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Fig. 1. We introduce a novel multi-view dataset of humans in motion captured with a rig of 160 cameras, recording footage of 12MP each (left image). From an

input multi-view recording of a specific person, our HumanRF method reconstructs a spatio-temporal radiance field which captures appearance and motion of
the actor. From this representation, we can then synthesize highly-realistic images from unseen, novel view points (right images).

Representing human performance at high-fidelity is an essential building
block in diverse applications, such as film production, computer games or
videoconferencing. To close the gap to production-level quality, we intro-
duce HumanRF!, a 4D dynamic neural scene representation that captures
full-body appearance in motion from multi-view video input, and enables
playback from novel, unseen viewpoints. Our novel representation acts as a
dynamic video encoding that captures fine details at high compression rates
by factorizing space-time into a temporal matrix-vector decomposition. This
allows us to obtain temporally coherent reconstructions of human actors
for long sequences, while representing high-resolution details even in the
context of challenging motion. While most research focuses on synthesizing
at resolutions of 4MP or lower, we address the challenge of operating at
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12MP. To this end, we introduce ActorsHQ, a novel multi-view dataset that
provides 12MP footage from 160 cameras for 16 sequences with high-fidelity,
per-frame mesh reconstructions?. We demonstrate challenges that emerge
from using such high-resolution data and show that our newly introduced
HumanRF effectively leverages this data, making a significant step towards
production-level quality novel view synthesis.
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1 INTRODUCTION

Photo-realistic image synthesis of virtual environments has been
one of the core challenges in computer graphics research for decades.
Traditionally, the underlying 3D assets have been created by artists

2 ActorsHQ dataset is publicly available under www.actors-hq.com including all raw
RGB frames and per-frame reconstructed 3D meshes.
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with heavy manual labor; however, recently, significant effort has
been devoted to reconstructing the 3D representations from real-
world observations. In particular, novel view synthesis of recorded
humans has been the center of attention in numerous applications,
ranging from movie and game production to immersive telepresence.

Yet, reconstructing photo-realistic digital humans from real-world
captures involves significant technical challenges. The diverse gran-
ularity of fine-scale detail - e.g., on faces, hair, clothing — makes the
reconstruction difficult to scale, while the margin for error is low
due to the acute ability of the human visual system to perceive even
the smallest inconsistencies in synthesized images. From a method-
ological standpoint, the main challenge lies in jointly reconstructing
appearance and motion in realistic settings due to the large number
of degrees of freedom that needs to be encoded. In particular, model-
ing fast and complex motions while obtaining photo-realistic results
at a sufficient resolution remains an open problem in production.

In recent years, we have seen tremendous progress in addressing
these challenges. More specifically, Mildenhall et al. [2020] recon-
structs a 3D neural radiance field (NeRF) constrained by a multi-view
volumetric rendering loss. The resulting 3D field is encoded in a
multi-layer perceptron (MLP) which then enables novel-view syn-
thesis. While NeRF originally focused on static scenes, recent works
handle dynamic scenes implicitly via time conditioning [Li et al.
2022a] or explicitly via deformation fields [Park et al. 2021a,b]. These
dynamic methods show impressive results; but, they still struggle
to handle longer sequences with complex motion — especially for
humans. In the mean time, obtaining high-quality output render-
ings requires high-resolution training data which is both difficult to
capture and utilize in the subsequent radiance field reconstructions.

In this work, we propose to address these shortcomings of dy-
namic NeRF methods in the context of capturing moving humans.
Therefore, we first introduce ActorsHQ, a new high-fidelity dataset
of clothed humans in motion tailored for photo-realistic novel view
synthesis. The dataset features multi-view recordings of 160 syn-
chronized cameras that simultaneously capture individual video
streams of 12MP each, as illustrated in Fig. 1. Leveraging our newly
captured data, we propose a new scene representation that lifts
Instant-NGP [Miiller et al. 2022] hash encodings to the temporal
domain by incorporating the time dimension in conjunction with a
low-rank space-time tensor decomposition of the feature grid. We
further split a sequence into segments, which allows representing
very long sequences as only few of the segments need to reside
in GPU memory during a training iteration — something existing
methods struggle with due to using a single representation for an en-
tire sequence. Finally, we demonstrate the effectiveness of our new
representation on our newly introduced dataset where we signifi-
cantly improve over existing state-of-the-art methods. Concretely,
our contributions are as follows:

e We propose a new spatio-temporal decomposition that can
efficiently reconstruct a dynamic radiance field representation
from multi-view inputs, based on a low-rank decomposition.

o Additionally, we introduce an adaptive splitting scheme which
divides a sequence into segments allowing us to capture arbi-
trarily long sequences.
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o We further introduce ActorsHQ, a high-fidelity dataset, fea-
turing footage of 8 actors from 160 cameras that record at a
resolution of 12MP each.

2 RELATED WORK

HumanRF leverages hybrid implicit and volumetric representations
to reconstruct free-viewpoint videos. In this section, we discuss
related work on neural representations for static and dynamic scenes
and for human performance capture.

2.1 3D Neural Representations

3D reconstruction is a long-standing problem that has been rede-
fined with the advent of deep learning-based approaches. In partic-
ular, coordinate-based networks have become a popular choice for
implicit 3D scene representations such as radiance [Mildenhall et al.
2020], signed distance [Park et al. 2019], or occupancy [Mescheder
et al. 2019] fields. In the pioneering work of Mildenhall et al. [2020],
an MLP is trained to encode a radiance field reconstructed from a set
of input RGB images. Alternatively, some methods utilize explicit
data structures, such as sparse grids [Fridovich-Keil et al. 2022], to
achieve fast training and inference at the expense of a larger memory
footprint. TensoRF [Chen et al. 2022b] addresses memory inefficien-
cies by using a low-rank tensor decomposition while Miiller et al.
[2022] propose using hash data structures accompanied with small
MLPs. We elevate the ideas from TensoRF into spatio-temporal do-
main by representing the feature grids via 4D decomposition using
four 3D hash grids and four 1D dense grids.

2.2 4D Dynamic Representations

The creation of free-viewpoint videos has been widely studied due to
its numerous applications. The seminal work of Kanade et al. [1997]
allows the reconstruction of shapes and textures using a multi-
camera dome. Similarly, later efforts [Carranza et al. 2003; Starck
and Hilton 2007] leveraged multiple cameras for free-viewpoint
human rendering. More recently, the breakthrough work of Collet
et al. [2015] proposes to track textured meshes in order to create
streamable 3D videos. Broxton et al. [2020] presents a layered mesh
representation to reconstruct and compress video from a multi-
camera rig. More recently, deep learning-based approaches have
been proposed for deformable 3D scenes. Neural Volumes [Lom-
bardi et al. 2019] use an encoder-decoder architecture to optimize
a 3D volume from 2D images. Similarly, instead of decoding a 3D
volume, Lombardi et al. [2021] propose to decode a mixture of volu-
metric primitives that are attached to a guide mesh.

A plethora of efforts has been dedicated to extending the success
of NeRF into the temporal domain using implicit representations. Li
et al. [2022a] extends NeRF with time-conditioning and introduces a
keyframe-based training strategy. Alternatively, Park et al. [2021a,b];
Pumarola et al. [2021] introduce a separate MLP to predict scene
deformations for multi-view and monocular videos, respectively. In
similar vain, Li et al. [2021] leverages 2D flow supervision to model
a dynamic scene. Similarly to static scenes, the slow convergence
of such methods has been addressed using explicit [Liu et al. 2022]
and hybrid [Fang et al. 2022a; Guo et al. 2022a] representations.
Orthogonal to these approaches, Wang et al. [2022b] fuses a set of
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Fig. 2. Overview of HumanRF: Prior to training, our method starts by splitting the temporal domain into 4D segments with similar union occupancy in 3D
(§3.2). Each segment is modeled by a 4D feature grid which is compactly represented by utilizing tensor decomposition and hash grids (§3.1). During training,
we sample a batch of rays across different time frames and cameras. After each pixel color is predicted via volume rendering (§3.3), we enforce photometric

constraints and regularize ray marching weights via foreground masks (§3.4).

static PlenOctrees [Yu et al. 2021] into a dynamic representation
using DFT to achieve real-time inference.

Concurrently to our work, Song et al. [2022] decompose the 4D
space into static, deforming and newly appeared regions, while Cao
and Johnson [2023]; Fridovich-Keil et al. [2023]; Shao et al. [2022]
also propose to represent 4D scenes using low-rank decompositions
with 2D tensors. Unlike these methods, our method uses 3D and
1D tensors. In §5.3.1, we show our 3D-1D scheme is significantly
better than its 2D-2D counterpart for rapid motions. Additionally,
our method partitions a sequence into segments, which enables
training at scale on modern GPUs without sacrificing quality.

2.3 Neural Human Performance Capture

Our goal is closely related to neural radiance field-based methods
that specialize in rendering humans. This is often achieved by learn-
ing a canonical representation that is forward warped to a target
frame [Chen et al. 2021; Wang et al. 2022a] or backward sampled
from the observation space [Liu et al. 2021; Xu et al. 2022]. This
deformation can be guided by a learned template model such as
SMPL [Loper et al. 2015] or a sparse skeleton. For instance, uti-
lizing sparse landmarks, Noguchi et al. [2021]; Su et al. [2021]
reparametrize radiance fields relative to the pose of the skeleton.
TAVA [Li et al. 2022b] optimizes a canonical shape and forward-
skinning weights based on skeleton pose. Neural Body [Peng et al.
2021] employs a SMPL model to optimize a latent representation for
each mesh vertex, while Liu et al. [2021] learns a backwards warping
into the canonical pose. While these methods achieve impressive re-
sults, they also suffer from the innate limitations of template-based
approaches; i.e., their approximate geometry (e.g., from SMPL) or
ambiguous pose conditioning (e.g., skeletal joints) often poses chal-
lenges in novel view synthesis. This becomes particularly problem-
atic for fine-scale deformations such as dynamic cloth animations or
local detail in the face which cannot be represented by existing geo-
metric template proxies. To address these challenges, recent efforts
opt for template-free approaches. For instance, Zhang et al. [2022]

train a time-conditioned network to predict hyper-spherical har-
monics for free-viewpoint human rendering while Zhao et al. [2022]
propose a static-to-dynamic approach where per-frame neural sur-
face reconstruction is combined with a hybrid neural tracker to
generate neural animated human meshes. In our work, we also pro-
pose a template-free approach since we are aiming for the highest
visual quality.

3 METHOD

Given a set of input videos of a human actor in motion, captured
in a multi-view camera setting, our goal is to enable temporally
consistent, high-fidelity novel view synthesis. To that end, we learn
a 4D scene representation using differentiable volumetric rendering
[Lombardi et al. 2019; Mildenhall et al. 2020], supervised via multi-
view 2D photometric and mask losses that minimize the discrepancy
between the rendered images and the set of input RGB images
and foreground masks. To enable efficient photo-realistic neural
rendering of arbitrarily long multi-view data, we use sparse feature
hash-grids in combination with shallow multilayer perceptrons
(MLPs) [Miiller et al. 2022; Sun et al. 2022; Wang et al. 2021].

The core idea of HumanRF - as illustrated in Fig. 2 - is to partition
the time domain into optimally distributed temporal segments, and
to represent each segment by a compact 4D feature grid (§3.1). For
this purpose, we propose an extension to the TensoRF vector-matrix
decomposition of Chen et al. [2022b] - designed for static 3D scenes
- that can support time-varying 4D feature grids. Our adaptive
temporal partitioning (§3.2) ensures that the total 3D space volume
covered by each individual temporal segment is of similar size, which
helps our method achieve superior representation power, regardless
of the temporal context. Furthermore, we use shallow MLPs to
transform features into density and view-dependent radiance to
be used in the volumetric rendering framework (§3.3). Through
sharing information across the temporal domain via both shared
MLPs and 4D decomposition, our results are temporally consistent.
We refer to the accompanying videos regarding temporal stability.
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Fig. 3. Fixed-segment size vs. adaptive partitioning Using a single 4D representation for an entire sequence (segment size 400) or using a 3D hash grid
per frame (segment size 1), give poor results. We observe that finding the middle ground (segment sizes from 3 to 100) leads to better results (a, b, c). Sequences
with moderate motions favor larger segment sizes whereas those with stronger motions favor smaller ones (b). Our Adaptive Temporal Partitioning scheme

(§3.2) avoids the costly hyper-parameter search for the optimal, global segment size, and leads to results close to those of optimal segment sizes (a, b). On
average, our adaptive method is better than using any fixed segment size (c). These experiments are performed on 400-frame sequences using shared MLPs.
The total number of parameters is kept approximately the same while varying the segment size.

We supervise our differentiable rendering pipeline with 2D-only
losses that measure the errors between the rendered and input RGB
images and foreground masks (§3.4).

3.1 4D Feature Grid Decomposition

Our method models a dynamic 3D scene by combining optimally
partitioned 4D segments. Each segment k has its own trainable 4D

feature grid Tx(];it : R*  R™ which encodes a set of Nj. consecutive

frames 7)€ {4, tos1, tosz, oon ts+Ni—1}. Previous works [Chen
et al. 2022b; Miiller et al. 2022; Tang et al. 2022] have shown that
dense 3D data exhibits redundancies and can be represented more
compactly. We make the same argument for spatio-temporal data,
and define our 4D feature grid as a decomposition of four 3D and
four 1D feature grids (k is dropped for brevity below):

Txyzt (Pxyzt) = Txyz(Pxyz) © Tt (Pr)
Tyt (Pxyt) © Tz (P2)
+Txzt (Pxzt) © Ty(py) ’
+Tyzt (Pyzt) © T (px)

ey

where © denotes the hadamard product, and pxyz+ € R? is the
queried point. We represent each 3D grid (Txyz, Txys Tzt Tyzt
R3 i R™) with a multi-resolution hash grid [Miiller et al. 2022] -
which has proven to be more efficient than using dense 3D grids
- and each 1D grid (Ty, Tz, Ty, T : R > R™) with dense array of
vectors. In Fig. 9, we show that this compact representation lets our
method surpass the quality of per-frame Instant-NGP while using
only a fraction of the number of trainable parameters.

3.2 Adaptive Temporal Partitioning

Using a single 4D feature grid for an entire sequence becomes im-
practical for longer sequences. Figure 3 shows that representing
a long sequence with a single 4D segment performs significantly
worse than using multiple fixed-sized segments, especially when
considering the total hash capacities are roughly the same. Therefore,
partitioning the sequence plays a critical role in our representation.
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Figure 3 also highlights the impact of motion complexity on the opti-
mal segment size (stronger deformations require shorter segments).
To mitigate the prohibitive cost of hyper-parameter search for the
optimal segment size, we present a greedy algorithm to adaptively
select the sizes of segments prior to training. Unlike fixed-size tem-
poral partitioning, our method does not require a unique segment
size which would be less suited to very long sequences.

Occupancy Grids. To reason about temporal changes, we analyze
per-frame occupancy grids Of : # ¢ R® - {0,1} that we com-
pute by carving the free space [Kutulakos and Seitz 2000] using
foreground masks. We define several terms that will be relevant
hereafter. First, we define the occupancy grid of a set of frames 7~
by the logical union of their occupancy grids:

o ="\/ 0. (2)
tieT

Second, for a set of frames 77, total occupancy is defined as the
number of occupied voxels:

5(T)= > 0" (p)). (3)
p;jEP

Finally, for a set of N consecutive frames 7 = {to, 1, t2, ... IN—1}>
we define the expansion factor as:

8(7)
Y= 5w
which practically indicates how much the union occupancy grid is
enlarged from ¢y onwards, and positively correlates with the motion
complexity.

4)

Criteria for spawning new segments. Given a fixed budget of total
number of trainable parameters, our objective is to keep the ex-
pansion factor (Equation (4)) similar for each segment. To this end,
we iterate over each frame with a greedy heuristic and spawn a
new segment when the expansion factor exceeds a certain thresh-
old. This ensures that each segment represents a similar amount of
volume in 3D space, which leads to a fair distribution of the total
representation workload. This can also be regarded as maximizing



the efficiency of the 4D decomposition models by adjusting the
temporal context of each segment such that the temporal sharing
is encouraged for smaller movements and discouraged for larger
ones. In Figure 8, we experiment with several threshold values for
the expansion factor, and set it to 1.25 for all our experiments.

3.3 Shared MLPs and Volume Rendering

Similarly to previous work [Mildenhall et al. 2020], we describe the
distribution of the radiance in a scene at time instance t using the
volumetric rendering formulation with emission and absorption:

Er ) = / O (@o(r(@). OL(r (). d. 0 da, )

where T () is the transmittance, r () is the point on the ray r at dis-
tance a, o(r(a), t) denotes the volumetric density, and L(r(«),d, t)
indicates the radiance emitted along the direction d. We solve this
integral numerically using quadrature [Max 1995]. Similarly to
Miiller et al. [2022], we use two shallow MLPs to model density
and view-dependent radiance. First, we leverage a 3-layer network,
MLP, : R32 i R, to generate density o(p, t) € R and geometry
features F(p, t) € R1® for any point p € R? in time ¢ of segment k

{o(p.0). F(p.1)} = MLPo (T3, (p. 1)) . (©)

Then, we employ a 4-layer network MLP} : R3! - R3 to produce
view-dependent RGB radiance values:

L(p.d,t) = MLP1(SH(d), F(p,1)) , 7

where SH(d) € R! is the encoding of the viewing direction d
formed by using the first 4 bands of the spherical harmonics. Al-
though each spatio-temporal segment has its own trainable 4D
feature grid, these two MLPs are shared by an entire sequence.

3.4 Losses

We utilize RGB images and masks to guide the training. First, we
enforce the Huber loss [Collins 1976] between the ground truth
color C(r, t) and the predicted pixel color C(r, t) (Equation (5)):

1 112 ifl<§
Loho = — 2 = , 8
pho [RI r;e {5- (I- %5), otherwise ®
where | = |C(r,t) — C(r,t)|. This loss is averaged over 3 color

channels and we set § = 0.01 in all of our experiments.

In addition to background removal and occupancy grid computa-
tion, we use foreground masks to regularize volumetric occupancy
similarly to Yariv et al. [2020]. More specifically, we use the binary
cross entropy loss between the ground truth mask M(r) and the
accumulated volume rendering weight M(r):

Loce = 5 >, [MO)log(N1(r)) + (1= M) log((41(1)] . )
reR

where M(r) = 1 and M(r) = 0 denote the pixels on the foreground
and the background, respectively, and M(r) is defined as follows,

M(r) = / a_"mx T(a)o(r(a))da . (10)
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Fig. 4. Dataset resolution We show closeups for two actors in our
ActorsHQ dataset. The cameras record at 12MP each, thus enabling the
capture of eyelashes, wrinkles, and hair strands.

This loss helps to prune the empty space early in the training, which
leads to significant speed up in the training iterations. Our final loss
term is defined as

L= Lpho +BLpce s (11)

where we set § = 1073 for all of our experiments. We refer the
reader to the supplemental material for additional training details.

4 DATASET

Our dataset, ActorsHQ, consists of 39, 765 frames of dynamic hu-
man motion captured using multi-view video. We used a propri-
etary multi-camera capture system combined with an LED array
for global illumination. The camera system comprises 160 12MP
Ximea cameras operating at 25fps. Close-up details that are cap-
tured at this resolution are highlighted in Fig. 4. The lighting system
provides a programmable lighting array of 420 LEDs that are time-
synchronized to the camera shutter. All cameras were set to a shutter
speed of 650us to minimize motion blur for fast actions. We addi-
tionally reconstruct each frame independently using state-of-the-art
multi-view stereo from RealityCapture [Epic Games 2022] with ap-
proximately 500k faces per frame (Fig. 5). The camera array was
configured to cover a capture volume of 1.6m diameter and 2.2m
height, enabling actors to perform a range of motions at the center.

The dataset comprises 4 female and 4 male actors. Each actor
performed two 100 second motion sequences of choreographed
actions wearing everyday clothing. The actors wore either short or
long upper and lower body clothing to provide variation in cloth
dynamics. In the first sequence, each actor followed the same set of
32 actions that activate key joint rotations for shoulders, arms, legs,
and torso as well as combined joint activations. The actors were
directed to return to a resting A-pose between sets of actions. In
the second sequence, the actors performed 20 randomly selected
everyday actions designed to produce more exaggerated body poses
such as sports, dance, celebration, and gestures. The actors were
directed to move continuously throughout the capture to provide
more exaggerated body dynamics in motion. A comparison of the
ActorsHQ with other standard benchmarks is tabulated in Table 1.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:6 « lIsiketal

-
-
.
o
»
»

Fig. 5. Actors and meshes. Our ActorsHQ dataset contains 8 actors with casual clothing such as skirts or shorts. Each sequence is captured by 160 camera,
each recording at 12MP. In addition to the recorded images, we also provide high-quality, per-frame mesh reconstructions with approximately 500k vertices.

Table 1. Comparison of multi-view human video datasets. Our new
dataset features longer sequences with more cameras at a higher resolution.

Dataset #ID #Frames Resolution #Cameras
Human3.6M [lonescu et al. 2013] 11 581k 1MP 4
MPL-INF-3DHP [Mehta etal. 2017] 8  >1.3M 4MP 14
ZJU-Mocap [Peng et al. 2021] 9 <2700 1MP 21
DynaCap [Habermann et al. 2021] 5 27k 1.2MP 50-101
THUman [Zheng et al. 2019] 500 500k 0.4MP 4
THUman4 [Zheng et al. 2022] 3 <15k 1.4MP 24
ActorsHQ (ours) 8 39,765 12MP 160

5 EVALUATION

To demonstrate the ability of HumanRF to represent long sequences
and fine details at 12MP, we perform extensive quantitative and
qualitative experiments with our ActorsHQ dataset. As HumanRF
is a temporal method, we also highly recommend watching the
supplementary videos.

We compare our method against six state-of-the-art baselines.
There are three deformation-based approaches for general scenes:
NDVG [Guo et al. 2022b], HyperNeRF [Park et al. 2021b], and TiNeu-
Vox [Fang et al. 2022b] along with two human-specific methods:
Neural Body [Peng et al. 2021] and TAVA [Li et al. 2022b]. As an
additional baseline, we train Instant-NGP [Miiller et al. 2022] inde-
pendently on each frame. For all baselines, we use the official imple-
mentations that are publicly available and tune hyper-parameters
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to achieve best possible results. A visual comparison between the
baselines and our method can be found on Fig. 6 and Fig. 11.

5.1 Evaluation Protocol

In all experiments, we use the same set of 124 training cameras, 10
validation cameras and 14 test cameras. For one frontal test cam-
era we render a video that is used to compute the VMAF [Li et al.
2016] score, and we alternate through the remaining test cameras
to compute PSNR, LPIPS [Zhang et al. 2018] and SSIM [Wang et al.
2004]. The numerical results are averaged over 8 actors for all the
experiments. As some baselines fail to produce reasonable results
at full resolution, we compare on 4x downscaled data (per axis),
producing better relative performance compared to our results. To
test the performance of HumanRF on high-resolution data, we per-
form additional experiments in full resolution (12MP) in §5.4. More
details on the protocol can be found in the supplementary material.

5.2 Quality vs Number of Frames

In Table 2, we analyze each method for various sequence lengths
using per-frame metrics PSNR, LPIPS, and SSIM, as well as the
temporal metric VMAF, which measures perceptual quality of the
generated videos and correlates well with temporal consistency.
Due to our efficient 4D feature grid structure and its ability to scale
to arbitrarily long sequences via temporal partitioning, HumanRF
consistently outperforms the baselines. Existing methods that pre-
dict a deformation field struggle to represent long sequences with
complex motion. This is mainly due to rapid topological changes and



Table 2. Numerical evaluation on ActorsHQ. We demonstrate results
using the standard visual metrics and VMAF to measure perceptual video
quality. HumanRF outperforms baselines on all sequences. Instant-NGP —
trained per frame separately — demonstrates better LPIPS, but struggles in
terms of temporal consistency and memory footprint (Fig. 9). The ' best

and the second best results are highlighted.

Method Metric 20 50 100 250 500 1000

LLPIPS | 0.095 0.100 0.097 0.100 0.102 0.107
TPSNR 3030 30.05 29.83 29.26 29.34 29.05
TSSIM 0918 0918 0.921 0.920 0.919 0.913
TVMAF 83.67 8443 85.62 85.28 85.33 8574

LLPIPS  0.095 0.092 0.094 0.093 0.093 0.093
TPSNR 2945 2878 28.96 28.77 28.73 2885
TSSIM  0.881 0.898 0.902 0.904 0.904 0.905
TVMAF 7415 7323 76.70 76.77 77.28 77.60

LLPIPS 0312 0305 0.327 0.346 0.348 0.371
TPSNR  26.07 24.14 23.11 2182 20.94 19.80

Ours

Instant-NGP

TiNeuV.
INeUYOX 2 5sIM 0792 0800 0794 0792 0786 0.772
TVMAF 5626 47.31 40.27 3111 2474 18.11
LLPIPS 0268 0275 0300 0338 0367 0391
TPSNR 2660 23.65 22.16 1975 17.93 16.17

NDVG
1SSIM 0823 0811 0793 0765 0.741 0.716
TVMAF 6326 50.53 3813 21.88 1276 6.183
JLPIPS 0250 0.235 0251 0270 0302 0.325
TPSNR 2570 2523 2472 23.82 2258 2177

H F

YPerNeRE s goiM 0.820 0.832 0826 0817 0.801 0.790
TVMAF 73.08 73.05 67.17 57.51 44.84 37.01
LLPIPS 0305 0308 0310 0318 0340 0.367
Neural Body 1PSNR 2703 2516 26.92 2466 2435 2558
Y 1SSIM 0806 0.807 0805 0805 0.793 0.767
TVMAF 4672 4527 41.83 3871 32.13 26.95
LLPIPS 0270 0277 0.295 0344 0388 0.429
cava  TPSNR 2744 2575 2505 2361 2240 2150

T SSIM 0.820 0.821 0.816 0.792 0.765 0.740
TVMAF 6692 58.66 54.28 3840 2345 13.34

limited representation power for deformations, and the effect is typi-
cally reflected in both the per-frame and temporal metrics. Previous
works [Li et al. 2022¢; Shao et al. 2022] have also observed similar
disadvantages on complex or fast-changing scenes for deformation-
based approaches. Although human-specific baselines perform bet-
ter than deformation-based ones on average, they still lack visual
details, and tend to produce blurry results compared to HumanRF
as illustrated in Fig. 6. On the other hand, per-frame Instant-NGP
excels on per-frame metrics, but it lacks temporal stability, and uses
20x more trainable parameters compared to our method (Fig. 9).

5.3 Design Choices

In this section, we validate the effectiveness of our approach, and
clarify how we select several hyper parameters. More specifically,
we perform ablation studies regarding the 4D feature grid repre-
sentation (§5.3.1). We discuss choosing the optimal grid resolution,
feature dimensionality and hash size (§5.3.2), and argue how seg-
ment sizes and expansion factor thresholds are determined (§5.3.3).
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Fig. 6. Comparison with human-specific methods. Although Li et al.
[2022b]; Peng et al. [2021] incorporate geometry and pose information,
they fail to capture fine details, and produce blurrier results compared to
HumanRF.

5.3.1 4D Feature Grid. To validate our choice of feature grid repre-
sentation, we run a comparison against two ablations of our method
where we only alter the 4D feature grid and use a single segment
over 100-frame sequences. The first variant simply concatenates
3D spatial coordinates with time to form 4D input to a hash grid -
we dub this as tNGP. The second variant also utilizes a 4D decom-
position by using six multi-resolution 2D dense grids inspired by
the concurrent work [Cao and Johnson 2023; Fridovich-Keil et al.
2023] - which we dub as Hex4D. Please refer to supplemental to
see how Hex4D is formulated. Unlike Hex4D, our method uses four
multi-resolution 3D hash grids and four 1D dense grids. Table 3
indicates that using a decomposition model (Hex4D and ours) for
the feature grid is superior when the motion is moderate as the tem-
poral context can be efficiently compressed into lower-rank tensors.
Although Hex4D loses its advantage over tNGP for stronger motion,
our method consistently outperforms both ablations in both cases.

5.3.2  Grid Resolution and Feature Dimensionality. In order to deter-
mine the optimal grid resolution and feature dimensionality of the
4D feature grid, we perform a parameter search in two dimensions:
finest grid resolution (Kmax) and per-level feature dimensionality
(F). To facilitate the search, we perform the experiments on 4x
downscaled data over 100-frame sequences, and we fix the coarsest
resolution in our multi-resolution grids to Kpi, = 32 and number
of resolution levels to L = 16. To narrow down the search even
further, we fix the total number of trainable parameters per hash
gridasT-L-F = 224 where T denotes per-level hash size. Finally,
we restrict hash size to be T < 212, because further increase leads to
performance penalty, which is also reported by Miiller et al. [2022].
From the results presented in Fig. 7, we pick Kmax = 2048 and F = 2.
For experiments carried out in full resolution (see §5.4 and Fig. 10),
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Fig. 7. Optimal grid resolution and feature dimensionality. To deter-
mine the ideal parameters for our feature grid, we search through several
finest grid resolutions (Kmax) and feature dimensionalities (F) while fixing
the number of parameters. As a result, we use Kmnax = 2048 and F = 2.

Table 3. Comparison between different feature grid representations.
Hex4D outperforms tNGP for scenes with moderate motion due to its abil-
ity to compress, however, its quality heavily degrades for rapid motion.
On the other hand, our method benefits from its compact nature while
not sacrificing the quality as much as Hex4D, and it consistently outper-
forms both ablations. We use default multi-resolution grid parameters for
these ablations (see §5.3.2). The | best and the second best results are
highlighted.

Moderate Motion Strong Motion
Hex4D tNGP  Ours Hex4D tNGP  Ours

L LPIPS  0.105 0.129 | 0.090 0.184 0.126  0.110
TPSNR  29.89 29.27 | 30.79 26.04 28.10  28.87
TSSIM ~ 0.915 0.906 | 0.931 0.851 0.902  0.906
T VMAF 77.50 79.18 | 81.15 75.22 87.76  89.00

Metric

we set Kmax = 8192 and use L = 24 to maintain the model capacity
so that the finer details can be reconstructed.

5.3.3 Model Size. Our method uses 4D spatio-temporal segments
with various lengths to represent arbitrarily long sequences. Adap-
tive temporal partitioning (§3.2) tries to keep the number of trainable
parameters per frame approximately the same in order not to lose
its representation power. For this reason, the number of trainable
parameters scales linearly with the sequence length. Nonetheless,
our method remains more compact than most of the baselines. In Fig.
9, we demonstrate that HumanRF uses only 5.2% of the parameters
compared to per-frame Instant-NGP while outperforming it.

Predefined segment sizes. During adaptive temporal partitioning,
we choose segment sizes from a pool of predefined lengths where
each one has a hash capacity proportional to its size. For our ex-
periments, we specifically use the segment sizes 6, 12, 25, 50, 100
with per-level hash sizes 215 2916 17 918 919 respectively, using the
Tiny CUDA neural networks framework [Miiller 2021]. Moreover, we
demonstrate the effect of motion complexity and expansion factor
threshold on average segment size in Fig. 8.
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Fig. 8. Impact of the expansion factor thresholds and motion com-
plexity on average segment size and quality. Larger threshold values
(indicated by numbers) lead to larger segments on average. Unlike using
fixed-size segments, we do not observe a striking difference in quality when
the average segment size changes (see Fig. 3 for a comparison). Furthermore,
rapid motions increase the frequency of spawning new segments, and hence
lead to smaller segment sizes.
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Compression Ratio w.r.t. per-frame Instant-NGP

Fig. 9. Compression ratio vs. PSNR on 100-frame sequence. We
demonstrate number of parameters for each baseline (bold numbers) and
the compression ratio with respect to per-frame Instant-NGP. The resulted
ratio for HumanRF is near the most compact one with the best PSNR quality.
Here, we define compression ratio for a method M as (1 — %) where
Py denotes the number of trainable parameters.

5.4 Input Resolution

Previous publicly available datasets provide images at the resolution
of 4MP or less, but our method is designed to capture details beyond
this resolution. Fig. 10 illustrates the impact of using downscaled
training data on the rendering quality at full resolution. We observe
that HumanRF can recover finer details as the input resolution
increases — see supplemental for numerical results. While it seems
natural that scores improve with increasing resolution of training
data, we observed that some baselines struggle to represent high-
fidelity data and deteriorate instead.

5.5 Dynamic Furry Animal Dataset

Although HumanReF is tailored to ActorsHQ, it is a template-free
method which is not necessarily restricted to humans. In fact, our
method can be applied to any scene with a foreground object with
masks. To demonstrate this ability, we run our method on Dynamic
Furry Animal (DFA) [Luo et al. 2022] which is a multi-view dataset
of furry animals in motion. In Table 4, we demonstrate that our



(a) ours 1x ours 2X ours 1x  (e) reference 1x

Fig. 10. Impact of input resolution on the full-resolution results. We
illustrate the significance of high resolution data by training HumanRF
on 4x downscaled (b), 2x downscaled (c) and full-resolution (a, ¢) input to
generate full-resolution results. We observe striking differences in capturing

finer details as the resolution increases, which is also reflected in highlighted

and - values.

method can be applied to non-human scenes and it can still surpass
the quality of the state of the art. For these experiments, we use
default settings (§5.3.2) except by setting L = 20 to account for
high-frequent fur details. Additional visual results can be found in
the supplementary material.

5.6 Limitations and Future Work

Our method can produce high-fidelity radiance field reconstruc-
tions of humans in motion, achieving accurate results on novel
view synthesis; however, important limitations remain. To achieve
such high-quality results, HumanRF relies on our newly-introduced
ActorsHQ dataset, and optimizes a separate radiance field for each
sequence. It would be interesting to explore training a model on
high-end recordings which could then be used as an avatar to target
monocular-only test sequences. While our method reconstructs each
frame of a motion sequence, we still do not have explicit control over
articulation of the actor outside the training poses. One possible way
to gain control could be to learn a deformation network for each
segment, or to operate with a parametric model to control explicit
parameters. At the same time, there is also significant room to speed
up render times of our method. Here, a promising direction could
be the conversion of our reconstructed radiance field into a hybrid,
implicit-explicit representation such as in MobileNeRF [Chen et al.
2022a]. Finally, although our model is temporally-stable, the fore-
ground masks are not necessarily consistent across different time
frames because they are inferred from independent, per-frame mesh
reconstructions, which leads to flickering effect on the silhouette
edges. Here, our work would benefit from temporally-consistent
background matting techniques, such as Lin et al. [2022].
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Table 4. Evaluation on the Dynamic Furry Animal (DFA) Dataset
[Luo et al. 2022]. We show that HumanRF can reconstruct radiance fields
for dynamic sequences of non-human subjects, such as animals in the DFA
dataset. Our method achieves state-of-the-art results even though all the
baselines except NeuralVolumes uses skeleton information provided in the
DFA. For the starred (") methods, we use the results from Table 1in Luo et al.
[2022] , and use the exact same evaluation configuration for our method.
The | best and the second best results are highlighted.

Method Metric Panda Cat Dog Lion

LLPIPS = 0.030 0.008 0.013 0.025
Ours TPSNR | 36.00 3843 37.79 35.40
TSSIM | 0986 0.992 0.986 0.979

LLPIPS 0.031 0.012 0.022 0.035
TPSNR  33.63 37.54 3895 33.09
TSSIM 0985 0.989 0.989 0.966

LLPIPS 0.112 0.061 0.074 0.123
Animatable NeRF’ TPSNR 2651 3137 31.19 27.87
TSSIM  0.957 0973 0.975 0.944

LLPIPS 0.116 0.087 0.129 0.123
TPSNR 30.11 28.14 26.80 29.59
TSSIM 0965 0.951 0.945 0.947

|LPIPS 0.110 0.067 0.075 0.111
TPSNR 3038 30.77 32.27 30.11
TSSIM 0970 0.972 0.978 0.956

Artemis

Neural Volumes”

Neural Body~

6 CONCLUSION

We have presented HumanRF, a novel method to reconstruct a
spatio-temporal radiance field that captures human performance at
high-fidelity. At the core of our method lies an intra-frame decompo-
sition of a 4D representation based on a multi-resolution hash grid
to capture details. To handle arbitrarily long sequences with a prac-
tical memory budget, we introduce an adaptive splitting technique
to share as many features as possible between frames and produce a
memory-efficient representation. To demonstrate the advantages of
our method, we have introduced ActorsHQ, the first publicly avail-
able multi-view dataset captured with 160 cameras recording 12MP
footage. Our results have shown high-quality free-viewpoint video,
which we believe makes an important step towards production-level
novel view synthesis. Finally, we hope that the release of ActorsHQ
dataset and the source code for HumanRF will enable researchers
to drive new advances in photo-realistic reconstruction of virtual
humans.
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Fig. 11. Qualitative comparison. The synthesis quality of HumanRF is visually compared to the 4 baselines NDVG [Guo et al. 2022b], HyperNeRF [Park
et al. 2021b], TiNeuVox [Fang et al. 2022b] and per-frame NGP [Miiller et al. 2022] using a sequence of 100 frames. While deformation-based baselines tend to
produce blurry results and can fail to capture rapid motions, NGP and ours are able to generate crisp images that are close to groundtruth.
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1 IMPLEMENTATION DETAILS

Here, we discuss our implementation tricks that enable neural ren-
dering of terabytes of multi-view data.

1.1 HumanRF

Our method is implemented in PyTorch [Paszke et al. 2019] and in
CUDA for some of the parts that require performance. We use Tiny
CUDA neural networks framework [Miiller 2021] to create four 3D
hash grid representations. To reduce the amount of intermediate
memory usage during training and improve performance, we write
a CUDA kernel that samples from four 1D dense grids and compose
the results with the sampled features from the hash grid. Further-
more, we utilize some of the functionalities from torch-ngp [Tang
2022] and NerfAcc [Li et al. 2022].

In our high resolution video results on the supplemental video,
we make use of per-camera embeddings [Martin-Brualla et al. 2021]
which are concatenated to the input of the radiance MLP. This helps
removing the brightness and lighting inconsistencies that arise for
some cameras. In addition, we filter the light bloom effect based
on the light source annotations shown in Fig. 1. That is, we do not
sample rays from the annotated circular regions to prevent using
pixels that have light diffused into it. We note that this modified
version is not used in any of the comparisons made in the main
paper or supplementary material for fairness. It is simply used for
the stand-alone 12MP video results.
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Fig. 1. Light annotations. Light bloom can have a significant impact on
photometric consistency. Light annotations are used to avoid using these
regions during training.

1.2 ActorsHQ Data Loader

Considering the terabytes of data we need to deal with, storing train-
ing data in memory, or preparing batches in a pre-computation stage
and saving it to the file system is impractical in terms of memory or
hard disk requirements. The idea behind our data loader is to bypass
the reading and writing large chunks of data by sampling batch of
rays on the fly from as many images as possible across different
cameras and time frames. To do this, we define a pool of images, and
randomly sample from this pool continuously in the main thread
while another thread is working in the background to replace the
images in the pool. By replacing and sampling concurrently, we use
only a modest amount of GPU and CPU memory to accommodate
the pool. Also, we implement custom CUDA kernels to make use of
the occupancy grids (that are initialized from masks) to skip empty
space during ray sampling. This speeds up the rendering signifi-
cantly, and increases the effective capacity of the model because the
empty space does not have to be modeled.

1.3 Training

We use ADAM optimizer [Kingma and Ba 2014] with the initial
learning rate of 1072, We decay this learning rate to 5 - 1073 until
the end of each training. We utilize FP16 operations for fast training
and inference. For experiments with 4x downscaled input, we train
for N X 1000 iterations where N depicts the number of frames in
the training sequence. On average, our implementation performs

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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8 to 12 training iterations per second on a single NVIDIA GeForce
RTX 3090 with 24GB memory. This corresponds to roughly a day
of compute for 1000-frame sequences. On the other hand, we train
for N X 2500 iterations for full-resolution trainings.

We define the training batch size in terms of maximum number
of samples over all the training rays in a batch. We start by sampling
8192 rays per batch, and dynamically adjust number of rays such
that the maximum number of samples is reached every iteration.
This lets us achieve high GPU utilization during training. We set
the maximum number of samples to 640K, 576K and 512K for 4x
downscaled input, 2x downscaled input and full-resolution input,
respectively.

As our method partitions a given sequence into segments, it is
possible to scale the training to thousands of frames. This is because
we sample rays across fixed number of time frames, which we set to
8 for all our experiments. Therefore, in the worst case scenario, only
8 different segments need to live in the GPU memory. On average,
our segments have a size of 12 which would translate to around 64
million parameters (256MB) that need to reside in the GPU memory
at a time instance on average.

2 EVALUATION

In this section, we clarify the details of camera and frame config-
urations used during training, validation and testing. In addition,
we explain how the metrics are calculated to generate numerical
results.

2.1 Evaluation Protocol

In the following, we describe the evaluation protocol used for our
baseline comparison experiments. The dataset was split into 4 dis-
junct sets of cameras that are listed by their 1-based index:

e 124 training cameras: 2, 3,4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17,
18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39,
40, 41, 42, 43, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61,
62, 63, 66, 67, 68, 69, 70, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83,
86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103,
106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120,
121, 122, 123, 124, 125, 126, 128, 131, 132, 133, 134, 135, 136,
139, 140, 141, 142, 143, 144, 149, 150, 151, 152, 157, 158, 159,
160

e 10 validation cameras: 11, 20, 34, 45, 51, 74, 84, 91, 105, 118

o 13 per-frame test cameras: 1, 14, 25, 31, 44, 58, 64, 65, 71, 85,
98, 104, 115

e 1 VMAF test camera: 127

When computing per-frame scores, we alternate the test cameras in
the following order: 1, 64, 98,31, 14, 71, 115, 25, 85, 44, 65, 104, 58 and
temporally subsample every fifth frame leading to frame-camera
pairs such as {(1,1), (6,64), (11,98), ...}. To reduce the computa-
tional burden to execute this comparison, we use one of the se-
quences per actor alternatingly, i.e. Actorl Sequencel, Actor2 Se-
quence2, Actor3 Sequencel, Actor4 Sequence2, Actor5 Sequencel,
Actor6 Sequence2, Actor7 Sequencel and Actor8 Sequence2. Se-
quencels contain moderate movements while Sequence2s contain
stronger motion. PSNR scores are computed only on the foreground

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Table 1. Frame resolution vs representation quality. Training Hu-
manRF at different input resolutions while rendering results at full res-
olution shows that additional details can be represented, and our method
can make use of the extra information provided with the higher resolutions.

Resolution PSNR T LPIPS | SSIM T VMAF T
12MP 28.07 0.348 0.812 68.76
12MP/(2 % 2) 27.69 0.360 0.809 65.37
12MP/(4 x 4) 27.29 0.375 0.799 59.31

depicted by the ground truth masks while SSIM and LPIPS are com-
puted by tightly cropping images to fit ground truth foreground
masks. Finally, VMAF is computed on the video that is compiled by
rendering every third frame from the hero camera (camera 127).

2.2 Numerical Results of Input Resolution Experiment

In Table 1, we provide additional results concerning the input reso-
lution experiment we present in the main paper.

2.3 Additional Numerical Results on Baseline Comparison

We provide additional results over different motion complexities
in Table 2 and Table 3, and per sequence results. Moreover, we
provide a plot in Fig. 3 to better illustrate the effect of increasing
the sequence length.

2.4 Visual Results on DFA Dataset

In Fig. 2, we present results of our method for four scenes we choose
from DFA. We infer that HumanRF can produce high-fidelity results
for non-human subjects as well.

3  HEX4D AND TNGP FORMULATIONS

Following the notations we have used to define Equation 1 in the
main paper, we define Hex4D formulation as follows:

Teyzt (Pxyzt) = Ty (Pxy) © Tzt (Pzt)
+Tyz(Pyz) © Tt (Pxt) , 6y
+Tz(pxz) © Tyt (Pyt)

where we represent six 2D planes (Txy, Tyz, Txz, Tz, Teys Tyt - R?2
R™) using multi-resolution dense grids. Notice that HexPlanes [Cao
and Johnson 2023] uses concatenation operation instead of addition
as opposed to our formulation. However, for our experiments, we
did not observe an improvement when using concatenation over
addition.

On the other hand, tNGP simply uses a 4D hash grid to represent
Teyzt * R* — R™ without utilizing any kind of decomposition
techniques.
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(a) ours (b) reference

Fig. 2. Visual results from DFA dataset. . o
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Method Metric 20 50 100 250 500 1000 Method Metric 20 50 100 250 500 1000
LLPIPS | 0.081 0.090 0.088 0.095 0.100 0.103 JLPIPS 0108 0111 0.106 0.05 0.104 0.112
Ours TPSNR 3158 3112 3072 30.10 30.15 29.93 Ous TPSNR  29.02 2898 2895 28.41 2853 28.17
1SSIM 0933 0930 0932 0927 0924 0.920 TSSIM 0903 0906 0910 0912 0913 0.906
TVMAF  79.13 7949 81.66 81.93 82.05 83.15 TVMAF 8820 89.37 89.59 88.63 88.61 88.33
LLPIPS 0100 0.096 0.099 0.100 0.100 0.099 LLPIPS  0.090 0.087 0088 0.086 0.086 0.087
TPSNR 2088 29.72 29.67 29.65 29.60 29.76 TPSNR | 29.02 27.84 28.25 27.89 27.86 27.93

I “NGP I NGP
nstant-NGP o+ oo 0884 0910 0910 0910 0908 0911 nstant-NGP - r ot 0877 0.886 0894 0899 0900 0.899
1VMAF 6891 6583 70.84 7145 7211 73.00 TVMAF 79.38 80.64 82.55 82.10 8244 82.20
LLPIPS 0287 0252 0308 0334 0337 0.361 LLPIPS 0337 0357 0346 0359 0359 0.381
TiNewvox TPSNR 2760 2661 2501 2386 2303 2156 TiNewvox 1PSNR 2455 2166 2122 1978 1885 1803
7SSIM 0819 0.826 0.809 0.804 0797 0.779 1SSIM 0764 0774 0779 0780 0.775 0.765
1VMAF 5943 5958 47.69 38.91 32.23 2275 TVMAF 53.09 3503 32.86 2332 17.24 1348
LLPIPS 0195 0212 0247 0312 0337 0376 JLPIPS 0342 0339 0353 0364 0396 0.405
NDpvG  TPSNR 2961 2694 2526 2220 2073 1831 NDvG  TPSNR 2360 2036 19.06 1730 1513 1402
1SSIM 0875 0.860 0.834 0794 0778 0.739 1SSIM 0771 0763 0753 0736 0.704 0.693
TVMAF 73.04 6410 5134 3165 2129 9317 T VMAF 5348 3696 2492 1211 4236 3.048
LLPIPS 0228 0222 0236 0256 0294 0.321 LLPIPS 0272 0248 0266 0283 0310 0.328
TPSNR 2574 2588 2594 2507 2395 22.94 TPSNR 2565 2458 23.51 2258 2122 20.60

H F H F
YPerNeRE oM 0.841 0.842 0835 0823 0.805 0794 YPerNeRE 1 oM 0.800 0822 0817 0.810 0797 0787
T VMAF | 7435 7472 69.83 62.03 4892 39.10 TVMAF 7181 7138 64.51 5298 4077 34.92
LLPIPS 0272 0289 0.289 0303 0327 0.356 JLPIPS 0339 0326 0332 0333 0353 0377
NeuralBody TPSNR  27.28 25.80 2787 2538 2516 26.66 NeuralBody TPSNR 2677 2443 2597 23.93 2353 2450
Y 1SSIM 0822 0814 0810 0809 0798 0.763 Y 1SSIM 0791 0.800 0.800 0.801 0.789 0.770
1VMAF 42,95 4222 41.02 37.28 32.35 29.29 TVMAF 5049 4832 42.64 40.15 31.90 24.61
LLPIPS 0218 0236 0260 0313 0362 0411 JLPIPS 0322 0318 0330 0376 0415 0.447
caya  TPSNR 2862 2729 2650 2512 2396 22386 caya  TPSNR 2626 2421 2360 2211 2084 2013
7SSIM 0848 0.841 0830 0.806 0782 0.757 18SIM 0792 0801 0802 0778 0749 0.722
TVMAF 6645 6264 57.15 4375 3022 18.56 T VMAF 67.40 5467 5141 33.06 16.68 8.129
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Table 2. moderate movements

Table 3. strong movements
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Fig. 3. Influence of increasing the sequence length. Thanks to using adaptively-placed 4D segments, our method consistently outperforms the deformation-

based baselines as they struggle to capture complex motion over long sequences. Although NeuralBody does not lose its representation power for long
sequences, its overall quality is inferior to HumanRF.
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NDVG . . . .
HyperNeRF ' ' . '
TiNeuVoX ' - . . .

Ours ' '

NDVG

HyperNeRF . . . . .
TiNeuVoX . . . . .

Ours \
Method 20 50 100 250 500

Fig. 4. Impact of increasing sequence length. For deformation-based baselines synthesis quality drops when rendering the same pose and frame while
increasing the sequence length. Our results on the other hand have constant quality independent of the sequence length.
ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Method Metric 20 50 100 250 500 1000 Method Metric 20 50 100 250 500 1000
LLPIPS | 0.046 0.052 0055 0.059 0.060 0.064 LLPIPS [0.081 0.086 0080 0079 0077 0.079
Ours TPSNR 3151 3145 3053 3042 3023 30.31 Ous TPSNR  30.67 3021 30.54 29.63 29.81 29.54
1SSIM 0951 0947 0945 0941 0939 0.934 TSSIM 0946 0943 0948 0946 0947 0.946
TVMAF  83.10 8443 8690 8527 8547 87.41 TVMAF 8523 84.66 87.98 8573 8558 87.73
LLPIPS 0.062 0062 0.069 0071 0.072 0.073 LLPIPS 0084 0083 0076 0.081 0.080 0.081
TPSNR  30.60 29.87 2071 29.65 29.56 29.64 TPSNR  29.60 2699 27.99 27.75 27.76 27.77

I “NGP I NGP
nstant-NGP oo 0010 0927 0924 0921 0920 0920 nstant-NGP - r oot 0914 0897 0914 0912 0915 0914
1VMAF 7327 6936 73.84 73.95 7541 7638 1VMAF 7635 81.46 8137 8131 81.65 8157
LLPIPS 0241 0191 0226 0290 0310 0.338 JLPIPS 0306 0337 0277 0321 0314 0337
TiNewvox 1PSNR 2778 2655 2536 2361 2236 2050 TiNewvox 1PSNR 2500 2133 2248 2105 2005 1957
TSSIM 0843 0847 0829 0.820 0813 0.778 1SSIM 0834 0821 0832 0826 0814 0.817
1VMAF 6561 6423 59.43 43.08 31.88 21.92 1VMAF 4673 2132 33.18 2047 1283 1113
LLPIPS 0121 0.168 0213 0276 0313 0361 JLPIPS 0299 0286 0300 0333 0363 0372
NDpvG  TPSNR 3051 2611 2422 2159 1945 17.15 NDvG  TPSNR 2466 2180 2058 1882 1650 1541
1SSIM  0.904 0867 0.841 0.803 0.786 0.736 1SSIM 0841 0827 0823 0791 0762 0.753
TVMAF | 7921 6179 52.65 3474 19.83 6.256 T VMAF 4317 3433 23.83 7743 0482 0.106
LLPIPS 0186 0.178 0.206 0.222 0269 0301 LLPIPS 0223 0194 0223 0244 0273 0.291
TPSNR 2505 2494 2605 2508 23.17 22.56 TPSNR 2579 2555 24.28 23.62 22.50 21.74

H F H F
YPerNeRE oM 0.868 0.864 0854 0844 0820 0.806 YPerNeRE 1 oM 0.849 0876 0865 0.851 0.842 0833
TVMAF 79.00 78.89 7535 68.98 49.06 41.72 T VMAF 5465 6894 5697 4956 40.25 3178
LLPIPS 0.184 0228 0.240 0243 0.270 0.305 LLPIPS 0260 0257 0255 0.268 0.283 0.295
NeuralBody TPSNR 2887 2623 27.63 2579 2538 2674 NeuralBody TPSNR  27.55 2548 2689 2494 2458 2576
Y 1SSIM 0864 0844 0837 0837 0.827 0.786 Y 1SSIM 0862 0858 0.859 0.853 0.846 0.838
1VMAF 4810 4636 41.70 4655 43.24 35.05 TVMAF 4652 4626 39.96 4391 37.46 3137
LLPIPS 0149 0.178 0210 0259 0308 0.373 LLPIPS 0278 0272 0283 0331 0362 0391
caya  TPSNR 2030 27.62 2680 25.22 2381 2263 taya  TPSNR 2679 2503 2440 2334 2237 2172
7SSIM 0879 0.868 0852 0.827 0.803 0.770 1SSIM  0.860 0857 0.855 0830 0814 0.794
TVMAF 7210 6740 63.20 50.00 3249 20.46 TVMAF 6151 53.90 4898 3523 23.89 14.16

Table 4. Actor 1, Sequence 1 Table 5. Actor 2, Sequence 2

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:8 « lIsiketal

Method Metric 20 50 100 250 500 1000 Method Metric 20 50 100 250 500 1000
LLPIPS 0120 0138 0135 0151 0.155 0.160 JLPIPS 0110 0118 0.114 0115 0114 0.138
Ours TPSNR |31.02 30.26 3025 28.98 2950 29.19 Ous TPSNR | 27.52 27.60 27.55 27.28 27.04 26.42
1SSIM | 0.893 0.888 0.896 0.888 0.885 0.881 1SSIM | 0.851 0.855 0.860 0.866 0.870 0.842
TVMAF 7205 7111 7540 7837 7696 78.22 TVMAF  90.93 9146 90.47 90.80 90.27 89.87
LLPIPS 0119 0125 0.126 0.128 0.129 0.128 LLPIPS  0.094 0087 0083 0082 0081 0.084
TPSNR 2044 29.22 2928 29.23 29.10 29.32 TPSNR 2670 25.66 26.68 2648 26.53 26,53

I “NGP I NGP
nstant-NGP -+ goini 0858 0.881 0883 0881 0.880 0.883 nstant-NGP - » oot 0787 0807 0839 0.855 0862 0856
1VMAF 6237 60.88 67.69 68.24 68.54 70.39 TVMAF 8350 87.28 87.09 87.17 87.39 87.59
LLPIPS 0352 0298 0.406 0430 0436 0.452 JLPIPS 0458 0407 0404 038 0.388 0.432
TiNewvox 1PSNR 2751 2662 2413 2298 2230 2128 TiNewvox 1PSNR 2262 2078 1939 1862 1743 1581
TSSIM 0782 0791 0760 0.752 0751 0.747 1SSIM 0610 0698 0707 0722 0722 0.692
1VMAF 4937 51.83 29.76 24.86 19.28 12.17 TVMAF 5125 39.78 30.67 29.42 2538 15.91
LLPIPS 0240 0281 0354 0435 0453 0481 LLPIPS 0483 0421 0414 0428 0443 0.454
NDpvG  TPSNR 2876 2583 2313 2117 2005 17.83 NDve  TPSNR 2095 1816 1699 1527 1303 1254
1SSIM 0841 0812 0763 0731 0724 0.692 1SSIM  0.608 0.662 0.669 0.662 0.632 0.625
TVMAF 6199 50.27 2879 17.01 7.948 2.447 1 VMAF 5620 3425 2436 1640 1035 8.543
LLPIPS 0233 0250 0275 0322 0374 0.388 LLPIPS 0394 0297 0309 0322 0335 0.366
TPSNR 2575 2653 2596 24.85 2329 23.04 TPSNR  23.50 2344 2213 2116 20.17 19.53

H F H F
YPerNeRE oM 0.827 0.818 0800 0777 0758 0.761 YPerNeRE oM 0.651 0739 0742 0747 0745 0727
TVMAF | 7159 69.29 5871 49.67 33.25 33.88 TVMAF 7824 7199 66.48 55.13 42.85 40.66
LLPIPS 0288 0333 0354 0368 0396 0.429 LLPIPS 0454 0377 0372 0367 0392 0.423
NeuralBody TPSNR 2751 2588 27.18 2530 2481 25.68 NeuralBody TPSNR 2502 2310 2420 2282 2262 22.05
Y 1SSIM 0804 0777 0739 0762 0745 0.668 Y 1SSIM 0639 0722 0729 0740 0723 0.703
1VMAF 42.89 4213 3400 3325 26.65 2111 TVMAF 5405 5099 41.15 43.07 27.27 2465
LLPIPS 0261 0303 0341 0410 0467 0.504 JLPIPS 0431 0359 0375 0416 0452 0.500
caya  TPSNR 2847 2693 2583 2428 2313 2221 caya  TPSNR 2497 2322 2236 2101 1984 1887
TSSIM 0820 0801 0782 0749 0721 0.704 1SSIM  0.644 0724 0727 0712 0.683 0.640
TVMAF 60.16 5527 4670 29.98 15.05 6.436 TVMAF 7220 5697 4824 29.85 1228 3.305

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Table 6. Actor 3, Sequence 1

Table 7. Actor 4, Sequence 2
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Method Metric 20 50 100 250 500 1000 Method Metric 20 50 100 250 500 1000
LLPIPS 0067 0.073 0073 0.075 0082 0.083 JLPIPS  0.133 0.128 0.123 0118 0.117 0.121
Ours TPSNR 3201 3122 31.04 3047 30.18 30.29 Ous TPSNR  27.26 28.10 27.80 27.68 27.69 27.33
1SSIM 0950 0946 0.946 0944 0.939 0.937 1SSIM 0899 0908 0913 0916 0915 0.913
TVMAF 7899 77.68 79.22 7870 79.40 81.50 TVMAF | 85.85 89.94 88.05 83.09 88.18 86.53
LLPIPS  0.098 0090 0.095 0.091 0.092 0.090 LLPIPS | 0.079 0090 0.099 0.093 0.094 0.096
TPSNR 2947 2940 29.55 29.58 29.62 29.79 TPSNR | 28.18 28.38 28.13 27.57 27.40 27.53

I “NGP I NGP
nstant-NGP -+ goini 0003 0924 0919 0923 0921 0923 nstant-NGP o+ et 0907 0914 0906 0.908 0905 0.904
1VMAF 6684 63.65 67.78 6937 70.21 71.07 1VMAF 7656 7617 79.68 79.01 79.44 79.31
LLPIPS 0.197 0272 0.284 0293 0312 0.296 JLPIPS 0258 0296 0311 0351 0356 0.367
TiNewvox 1PSNR 2820 2643 2538 2435 2338 2211 TiNewvoy | 1PSNR 2468 2213 2162 1957 1886 1844
7SSIM 0852 0.837 0.828 0.826 0816 0.791 1SSIM 0834 0799 0802 0.803 0.799 0.791
1 VMAF 6480 57.06 5181 4529 37.90 29.19 TVMAF 5569 44.06 39.54 23.80 1492 15.44
LLPIPS 0176 0.175 0.187 0254 0.278 0.329 JLPIPS 0244 0307 0344 0343 0413 0415
NDvG  TPSNR (2980 27.89 2741 2350 2203 19.14 Npve  TPSNR 2379 2035 1907 1770 1490 1371
1SSIM  0.894 0.892 0.878 0.829 0.806 0.762 1SSIM 0839 0795 0778 0764 0.707 0.697
TVMAF | 7232 69.70 6446 39.65 31.08 1588 T VMAF 5739 3860 2681 1292 2790 3.058
LLPIPS 0237 0234 0223 0223 0253 0.278 LLPIPS 0197 0243 0262 0276 0321 0327
TPSNR 2529 2514 2574 2540 24.87 23.97 TPSNR 2545 2361 23.01 2232 2052 2054

H F H F
YPerNeRE o oot 0839 0.838 0845 0846 0.828 0816 YPerNeRE ooVt 0.866 0.843 0839 0835 0811 0807
TVMAF 6936 | 70.11 69.02 6622 57.84 47.33 TVMAF 7333 7332 68.97 55.20 39.83 36.24
LLPIPS 0289 0.283 0270 0291 0316 0.336 LLPIPS 0278 0330 0342 0333 0366 0.403
NeuralBody TPSNR 2691 2610 28.18 2527 2477 2677 NeuralBody TPSNR 2518 2335 2581 2358 2320 2521
Y 1SSIM 0826 0823 0836 0820 0811 0.802 Y 1SSIM 0847 0807 0814 0820 0801 0.770
1VMAF 39.81 37.83 40.60 3636 2549 29.24 T1VMAF 5162 4630 46.14 3876 3229 19.65
LLPIPS 0208 0213 0227 0269 0324 0373 JLPIPS 0258 0330 0325 0374 0436 0.460
caya  TPSNR 2813 27.03 2683 2576 2433 2315 caya  TPSNR 2527 2335 2335 2198 2019 1986
TSSIM 0857 0.852 0849 0835 0.808 0.782 1SSIM  0.849 0.807 0.824 0797 0751 0.731
TVMAF 6442 6331 59.15 49.24 3651 24.45 T VMAF 6548 4630 56.80 3629 1233 6512

Table 8. Actor 5, Sequence 1 Table 9. Actor 6, Sequence 2
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Method Metric 20 50 100 250 500 1000 Method Metric 20 50 100 250 500 1000
LLPIPS | 0.093 0.096 0089 0096 0.102 0.103 JLPIPS 0107 0112 0.108 0.09 0.109 0.108
Ours TPSNR | 3176 31.56 31.04 3055 3069 29.95 Ours TPSNR  30.62 30.02 29.94 29.04 29.59 29.40
1SSIM 0940 0938 0943 0.937 0.935 0.929 1SSIM | 0917 0917 0920 0920 0921 0.921
TVMAF 8238 8474 85.12 8540 8637 85.45 TVMAF 90.80 9142 91.87 89.89 90.39 89.18
JLPIPS 0.22 0.108 0.107 0.108 0.109 0.107 JLPIPS  0.102 0.088 0.093 0.089 0.088 0.087
TPSNR  30.03 30.38 30.13 30.14 30.13 30.31 TPSNR 3160 30.31 30.20 29.79 29.74 29.90

I NGP I NGP
nstant-NGP -+ gaini 0867 0909 0913 0915 0914 0916 nstant-NGP o geini 0900 0925 0917 0920 0920 0922
1VMAF 7315 69.42 74.06 7424 7428 74.17 TVMAF 8111 77.64 8205 80.89 81.28 80.35
JLPIPS 0358 0246 0314 0321 0289 0.356 JLPIPS 0326 0389 0392 0379 0379 0.387
TiNewvox TPSNR 2689 2684 2516 2448 2407 2234 TiNewvox 1PSNR 2580 2243 2139 1988 1906 1832
TSSIM 0800 0.830 0819 0818 0.808 0.799 1SSIM 0780 0.778 0.773 0770 0.768 0.761
1VMAF 57.94 6520 49.75 4240 39.87 27.73 TVMAF 5870 3498 28.05 19.57 1584 11.42
LLPIPS 0243 0222 0232 0282 0304 0.334 JLPIPS 0342 0342 0354 0354 0367 0.380
NDve  TPSNR 2037 2794 2629 2252 2138 19.11 NDvg  TPSNR 2498 2114 1948 1740 1610 1442
1SSIM 0861 0.868 0.854 0811 0.797 0.766 1SSIM 0797 0766 0740 0.725 0.716 0.698
TVMAF | 7865 7462 5949 3519 2632 12.68 TVMAF 57.17 40.64 2469 1141 3313 0487
LLPIPS 0255 0.228 0240 0259 0280 0.319 LLPIPS 0275 0259 0271 0288 0312 0.328
TPSNR 2688 2692 2600 24.94 2447 22.17 TPSNR  27.88 2573 24.63 2321 2167 2057

H F H F
YPerNeRE oM 0.828 0.851 0841 0827 0812 0792 YPerNeRE 1 oM 0.833  0.831 0821 0.807 0790 0782
TVMAF  77.46 | 80.60 7625 63.25 5551 33.48 TVMAF 81.03 7127 6561 5205 40.14 30.99
JLPIPS 0328 0312 0294 0309 0325 0355 LLPIPS 0363 0342 0358 0364 0372 0.388
NeuralBody TPSNR 2584 2537 2850 2517 2569 2744 NeuralBody TPSNR 2031 2581 26.99 2438 2371 2499
Y 1SSIM 0793 0811 0829 0818 0.808 0.796 Y 1SSIM 0817 0813 0801 0792 0787 0.771
1VMAF 4102 4256 4778 32.95 34.04 3175 TVMAF 49.76 49.72 43.29 34.87 3058 22.76
LLPIPS 0253 0252 0263 0314 0349 0.392 JLPIPS 0321 0311 0338 0383 0409 0.438
cava  TPSNR 2860 27.57 2655 2522 2457 2346 tava  TPSNR 2799 2523 2430 2210 20.95 20.07
7SSIM 0835 0.843 0837 0814 079 0.773 1SSIM 0815 0816 0803 0771 0747 0.722
TVMAF 69.11 6459 59.55 4576 3682 22.89 TVMAF 7040 6150 5162 30.88 18.23 8.532

Table 10. Actor 7, Sequence 1
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Table 11. Actor 8, Sequence 2
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