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Background: 1H-magnetic resonance spectroscopy (1H-MRS) may provide a direct index for the testing of medicines for
neuroprotection and drug mechanisms in multiple sclerosis (MS) through measures of total N-acetyl-aspartate (tNAA), total
creatine (tCr), myo-inositol (mIns), total-choline (tCho), and glutamate + glutamine (Glx). Neurometabolites may be associ-
ated with clinical disability with evidence that baseline neuroaxonal integrity is associated with upper limb function and
processing speed in secondary progressive MS (SPMS).
Purpose: To assess the effect on neurometabolites from three candidate drugs after 96-weeks as seen by 1H-MRS and
their association with clinical disability in SPMS.
Study-Type: Longitudinal.
Population: 108 participants with SPMS randomized to receive neuroprotective drugs amiloride [mean age 55.4 (SD 7.4),
61% female], fluoxetine [55.6 (6.6), 71%], riluzole [54.6 (6.3), 68%], or placebo [54.8 (7.9), 67%].
Field Strength/Sequence: 3-Tesla. Chemical-shift-imaging 2D-point-resolved-spectroscopy (PRESS), 3DT1.
Assessment: Brain metabolites in normal appearing white matter (NAWM) and gray matter (GM), brain volume, lesion
load, nine-hole peg test (9HPT), and paced auditory serial addition test were measured at baseline and at 96-weeks.
Statistical Tests: Paired t-test was used to analyze metabolite changes in the placebo arm over 96-weeks. Metabolite dif-
ferences between treatment arms and placebo; and associations between baseline metabolites and upper limb function/
information processing speed at 96-weeks assessed using multiple linear regression models. P-value<0.05 was considered
statistically significant.
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Results: In the placebo arm, tCho increased in GM (mean difference = �0.32 IU) but decreased in NAWM (mean
difference = 0.13 IU). Compared to placebo, in the fluoxetine arm, mIns/tCr was lower (β = �0.21); in the riluzole arm, GM
Glx (β = �0.25) and Glx/tCr (β = �0.29) were reduced. Baseline tNAA(β = 0.22) and tNAA/tCr (β = 0.23) in NAWM were
associated with 9HPT scores at 96-weeks.
Data Conclusion: 1H-MRS demonstrated altered membrane turnover over 96-weeks in the placebo group. It also distin-
guished changes in neuro-metabolites related to gliosis and glutaminergic transmission, due to fluoxetine and riluzole,
respectively. Data show tNAA is a potential marker for upper limb function.
Level of Evidence: 1
Technical Efficacy: Stage 4

J. MAGN. RESON. IMAGING 2023.

Proton magnetic resonance spectroscopic imaging (1H-
magnetic resonance spectroscopy [1H-MRSI]) provides

an in vivo opportunity to analyze the metabolic composition
of brain tissue in multiple sclerosis (MS). Metabolites of
interest in MS include total N-acetyl aspartate and N-acetyl-
aspartylglutamate (tNAA)—a marker of neuroaxonal integrity
and mitochondrial function, myo-inositol (mIns)—a marker
of glial cell activity, most likely astrogliosis, glutamate, and its
precursor glutamine (Glx); and total-choline (tCho)—a
marker of membrane turnover.1 While the metabolite profile
has been comparatively well studied in the relapsing–
remitting form of MS, less is known about alterations in the
progressive forms of MS (PMS).1

Previous natural history studies examining longitudinal
metabolite changes in PMS have shown mixed results: over
24–30 months, several studies showed no change in tNAA,
mIns, and tCho (n = 17–47)2–4; while one study showed a
decrease in tNAA and an increase in tCho in normal appe-
aring white matter (NAWM; n = 15).5

1H-MRSI also presents a method through which the bio-
chemical target engagement of candidate drugs to treat PMS can
be investigated. Several candidate drugs (fluoxetine, riluzole, and
amiloride) had been proposed as they target pathways that result
in neuroaxonal degeneration in PMS.6 Through MRS, fluoxe-
tine has previously been shown to increase tNAA levels in cere-
bral white matter in MS.7–10 In a mixed MS cohort, it
decreased tCho levels in cortical gray matter (GM).11 Further-
more, fluoxetine may have an anti-inflammatory effect that
could be confirmed by a decrease in mIns levels.12

Riluzole was proposed as a candidate as it decreases
glutamatergic transmission in the central nervous system.13

Evidence for glutamatergic excitotoxicity has been demon-
strated in experimental MS models.14,15 In animal studies,
glutamatergic receptor antagonism ameliorates disease acti-
vity but translational studies have been mixed.15,16 Using
1H-MRSI, we can track the effectiveness of riluzole in reduc-
ing glutamatergic transmission by a concomitant reduction in
Glx concentration compared to placebo.13

Amiloride has evidence for a potential neuroprotective
effect in MS from previous animal work suggesting that the
acid sensing ion channel-1 (ASIC-1) receptor is involved in
sodium and calcium influx that lead to axonal and

oligodendrocyte injury. Furthermore, blockage of this recep-
tor may result in a neuroprotective effect, an effect that could
be assessed by measuring NAA levels using 1H-MRSI.17

The purpose of our study is therefore to explore the
changes in neuro-metabolites in white and GM in an secondary
progressive MS (SPMS) cohort over 96 weeks; explore how
metabolites are affected by fluoxetine, riluzole, and amiloride to
provide evidence of neuro-protection beyond atrophy for these
candidate drugs; and determine if baseline metabolites effect
measures of upper limb function and processing speed in SPMS
at 96 weeks for those on and off treatment.

Methods
Participants and Clinical Assessments
Consent was obtained for all participants according to the
Declaration of Helsinki and ethical approval for the study
was provided by the Scotland A Research Ethics Committee
[13/SS/0007].

A full description of the methods has been reported
previously.20 In brief, participants were recruited from the
MS-SMART trial, aged 25–65 with an Expanded Disability
Status Scale (EDSS) score of 4.0–6.5 who showed evidence of
progression of SPMS over the last 2 years.18,19 A full breakdown
of this is given in Table 1. Participants were randomized 1:1:1:1
to placebo, amiloride, fluoxetine, or riluzole and the primary
outcome measure was the percentage brain volume change
(whole brain atrophy) over 2 years. Participants were not on dis-
ease modifying treatments. Further details of the study protocol
and its primary and secondary outcome measures (nine-hole peg
test [9HPT] and Paced Auditory Serial Addition Test
[PASAT3]) have been published previously.18,19

Participants at the Queen Square MS Centre, Univer-
sity College London were invited to be involved in an
optional “Advanced MRI sub-study” and thus consented to
being scanned for 1H-MRSI at baseline and 96-weeks. They
underwent recruitment and follow-up between December
2014 and July 2018.

MRI Acquisition
Imaging was acquired using a Philips Achieva 3T MRI scan-
ner (Philips Healthcare, Best) using a 16ch neurovascular coil.
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Acquisition parameters for the 1H-MRSI and structural
MR sequences and details of MR analysis including brain
volume, lesion segmentation, spectra post-processing, and
calculation of tissue specific metabolite levels have been
described previously. Briefly for 1H-MRSI, the inferior
margin of the slice was positioned at the superior margin
of the corpus callosum, angulated to the anterior commis-
sure/posterior commissure line.20 A 2D point-resolved spectro-
scopic sequence (TE/TR = 35/2000 msec), 210 � 160 mm2

field of view (volume of interest subdivided into a 21 � 16 grid)
was acquired with 10 � 10mm2 voxels and 15 mm thickness
(Fig. 1), spectral width = 2000 Hz.20 Outer volume suppression
using fat saturation was applied to limit artefacts, and the vol-
ume of interest was shimmed on the water peak using the pencil
beam-auto technique, acceptable shims were determined on the
shape of the peak, focusing on single Lorentzian line shapes,
while linewidth criteria was assigned as a cut off all had a full
width half maximum <15 Hz for the water peak.21 Chemical
shift selective saturation pulses were used for water suppression.
A reference scan with no water suppression was also collected for
quantification and total scan time for MRS was 10 minutes
54 sec. The number of averages was one (with and without
water suppression), and each spectra had 1024 samples. No fre-
quency correction or motion correction was applied during
acquisition.

T2 lesion volume was measured by outlining lesions on
the T2 weighted image using the FLAIR as a reference. This
was completed by trained personnel blinded to clinical data
(FDA 5 years experience, AC 1 year experience, and DM
20 years experience) using a semi-automated method (Jim7,
Xinapse, UK).18,20 From lesion filled 3D-T1 weighted
images, Geodesic Information Flows algorithm was used to
segment the brain.22 Normalized brain volume was then
calculated using the FSL SIENAX method.23,24

MRI Data Processing
Total NAA, mIns, glutamate and its precursor glutamine
(Glx), total choline (tCho) and their ratios to total creatine
(tCr) were measured using Linear Combination of Model
Spectra (LCModel© version 6.3-1A) using a simulated basis
spectrum and default values for water concentration and
attenuation. The tCr levels were also estimated.

Basis sets were simulated in GAMMA25 included
17 metabolites (L-alanine, aspartate, Creatine, phos-
phocreatine, gamma-aminobutyric acid, glucose, Glx, gluta-
mate, glycerophosphocholine, phosphocholine, myo-Inositol,
lactate, NAA, NAAG, scyllo-inositol, taurine, and
guanidinoacetate).25 Macromolecules at 0.9, 2.0, 1.2, 1.4,
and 1.7 ppm and lipids at 0.9, 1.3, and 2.0 ppm were also

TABLE 1. Baseline Characteristics of Study Participants

Amiloride
(N = 31)

Fluoxetine
(N = 24)

Riluzole
(N = 25)

Placebo
(N = 28)

Total
(N = 108)

Age (years) 55.4 (7.4) 55.6 (6.6) 54.6 (6.3) 54.8 (7.9) 55.1 (7.1)

Female 19 (61%) 17 (71%) 17 (68%) 19 (68%) 72 (67%)

EDSS 6.0 (5.5–6.5) 6.0 (5.5–6.1) 6.0 (5.5–6.0) 6.0 (5.2–6.0) 6.0 (5.5–6.5)

Time since onset
of MS (years)

24.7 (10.7) 23.0 (8.9) 21.6 (8.7) 19.4 (9.6) 22.2 (9.7)

PASAT3
(out of 60)

44.8 (10.0) 42.0 (12.3) 38.6 (15.8) 46.2 (9.8) 43.1 (12.2)

Timed 25 foot
walk (sec)

9.2 (6.9–14.3) 12.0 (7.2–16.3) 9.9 (7.9–14.8) 8.3 (6.8–11.3) 9.3 (7.0–15.0)

9-Hole peg test
(sec�1)

0.04 (0.01) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.04 (0.01)

T2 lesion volume
(mL)

7.5 (4.2–15.9) 11.0 (5.3–17.4) 8.9 (2.7–22.5) 7.0 (3.0–13.8) 8.5 (3.5–17.1)

Baseline NBV
(mL)

1405.5 (88.0) 1421.9 (73.9) 1419.1 (74.7) 1443.7 (91.737) 1422.2 (83.2)

Data presented are n (%), mean (SD), or median (IQR). Nine-hole peg test calculated by taking the reciprocal of each trial per hand,
taking the mean of two trials and then taking the average.
EDSS = expanded disability status scale; NBV = normalized brain volume; PASAT3 = paced auditory serial addition test.
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included in the simulated basis set for macromolecular base-
line correction.

Metabolites were scaled to water and expressed in insti-
tutional units (IU).20 Spectra from individual voxels were
automatically rejected if any neurometabolite Cramer-Rao
lower bounds were >20%, full width half-maximum of the
tNAA spectral peak was >15 Hz or SNR <9. In calculating
metabolite levels in NAWM and GM, voxels containing
>15% CSF and >1% WML were excluded before employing
a regression method that has been described previously.20 As
previously described, the small lesion load in the acquired
slice (average white matter lesion [WML] fraction in the
SPMS cohort was 0.01) meant that the calculation of metab-
olite values in WML tissue could not be completed.20

Metabolite outliers (defined as major outliers that fell outside
three times the interquartile range below quartile one or three
times interquartile range above quartile three) were also
excluded.20

Statistical Methodology
Statistical analysis was completed using R statistical software
version 3.5.1.26 All statistical tests and confidence intervals
were two-sided; 95% confidence intervals were calculated
with the significance of raw P-values assessed based on a 5%
significance level. A complete case analysis following removal
of metabolite outlying observations based on the intention-
to-treat population. During the analysis, 48 comparisons were
undertaken and each comparison was based on a specific
hypothesis that was pre-specified a priori (except for choline
as a post-hoc analysis) and therefore no adjustment for

multiplicity was made. The reporting of multiple analyses was
guided by the considerations outlined by Patel et al.: multi-
plicity adjustment is not required when a list of hypotheses of
primary importance are pre-specified; there is a focus on
being explicit and transparent about the extent of multiplic-
ity; and the magnitude of observed associations are inter-
preted in the context of the background literature.27,28

A paired t-test was used to analyze metabolite changes in
the placebo arm over 96-weeks. Metabolite differences between
each treatment group and placebo were analyzed using a multi-
ple linear regression method to calculate adjusted mean differ-
ences and 95% confidence intervals. Each metabolite was
assessed in a separate model, where the week-96 metabolite con-
centration was the dependent variable. Independent variables
included the trial arm (with placebo as the reference category),
the baseline metabolite concentration (corresponding to the out-
come variable), and minimization variables: age, sex, and EDSS
score at randomization.

When analyzing the longitudinal association between
baseline metabolites and week-96 clinical disability measures
(9HPT and PASAT3 scores), separate linear regression
models were initially fitted with 9HPT and PASAT3 perfor-
mance at 96-weeks as the dependent variable. Trial arm was
again included as an independent variable in each model.
Where metabolites were associated with 96-week PASAT3 or
9HPT in this preliminary model (refer table 6), this relation-
ship was further analyzed in a multiple linear regression
model including the following covariates: age, sex, occurrence
of a relapse in 2 years preceding randomization, baseline T2
lesion volume, baseline normalized brain volume, and trial

FIGURE 1: Example chemical shift imaging grid. An axial T2 slice containing the blue outer volume suppression bands. The yellow
box highlights a sample chemical shift imaging grid from a participant in the study with the associated spectra shown on the right.
Following the quality check, all spectra in this grid were accepted and included in the analysis.
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arm. Age and sex were chosen as key demographic variables,
while the occurrence of relapses in the 2 years preceding
study entry was added to assess the impact of potential
inflammatory activity. Results are reported as standardized
coefficients (β) with standardized 95% confidence intervals.

Distributional assumptions underlying the regression
analyses were assessed by visual inspection of residual plots.
Normality was examined by normal probability plots. Highly
leveraged data observations were identified using Cook’s
distance.

Results
H-MRSI data were obtained at 96-weeks from 122/148 par-
ticipants (82%) where 26 participants were lost to follow up
or failed quality assurance (see Fig. 2). The 122 participants
provided 7402 1H-MRSI voxels and after removing voxels
containing >15% CSF, 3639 voxels remained. Removing
voxels containing >1% WML left 2655 voxels from the
96-week timepoint for analysis [median 20 (range 1–53) per
patient]. Fourteen participants were excluded as metabolite
outliers and these were spread across each trial arm (three in
amiloride, three in fluoxetine, seven in riluzole, and one
in placebo arm); and this cohort had an overall median EDSS
6.5 (IQR 6.0–6.5), median T2 lesion volume (mL) 22.0
(IQR 15.6–30.5) and mean normalized brain volume
(mL) of 1364 (SD 98.4). After calculating metabolite values
and removing metabolite outliers (as previously described),20

108 participants were left for analysis and the baseline charac-
teristics of this cohort are shown in Table 1.

The spectral signal to noise ratio and linewidth were of
sufficient quality, consistent at each timepoint and across trial
arms for this analyzed cohort (n = 108; Supplementary
Table S3).

Metabolite Changes in SPMS over 96 Weeks
There was no significant decrease in tNAA or mIns in either
the NAWM (P = 0.34; P = 0.37, respectively) or GM
(P = 0.32; P = 0.65, respectively). There was a significant
increase in GM tCho (and tCho/Cr) with mean differences
of �0.32 IU, and �0.04 IU, respectively, while NAWM
tCho decreased (mean difference = 0.13 IU) (Supplementary
Table SS1).

Effect of Candidate Drugs on Metabolites
These are shown in supplementary Tables S2 and S3.
Compared to placebo, the only statistically significant changes
were that mIns/tCr levels in NAWM was lower in the fluoxe-
tine arm over 96-weeks (β = �0.21, 95% CI [�0.40 to
�0.02]). In the riluzole arm, there was no change in NAWM
Glx (P = 0.24); however, riluzole did significantly decrease
GM Glx (β = �0.25, 95% CI [�0.47 to �0.04]) and
Glx/tCr (β = �0.29, 95% CI [�0.50 to �0.08]) compared
to placebo. There was no significant change in tNAA or

tNAA/tCr levels compared to placebo in the amiloride arm in
NAWM (P = 0.76 and P = 0.61, respectively) or GM
(P = 0.07 and P = 0.51, respectively).

Associations between Metabolites and Clinical
Measures
In NAWM, baseline tNAA (β = 0.22, 95% CI [0.02–0.41])
and tNAA/tCr (β = 0.23, 95% CI [0.5–0.42]) were associ-
ated with week-96 9HPT scores after adjusting for model
covariates (Table 2 and Supplementary Table S4).

Discussion
1H-MRSI in SPMS has allowed us to interrogate at a
metabolic level: natural history, effect of candidate drugs, and
longitudinal disability measures. An increase in GM tCho
and a reduction in NAWM tCho in SPMS not on treatment
is demonstrated. Fluoxetine was shown to only reduce mIns/
tCr levels, riluzole reduced the Glx level, while amiloride had
no effect on tNAA. Baseline tNAA and tNAA/tCr levels in
NAWM are associated with decreased performance in upper
limb function at 96-weeks.

Metabolite Changes in SPMS over 96 Weeks
Previous longitudinal studies of metabolite changes in progres-
sive MS have shown mixed results.2–5 However, based on mech-
anisms of SPMS progression, increases in tCho and mIns, and a
reduction in tNAA was hypothesized. Two previous longitudinal
studies of NAWM tCho in PMS have shown mixed results with
one study showing no change (n = 47, median EDSS = 6.0)
and another being inconclusive (SPMS = 15, median
EDSS = 4.0).4,5 The tCho peak comprises free choline, pho-
sphocholine, phosphatidylcholine (a major constituent of cell
membranes), and glycerophosphocholine.29 Studies in animal
MS models and those correlating in vivo 1H-MRS with histopa-
thology have demonstrated increased tCho (and tCho/tCr) in
acute WML,30 with levels greatest in lesions with fibrillary
gliosis.1,30,31 It is therefore postulated that the increased tCho
level in GM could be due to a combination of increased mem-
brane turnover, fibrillary gliosis, increased cell membranes from
glial cell proliferation, and remyelination. This may also reflect
the role of cortical GM damage mediated by meningeal inflam-
mation in SPMS.32 The reduction in NAWM tCho may reflect
a decrease in membrane turnover or cell membranes/myelin.
The difficulty in interpretation stems from the fact that the
tCho peak contains differing proportions of choline-containing
compounds. These compounds are involved in membrane for-
mation, membrane breakdown but also reflect membrane levels
and therefore disentangling these contributions to underlying
pathology remains an ongoing challenge when using 1H-MRSI
in MS.

No significant changes were seen in tNAA or mIns over
96-weeks in either tissue compartment. These findings are in
keeping with the majority of previous studies.2–4 A single
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study demonstrated a reduction in tNAA/tCr over 24-weeks
but this cohort had differing characteristics (median
EDSS = 4.0) and used single voxel spectroscopy.5 The lack
of change in tNAA and mIns (and their respective ratios to
tCr) over this time frame could be due to several reasons:
First, the rate of change within the 96-week study period
could be better characterized by acquiring metabolite levels at
additional timepoints. Second, acute axonal damage may
decrease with disease duration of 10 years or more.33 There-
fore, changes in neuroaxonal integrity in nonactive SPMS
may occur over a longer duration than was measured in this
study. Last, longitudinal changes in tNAA in SPMS may
encompass reductions in axonal density but also compensa-
tory mechanisms to preserve neuro-axonal function. This can
lead to partially reversible reductions in tNAA (tNAA/tCr)
that may explain why tNAA did not decrease in our cohort.34

Effect of Individual Drugs on Metabolite Levels

FLUOXETINE. There was no significant change in tNAA or
tNAA/tCr in the fluoxetine treatment arm compared to pla-
cebo. The 95% confidence intervals for effect of fluoxetine
on tNAA (and tNAA/tCr) exclude clinically important treat-
ment effects. This analyzed cohort contained a larger sample
with SPMS on fluoxetine (24/108; 3–6 times) compared to
two previous smaller studies that demonstrated an increase in
NAA/Cr in cerebral white matter (RRMS 7/11, SPMS
4/11)10; and an increase in WML after 2-weeks (RRMS
7/15, PMS 8/15).8 It also underscores the results of the MS-
SMART and FLUOX-PMS trials that fluoxetine has no

significant therapeutic effect as a neuroprotective agent in
non-inflammatory PMS.19,35

NAWM mIns/tCr levels were reduced by fluoxetine,
and in MS-SMART a reduction in new/enlarging lesions was
seen with fluoxetine, which cautiously might infer an anti-
inflammatory effect.19 There may therefore be further value
in examining NAWM mIns/tCr as a marker of decreased
astrogliosis as sequelae of inflammatory activity.

There was no reduction in NAWM or GM tCho
(or tCho/tCr) in the fluoxetine arm compared to placebo. The
overall treatment effect was relatively small with confidence
intervals sufficiently narrow to exclude any potential treatment
effect undetected by insufficient sample size. Our cohort con-
tained only SPMS while the previously suggestive study cohort
contained eight RRMS and seven PMS treated with fluoxetine
for 2-weeks, while our cohort was treated for 96-weeks.11

RILUZOLE. GM Glx in the riluzole treatment arm was signifi-
cantly lower when compared to placebo but not in NAWM,
confirming the action of riluzole on glutamate in this compart-
ment. Our results suggest that riluzole may decrease Glx levels
in GM but does not translate into a reduction in brain atrophy
as evidenced by the main trial results from MS-SMART.19

The identification of a significant effect of riluzole on
Glx in GM, but not NAWM indirectly supports experimen-
tal studies that predominantly examined effects of riluzole on
cortical neuron ion channels.13 From animal studies, it
remains unclear as to whether riluzole exerts similar mecha-
nisms of action on NAWM. It may also reflect the differing
causes of glutamatergic excitotoxicity in GM and NAWM—

FIGURE 2: Study profile. At week 96, 26 participants were either lost to follow up or failed MR quality assurance. Of the remaining
122 participants a further 14 were removed as metabolite outliers: 3 from the amiloride arm, 3 from the fluoxetine arm, 7 from the
riluzole arm, and 1 from the placebo arm leaving 108 for study analysis.
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where riluzole is unlikely to impact white matter predominant
mechanisms such as excess release by macrophages/microglia
and dendritic cells but more likely to have an effect in GM
where excess presynaptic release is the purported mecha-
nism.15 There are several considerations when interpreting
these changes in glutamate metabolism. First, 1H-MRSI can-
not differentiate between signal arising from intracellular or
extracellular Glx. Furthermore, in a healthy adult brain, the
majority of glutamate signal arises from the intracellular com-
partment compared to the extracellular compartment where
the concentration is in micromoles (vs. millimoles) and there-
fore less likely to be detected by 1H-MRS techniques.
Therefore, one could argue that changes in intracellular gluta-
mate are being measured. Though in MS the extracellular
concentration may be higher due to mechanisms that result
in excitotoxicity including excess release by immune cells,
altered reuptake from decreased expression of EAAT-1 and
EAAT-2 receptors, which may not have been captured.15

Second, the metabolism of glutamate is complex—it is

synthesized in astrocytes and neurons, involved in the Krebs
cycle, is a precursor to the inhibitory neurotransmitter
GABA and is taken up from extracellular areas by astro-
cytes.36 Disentangling the various contributions to the Glx
signal is therefore difficult using 1H-MRSI.

AMILORIDE. There was no significant difference seen in
tNAA or tNAA/tCr between the amiloride and placebo
groups. Furthermore, the estimated treatment effects of
amiloride on tNAA levels (in NAWM and GM) were small
and with reasonably narrow confidence intervals that crossed
zero, it is highly unlikely that there was a treatment effect that
was not detected. There are several explanations for why tar-
get engagement between amiloride and a marker of neu-
roaxonal integrity was not identified. In animal studies,
amiloride exerted its neuroprotective effect on axons when
given at disease onset or at the onset of relapse, but this is dif-
ferent from our cohort of non-active progressing SPMS in
whom disease progression was driven by various mechanisms

TABLE 2. Regression Analysis Examining Association Between Baseline tNAA and tNAA/tCr in NAWM and Week
96 Nine-Hole Peg Test Performance

Predictors Standardized beta 95% CI P R2

Baseline tNAA in NAWM and week 96 nine-hole peg test performance (n = 107a)

Baseline tNAA 0.21 0.02–0.41 0.04 0.17

Age 0.14 �0.06 – 0.34 0.16

Gender 0.15 �0.32 – 0.62 0.52

Previous relapses �0.28 �0.90 – 0.34 0.37

Duration from MS onset �0.05 �0.26 – 0.16 0.62

Baseline T2LV �0.02 �0.22 – 0.18 0.84

Baseline NBV 0.24 0.00 – 0.47 0.05

Baseline tNAA/tCr in NAWM and week 96 nine-hole peg test performance (n = 107a)

Baseline tNAA/tCr 0.23 0.05 – 0.42 0.02 0.18

Age 0.15 �0.05 – 0.35 0.14

Gender 0.16 �0.30 – 0.62 0.49

Previous relapses �0.27 �0.88 – 0.35 0.39

Duration from MS onset �0.04 �0.25 – 0.17 0.70

Baseline T2LV �0.02 �0.22 – 0.18 0.86

Baseline NBV 0.24 0.01 – 0.47 0.04

Model covariates: Age, gender, T2 lesion volume, trial arm, occurrence of relapse in 2 years preceding randomization. Trial arm was not
found to be a significant variable in this multiple regression model and so is not shown. The p-values of signficant predictors highlighted
in bold.
CI = confidence interval; NAWM = normal appearing white matter; NBV = normalized brain volume; tCr = creatine and phospho-
creatine; tNAA = N-acetyl aspartate and N-acetyl aspartyl glutamate; T2LV = T2 lesion volume.
aOne participant missing as they did not complete the nine-hole peg test at 96 weeks.
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leading to neurodegeneration, rather than focal inflammation
alone.17 ASIC-1 expression and co-localization with damaged
axons was greatest at the borders of active lesions.17,37 It is
therefore possible that an amiloride effect on tNAA may have
been detected in lesions or peri-lesional areas but was not cap-
tured in this study as metabolite values in WML were unable
to be measured. Given this, future work should aim to study
tNAA in WML, using single voxel spectroscopy, higher field
strengths or longer acquisitions to allow for the spatial resolu-
tion needed to reduce partial volume in lesional voxels.

Association with Upper Limb Function and
Information Processing Speed
Baseline NAWM tNAA/tCr and tNAA is confirmed to be
associated with decreased performance in upper limb function
2-years later.20 When holding all other independent variables
constant, for every 1-unit decrease in tNAA and tNAA/tCr
levels, the 9HPT decreases. This would potentially under-
score that reductions in neuroaxonal integrity and mitochon-
drial function are associated with decreased upper limb
performance (9HPT is taken as the reciprocal and therefore
higher values reflect increased upper limb function). There is
only one previous small (n = 15) study in PMS that exam-
ined the relationship between baseline tNAA and longitudinal
upper limb function, which did not find an association.5

None of the previously observed cross-sectional associa-
tions with PASAT3/information processing speed remained
significant. This could be for several reasons: first, in the
cross-sectional analysis, T2LV demonstrated the strongest
association with information processing speed and the longi-
tudinal results further emphasized this. Second, there may be
region-specific metabolic relationships that were not analyzed
in this study. Our findings are however, in keeping with the
only previous study (n = 31, median EDSS = 4.5) that
examined the relationship between metabolites in NAWM,
lesion load and long-term performance on information
processing speed in PMS, showing T2LV to be the only pre-
dictor of 5-year cognitive performance.38

Limitations
First, when calculating metabolite levels in NAWM and GM,
the partial volume effect was addressed by placing the slice
above the lateral ventricles, avoiding CSF and using a nomi-
nal voxel size of 10 � 10 � 15 mm3. Contamination by
WML and CSF was limited by excluding voxels that con-
tained >1% WML and >15% CSF before using a regression
method to calculate metabolite levels in NAWM and GM.20

While the spectral fit and linewidth of individual voxels were
within acceptable limits, the next step to use a regression
method to estimate per participant metabolite levels in
NAWM and GM can lead to outliers, which were then
excluded as outlined above and previously described.20,39

Second, resolving glutamate from Glx at 3T using standard

sequences is difficult and while a reduction in Glx was shown,
the magnitude of reduction in glutamate levels could be more
accurately identified by other MRSI techniques that were not
feasible, due to scan time limitations, in this study.40 Third,
metabolite levels were measured using a multivoxel technique
and then the mean of these voxels in NAWM and GM was
used to obtain a single per patient metabolite value for each
tissue type, respectively. Fourth, water was the internal refer-
ence for quantification but there are assumptions made about
the water concentration of brain tissue in MS. One important
assumption was taking the water concentration to be that of
healthy white matter (35,880 mM), in both GM and
NAWM. This may not be accurate for either tissue type, as
the water volume fraction may change and differ due to the
inclusion of even a small lesion fraction. Lesions in GM were
not delineated at all and so using another more standard
“GM” value here would also be inaccurate. Fifth, as a short
TR = 2 sec was used to minimize scan time and measures of
metabolite T1 were beyond the scope of this study, there will
be a resulting confounding T1 variability in the metabolite
values, but this was considered acceptable for the goals of this
study. A longer TR to minimize T1 variation would have led
to longer scan times, increasing the chance for motion and
decreasing patient comfort and tolerability. No adjustment
for T2 relaxation was made beyond that applied by
LCModel. For these reasons, results are reported as estimated,
not absolute concentrations. Last, healthy volunteers were not
recruited as this was not part of this study and therefore any
associations are confined to the SPMS population only.

Conclusion
In a large SPMS cohort undergoing longitudinal 1H-MRSI
over 2 years, there are changes in a marker of membrane
turnover in both GM (increased) and NAWM (decreased).
The known mechanism of action of riluzole (reducing Glx) is
supported, but this is insufficient to reduce brain atrophy or
have an effect on clinician or patient reported outcome mea-
sures. Baseline NAWM tNAA (and tNAA/tCr) are durable
predictive markers of upper limb deterioration over this time
frame, but not information processing speed. We therefore
ultimately feel 1H-MRSI can provide an adjunctive tool to
examine in vivo target engagement when there is a strong
mechanism of action.
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