal findings 

In this paper, a novel three-stage architecture was created and 
trained on a 97-videos dataset of endoscopic pituitary surgery, in order 
to create a multi-label steps classifier which determines which surgical 
steps are present within a given video. The three-stages were: (I) binary 
frame classification; (II) binary video classification; (III) multi-label 
steps classification. For stage I, the CNN ResNet50 was shown to be an 
effective binary frame classifier. For stage II, several novel discrimina
tors were created, and it was shown binary fraction was the most 
effective binary video classifier. This binary fraction discriminator 
classifies a video as positive based on whether the fraction of positive 
frames (the discrimination number) is greater than or equal to a certain 
number (the discrimination threshold). For stage III, a custom accu
mulator ensured clinical coherence between the surgical steps using 
predetermined rules, while having minimal impact on step classification 
performance. Operation notes were further enriched with a 3-phases 
duration chart using preexisting methods. An example of an automati
cally generated smart operation note for a specific video is given as 
supplementary material. 

4.2. Comparison to literature 

Step recognition from videos has well-established methods: CNNs are 
used for spatial recognition and recurrent neural networks or temporal- 
CNNs for temporal recognition [10]. Using this as a basis, for stage I of 
the three-stage architecture, ResNet50 was chosen as the binary frame 
classifier. This is because it was shown to be the optimal CNN in 
Ref. [11], where 0.67 weighted-F1 score was achieved in 7-steps 
multi-class recognition on a 50-videos subset of the 97-videos used in 
this study. The 0.83 weighted-F1 score achieved by ResNet50 in this case 
is therefore comparable, and an improved performance is expected 
considering the simpler binary classification task. Temporal recognition 
via neural networks was not introduced in this study given the duration 
for each step is short, leading to a small positive dataset, and the need for 
multiple consecutive frames would reduce this dataset further. Statisti
cal methods for utilising temporal sequencing, such as temporal 
smoothing as used in Ref. [11], was introduced in stage II of the archi
tecture through the use of discriminators. 

[13] provided a proof of concept for automatic generation of oper
ation notes through the use of 8-phases classification on laparoscopic 
cholecystectomy. In that study, a spatial-temporal CNN was trained on 
52-videos and tested on 15-videos where a 0.80 accuracy was achieved. 
This is comparable to the 0.80 weighted-F1 score achieved in this paper’s 
study, but with multi-labelled 27-steps compared to far fewer 
single-labelled 8-phases. 

4.3. Strengths and limitations 

One strength of this study is the large 97-videos dataset, although it is 
from a single centre which means the architecture’s true generalisability 
is not known. Collecting more videos across many different centres will 
improve this. 

Another strength is the number of novel discriminators used, and 
their effectiveness as a binary video classifier. However, they perform 
less well on steps where the number of positive and negative frames are 
similar, due to the threshold technique implemented. More granular 
discriminators will help fix this particular issue. Moreover, pretraining 
ResNet50 on multi-class 3-phases and 7-steps frame classifications [11] 
or instrument classifications may improve the binary frame step classi
fications, which may help improve performance at the discrimination 
stage. This may also supersede the need for binary classifications and 
move straight to 27-steps multi-label step classifications. However, 
given the current relatively small dataset size; the small number of 

videos for certain steps (e.g. S23 is found in only 15 videos); and short 
duration of some steps (e.g. S04 is <60s on mean-average), more data 
and more sophisticated classifiers are required. After this, more so
phisticated discriminators can be used for multi-step video 
classification. 

A third strength is the use of an accumulator to ensure clinical 
coherence between steps, which has been shown to be effective. A 
limiting factor for this is the static nature of the rules. The use of step 
transition probabilities to modify predictions through the use of statis
tical methods, such as hidden Markov models, to create dynamic rules 
may improve the accumulator’s performance in stage III multi-label 
steps classification. 

Finally, the operation note template is derived from domestic sur
gical standards and international consensus studies, which is a strength. 
To improve this further, images of critical steps (S09, S10, S15, S16, S21) 
would be added as a video analytic, in addition to the 3-phases duration 
chart. Furthermore, the notion of step flickering could be used to flag a 
surgery that has deviated from the norm, as in Ref. [13]. 

4.4. Clinical translation 

Although the run-time for training is approximately 12 hours, the 
evaluation of a singular video is less than 2 minutes, thus the operation 
note statements can be generated immediately after a surgery. Next 
comes the clinical validation of the generated notes, and if deemed 
successful, they should be implemented into clinical workflow. Here the 
true benefits of automation will be seen; increasing operation notes 
accuracy and granularity while reducing the administrative burden on 
clinicians [4,20]. The automatically generated notes will require final 
sign-off from the surgical team. Therefore, if clinicians are uncomfort
able with a purely automatically generated operation note, the predicted 
steps can be used as a prompt for manually written operation notes, and 
ensure steps are not missed. 

In order to translate this methodology to other surgeries, the 
following steps are suggested:  

1. The surgery should be broken down into well-defined surgical steps. 
It is recommended this is achieved via an international Delphi 
consensus study [14].  

2. Each step should then have an associated operative statement 
created, with reliant steps accounted for (e.g. Table 1). It is recom
mended guidance from the appropriate governing medical body is 
adhered too [19].  

3. Several surgeries should be recorded. It is recommended to record 
over 50 multi-centered videos for improved generalisability [11].  

4. Each surgical video should then be annotated with the timestamps of 
the start and end of each surgical step. This will me a manual process, 
and require the use of clinicians with experience in the surgery [12].  

5. The three-stage architecture created in this paper should then be 
trained on annotated videos. It is recommended hold-out testing is 
used to ensure a certain quantitative value is achieved before putting 
this into clinical practice.  

6. Finally, after a new surgery is completed, the video of the surgery can 
be fed into the trained model, and the model output will automati
cally generate the operation note. 

4.5. Conclusion 

In this paper, it was shown that automatic generation of operation 
notes from endoscopic pituitary videos using workflow recognition is 
possible to achieve with a high performance and efficiency. This is the 
first such automatic generation of operation notes in endoscopic pitui
tary surgery, and on top of this, the operation notes are enriched with 
video analytics. Hence, this work paves the way for future endeavours in 
the clinical translation of step recognition to the automatic generation of 
operation notes, where it can be used as an assistive tool by clinicians, 
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reducing their administrative burden. 
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Appendix

Fig. A1. ResNet50 saliency maps for two example steps within one video. The steps displayed are S02 (identification of the sphenoid ostium, Phase 1) and S17 
(haemostasis, Phase 3). Saliency maps highlight the pixels, and by proxy the features, deemed to be important by ResNet50 for a positive classification.  

Table A1 
Convolution neural network binary classification parameter choice. No hyperparameter tuning was done - values 
are taken from the most optimal convolution neural network found in Ref. [11].  

Parameter Value 

Dataset size 97-videos 
Mean length 77.9 min 
Validation 4 to 1 training to validation split 
Testing 20-videos hold-out testing 
Class imbalance Equal number of positive and negative frames for training 
Encoder ResNet50 (pre-trained on ImageNet) 
Classification activation function Softmax 
Loss function Cross-entropy 
Optimiser Stochastic gradient descent 
Learning rate 0.001 

(continued on next page) 
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Table A1 (continued ) 

Parameter Value 

Momenumtum 0.9 
Batch size 8 
Number of epochs 8 
Image size 224 × 224 pixels 
Training image augmentation Random cropping; random horizontal flipping; colour normalisation 
Primary evaluation metric Weighted-F1 score   

Table A2 
Threshold number (τ) values for the 27-steps for all discriminators. Definitions of each discriminator can be found in Table 2 of the main paper. The value of τ was tuned 
by trying values between 0 and the displayed maximum, increasing τ by the displayed stride at each iteration. The value that maximises the weighted-F1 score across all 
77-non-test-videos for a given step is displayed here.  

Discriminator Binary integer Binary fraction Probability integer Probability fraction Chain integer Chain fraction 

Stride 00100 0.01 00100 0.01 00001 0.001 
Maximum 16200 1.00 16200 1.00 16200 1.000 

S01 1500 0.05 1500 0.05 158 0.001 
S02 0700 0.05 0700 0.04 156 0.001 
S03 1500 0.05 1500 0.05 151 0.001 
S04 1500 0.05 1500 0.05 159 0.001 
S05 1500 0.05 1400 0.05 159 0.001 
S06 1500 0.05 1500 0.05 158 0.001 
S07 1500 0.10 1400 0.10 160 0.001 
S08 0000 0.00 0000 0.00 046 0.000 
S09 0300 0.09 0300 0.09 080 0.000 
S10 0300 0.09 0300 0.09 159 0.001 
S11 0300 0.09 0300 0.09 095 0.001 
S12 0100 0.09 0100 0.09 094 0.000 
S13 1500 0.10 1400 0.10 157 0.001 
S14 1500 0.10 1500 0.10 161 0.001 
S15 1100 0.10 1100 0.10 159 0.001 
S16 0400 0.08 0400 0.08 087 0.000 
S17 1500 0.10 1400 0.10 139 0.001 
S18 1300 0.09 1200 0.09 151 0.001 
S19 0100 0.08 0000 0.07 022 0.000 
S20 1500 0.10 1400 0.10 149 0.001 
S21 0700 0.09 0700 0.10 090 0.001 
S22 0100 0.08 0000 0.07 220 0.000 
S23 0000 0.00 0000 0.00 017 0.000 
S24 0200 0.08 0200 0.09 012 0.000 
S25 0100 0.09 0100 0.08 026 0.000 
S26 0200 0.07 0200 0.07 078 0.000 
S27 1500 0.10 1500 0.09 160 0.001   

Table A3 
The rules for the accumulator. A listed “predicted step” cannot be positively predicted without the “reliant step” also being positively predicted. If this is the case, the 
“predicted step” is changed to a negative prediction. Step statements can be found in Table 1 of the main paper and step definitions can be found in Ref. [14].  

Predicted Step S03 S11 S12 S17 S18 S19 

Reliant Step S02 S09 or S10 S09 or S10 S18 or S19 or S20 S17 S17   

Table A4 
27-steps mean-averaged weighted-F1 scores for ensemble discriminators. The ensemble discrimi
nators are created by combining the best performing baseline discriminator classifications, prob
ability fraction, with the remaining 5-discriminators’ classifications, using either an intersection (∩, 
and) or union (∪, or) operator.  

Ensemble Discriminator Weighted-F1 score 

Training Testing 

Probability fraction 0.76 ± 0.15 0.79 ± 0.20 
Probability fraction ∩ Binary integer 0.72 ± 0.16 0.72 ± 0.17 
Probability fraction ∪ Binary integer 0.73 ± 0.14 0.73 ± 0.15 
Probability fraction ∩ Binary fraction 0.74 ± 0.13 0.74 ± 0.15 
Probability fraction ∪ Binary fraction 0.74 ± 0.14 0.74 ± 0.16 

Probability fraction ∩ Probability integer 0.74 ± 0.14 0.74 ± 0.16 

(continued on next page) 
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Table A4 (continued ) 

Ensemble Discriminator Weighted-F1 score 

Training Testing 

Probability fraction ∪ Probability integer 0.65 ± 0.25 0.66 ± 0.25 
Probability fraction ∩ Chain integer 0.62 ± 0.15 0.62 ± 0.15 
Probability fraction ∪ Chain integer 0.63 ± 0.15 0.61 ± 0.15 
Probability fraction ∩ Chain fraction 0.72 ± 0.17 0.72 ± 0.18 
Probability fraction ∪ Chain fraction 0.70 ± 0.18 0.71 ± 0.19  
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