
Received: 13 April 2023 Accepted: 27 August 2023

DOI: 10.1112/blms.12931

Bulletin of the London
Mathematical SocietySURVEY ART ICLE

Root numbers and parity phenomena

Lilybelle Cowland Kellock Vladimir Dokchitser

University College London, London, UK

Correspondence
Lilybelle Cowland Kellock, University
College London, London WC1H 0AY, UK.
Email: lilybelle.kellock.20@ucl.ac.uk

Funding information
Engineering and Physical Sciences
Research Council, Grant/Award Number:
EP/S021590/1; EPSRC Centre for Doctoral
Training in Geometry and Number
Theory (The London School of Geometry
and Number Theory); University College
London; Royal Society

Abstract
The parity conjecture has a long and distinguished his-
tory. It gives a way of predicting the existence of points
of infinite order on elliptic curves without having to
construct them, and is responsible for a wide range
of unexplained arithmetic phenomena. It is one of the
main consequences of the Birch and Swinnerton-Dyer
conjecture and lets one calculate the parity of the rank of
an elliptic curve using root numbers. In this handbook,
we explain how to use local root numbers of elliptic
curves to realise some of these phenomena, with an
emphasis on explicit calculations. The text is aimed at
a ‘user’ and, as such, we will not be concerned with
the proofs of known cases of the parity conjecture, but
instead, we will demonstrate the use of the theory by
means of examples.
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1 INTRODUCTION

1.1 The parity conjecture

TheMordell–Weil rank of an elliptic curve 𝐸 over a number field𝐾 remains mysterious. Calculat-
ing it is generally either hard or impossible, and there is currently no method that will provably
work for every curve. All we have is ways of finding upper bounds by calculating the rank of
Selmer groups, lower bounds by searching for 𝐾-rational points and fingers to cross that these
coincide. In general, it can be hard to find out if an elliptic curve has even one 𝐾-rational point of
infinite order.
The parity conjecture predicts points of infinite order and most known phenomena about

elliptic curves effortlessly, after a simple calculation. It quantifies how the behaviour of 𝐸 over
completions of 𝐾 should control the parity of the rank of 𝐸∕𝐾. It does this using the global root
number of 𝐸∕𝐾, 𝑤(𝐸∕𝐾) ∈ {±1}, which is defined as the product of easily computable local fac-
tors at each place 𝑣 of 𝐾, local root numbers. They are straightforward to compute since, despite
having a non-constructive definition, they have been classified for all places (see §2).
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ROOT NUMBERS AND PARITY PHENOMENA 3

Parity Conjecture. Let 𝐸 be an elliptic curve over a number field 𝐾. Then

(−1)rk(𝐸∕𝐾) = 𝑤(𝐸∕𝐾),

where 𝑤(𝐸∕𝐾) is the global root number of 𝐸∕𝐾.

Note that if 𝑤(𝐸∕𝐾) = −1, the parity conjecture implies that the rank is odd and, in particular,
greater than 0. The parity conjecture is often the only way of predicting that a point of infinite
order exists on an arbitrary elliptic curve. For now, take for granted that if 𝐸 is a semistable elliptic
curve defined over 𝐾, then

𝑤(𝐸∕𝐾) = (−1)𝑚+𝑢,

where 𝑚 is the number of primes of 𝐾 where 𝐸 has split multiplicative reduction and 𝑢 is the
number of infinite places of 𝐾 (see Corollary 2.5).

Example 1.1. Let us take

𝐸 ∶ 𝑦2 − 23𝑦 = 𝑥3 − 99 997𝑥2 − 17𝑥 + 42.

Magma [3] tells us that the rank of 𝐸∕ℚ is 0, so that 𝐸 does not have a rational point of infinite
order. However, it also returns false, indicating that it has not proved that 0 is the rank of the
curve.†With a simple calculation, the parity conjecture tells us that this curve should have a point
of infinite order. Indeed, we have Δ𝐸 = 17 ⋅ 655 943 686 625 481 101 and non-split multiplicative
reduction at both primes. Hence, since ℚ has one infinite place, the above result tells us that
𝑤(𝐸∕ℚ) = (−1)1 = −1, and so, the parity conjecture implies that the rank of 𝐸∕ℚ is odd and that
𝐸 has a point of infinite order.

One could use the conjecture of Birch and Swinnerton-Dyer to calculate Mordell–Weil ranks
of elliptic curves. However, utilising the Birch–Swinnerton-Dyer conjecture requires comput-
ing 𝐿-functions, and, not only is this a rather lengthy calculation, we cannot provably compute
ord𝑠=1𝐿(𝐸∕ℚ, 𝑠) unless it is 0, 1, 2 or 3, nor do we know the analytic continuation of 𝐿-functions
of elliptic curves over general number fields. The beauty of the parity conjecture is that it is free
of the conjectural machinery of 𝐿-functions and is an entirely arithmetical statement, yet it still
allows us to predict the existence of points of infinite order.
In terms of applications, parity-related arguments havemany notable consequences. For exam-

ple, a known case of the 𝑝-parity conjecture‡ was used by Bhargava and Shankar to prove that a
positive proportion of elliptic curves over ℚ satisfies the Birch–Swinnerton-Dyer conjecture [1].
The parity conjecture settles most cases of the congruent number problem (see §3.12) and has
been used to prove many results about the ranks of families of elliptic curves [15, 38, 54, 56]. A
variant on the 2-parity conjecture was used to prove that Hilbert’s Tenth Problem has a negative
answer over rings of integers of number fields [47] and results on the parity of Selmer ranks were
used to prove that certain Kummer surfaces satisfy the Hasse principle [64]. Similar arguments

†Of course, we could have done more extensive calculations; Magma only searches for points which have height below 15
and performs only 2- and 4-descent by default.
‡Namely that dim𝔽𝑝

Sel𝑝(𝐸∕ℚ) − dim𝔽𝑝
𝐸(ℚ)[𝑝] is even if and only if 𝑤(𝐸∕ℚ) = +1.
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4 COWLAND KELLOCK and DOKCHITSER

have also been used to prove results on class numbers of, for example, simplest cubic fields [72].
Root numbers also seem to have played a role in the early investigation of Heegner points and the
Gross–Zagier formula, see, for example, [33] Chapter 5, Corollary 21.3, Conjecture 23.2 and [35].
The parity conjecture is easily deduced from the Birch–Swinnerton-Dyer conjecture together

with the Hasse–Weil conjecture. The latter states that the completed 𝐿-function has analytic con-
tinuation to the whole of the complex plane and satisfies the functional equation �̂�(𝐸∕𝐾, 𝑠) =

𝑤(𝐸∕𝐾)�̂�(𝐸∕𝐾, 2 − 𝑠), where 𝑤(𝐸∕𝐾) is the global root number. Assuming the Hasse–Weil con-
jecture, 𝑤(𝐸∕𝐾) = +1 if and only if the completed 𝐿-function is symmetric around 𝑠 = 1, which
happens if and only if its order of vanishing at 𝑠 = 1 is even. This tells us that

𝑤(𝐸∕𝐾) = (−1)ord𝑠=1�̂�(𝐸∕𝐾,𝑠),

which, assuming the Birch–Swinnerton-Dyer conjecture, gives the parity conjecture.

1.2 A historical note

The investigation of parity-type questions appears to have begun with calculations of the parity
of ranks of Selmer groups. In his 1954 paper, ‘A conjecture concerning rational points on cubic
curves’ [60], Selmer gave an explicit definition of the first and second descent for 𝐸∕ℚ with a
rational 2-isogeny by writing out the equations they lead to. Selmer wrote that he had performed
numerical calculations that suggest ‘when the first descent indicated at most three generators,
then none or two of these seem to be excluded by the second descent’ (at most three as this was
the case for all curves he numerically tested). Based on this, he conjectured that

1. ‘The second descent excludes an even number of generators’.

In his 1962 paper ‘Arithmetic on curves of genus 1, III, The Tate Šafarevič and Selmer groups’
[5], where he coined the term ‘Selmer group’, Cassels extended Selmer’s conjecture and proved
that the dimension of the image of Sel𝑝𝑛 (𝐸∕𝐾) under the map induced by multiplication by 𝑝𝑛−1
differs from that of Sel𝑝(𝐸∕𝐾), considered as a vector space over 𝔽𝑝, by an even integer. This also
treats the case of third descent, fourth descent, and so on. In [60], Selmer also conjectured the
stronger statement, that

2. ‘The number of generators indicated by a first descent differs from the true number of generators
by an even number’.

Extending Selmer’s second conjecture to general 𝑝, as Cassels did for Selmer’s first conjecture,
it says that the rank of the 𝑝-Selmer group determines the parity of the Mordell–Weil rank and is
equivalent to saying that 𝛿𝑝 is even, where 𝛿𝑝 is the multiplicity ofℚ𝑝∕ℤ𝑝 inШ(𝐸∕𝐾)[𝑝∞] and is
conjecturally 0. In light of the parity conjecture and Selmer’s second conjecture, we would expect
that

(−1)rk𝑝(𝐸∕𝐾) = 𝑤(𝐸∕𝐾),

where rk𝑝(𝐸∕𝐾) = rk(𝐸∕𝐾) + 𝛿𝑝 is the ℤ𝑝-corank of the 𝑝-infinity Selmer group
lim𝑛→∞ Sel𝑝𝑛(𝐸∕𝐾). This is known as the 𝑝-parity conjecture. Although we will not discuss
it or its applications in this handbook, tackling the 𝑝-parity conjecture has proved to be more
fruitful than tackling the parity conjecture itself and there have been numerous works on
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ROOT NUMBERS AND PARITY PHENOMENA 5

the subject (see §1.3 for references). In this context, one can prove parity-related statements
without assuming the finiteness of the Tate–Shafarevich group (the fabled Shafarevich–Tate
conjecture), whereas the parity conjecture itself appears to be, as of now, unapproachable without
this assumption.

1.3 Using this handbook

This exposition is designed to explain how to calculate local and global root numbers of elliptic
curves, and give a taste of what sorts of phenomena are predicted by the parity conjecture. The
latter are concerned with the existence of rational points on elliptic curves for which there is as
yet no construction, and that remain open problems without assuming the parity conjecture. As
of now, the only known systematic construction of points of infinite order are Heegner points and
self-points [13, 73], both using the modular parameterisation. We hope that our examples might
inspire some new ideas for the construction of rational points.
In §2, we describe how to calculate local and global root numbers of elliptic curves, along with

root numbers of quadratic twists of elliptic curves and twists of elliptic curves by self-dual Artin
representations. We also give a first introduction as to how to use these to predict the existence of
points of infinite order on elliptic curves. In §3, we illustrate how the parity conjecture predicts
many unexplained arithmetic phenomena about rational points on elliptic curves. For a quick
overview of these, see the table of contents. In §4, we propose an analogue of the minimalist
conjecture for Artin twists of elliptic curves over ℚ, and discuss its consequences. The conjecture
gives the expected Galois module structure of 𝐸(𝐹) ⊗ℤ ℂ, for a fixed Galois extension 𝐹∕ℚ and a
generic elliptic curve 𝐸∕ℚ.
The parity conjecture is known assuming the finiteness of the Tate–Shafarevich group [24, 48],

and it is also known that these approaches to controlling the parity of the rank do not extend
to controlling the Mordell–Weil rank modulo 𝑛 for 𝑛 > 2 [25]. We will not be concerned with
approaches to the proof of the parity conjecture; for a self-contained exposition on the proof of
the parity conjecture assuming the finiteness of the Tate–Shafarevich group (and of the proof of
𝑝-parity conjecture for elliptic curves over ℚ), see [26]. We will confine ourselves to the setting of
elliptic curves, although the parity conjecture is formulated for abelian varieties. For some recent
results on these conjectures, see [7, 8, 19, 22–24, 28, 32, 41, 49–53]; for results on root numbers of
abelian varieties, see [2, 58].

1.4 Notation

We will use the following notation.

𝐸 an elliptic curve
𝐾 a number field
Δ𝐾 the discriminant of 𝐾
𝑣 a place of 𝐾
𝐾𝑣 the completion of 𝐾 at a place 𝑣⟨⋅, ⋅⟩ the usual inner product of (characters of) representations
Δ𝐸 the discriminant of a given Weierstrass equation for 𝐸
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6 COWLAND KELLOCK and DOKCHITSER

𝑐4, 𝑐6 the usual invariants of an elliptic curve (see [63, p. 46])
𝑁𝐸 the conductor of 𝐸
𝐸𝑑 the quadratic twist of 𝐸 by 𝑑 ∈ 𝐾×∕𝐾×2

𝑤(𝐸∕) the local root number of 𝐸 over a local field (see §2.2)
𝑤(𝐸∕𝐾) the global root number of 𝐸∕𝐾 (see §2.1)
𝑤(𝐸∕𝐾, 𝜌) the global root number of 𝐸∕𝐾 twisted by an Artin representation 𝜌 (see §2.4)

Most curves will be labelled with their Cremona label, if they have one.

2 ROOT NUMBERS

2.1 The global root number

Definition 2.1. Let 𝐸 be an elliptic curve over a number field 𝐾. The global root number
𝑤(𝐸∕𝐾) ∈ {±1} is defined as the product of local root numbers 𝑤(𝐸∕𝐾𝑣) ∈ {±1},

𝑤(𝐸∕𝐾) =
∏
𝑣

𝑤(𝐸∕𝐾𝑣),

where the product runs over all places 𝑣 of 𝐾, including infinite ones.

Local root numbers of elliptic curves are defined using epsilon factors of Weil–Deligne repre-
sentations (see [14, 69] for the original definitions and [26] Section 3.3 for a more down-to-earth
introduction). For a finite place 𝑣, the local root number is computed by looking at the action of
the absolute Galois group of 𝐾𝑣 on the 𝓁-adic Tate module. For the purpose of this exposition, we
will not concern ourselves with formal definitions, but will focus on how to calculate local root
numbers in practice.

Remark 2.2. For an elliptic curve defined overℚ, the local root number at a prime𝑝 agreeswith the
eigenvalue of the associated Atkin–Lehner involution for the associated modular form. This fol-
lows from the corresponding statement for modular forms (see [59, Theorem 3.2.2], for example)
together with the local Langlands conjecture for GL2 and the modularity of elliptic curves overℚ.

2.2 How to calculate local root numbers

Local root numbers of elliptic curves 𝐸∕𝐾 have been classified for all places 𝑣 of 𝐾, so, for most
purposes, one can avoid the technical definitions.

Theorem 2.3. Let 𝐸 be an elliptic curve over a local field  of characteristic zero. When  is non-
Archimedean, let 𝑘 be its residue field and let 𝑣 ∶ × ↠ ℤ denote the normalised valuation with
respect to. Let ( ∗

𝑘
) denote the quadratic residue symbol on 𝑘× and (𝑎, 𝑏) denote theHilbert symbol

in.

(i) If is Archimedean, then 𝑤(𝐸∕) = −1.
(ii) If 𝐸∕ has good reduction, then 𝑤(𝐸∕) = +1.
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ROOT NUMBERS AND PARITY PHENOMENA 7

(iii) If 𝐸∕ has split multiplicative reduction, then 𝑤(𝐸∕) = −1.
(iv) If 𝐸∕ has non-split multiplicative reduction, then 𝑤(𝐸∕) = +1.
(v) If 𝐸∕ has additive, potentially multiplicative reduction and char(𝑘) ⩾ 3, then

𝑤(𝐸∕) = (−1
𝑘
).

(vi) If 𝐸∕ has additive, potentially multiplicative reduction and char(𝑘) = 2, then 𝑤(𝐸∕) =
(−1,−𝑐6). In particular, if = ℚ2, then

𝑤(𝐸∕ℚ2) =

{
−1 if 𝑐′

6
≡ 1 (mod 4);

+1 if 𝑐′
6
≡ 3 (mod 4),

where 𝑐′
6
= 𝑐6∕2

𝑣(𝑐6).

(vii) If 𝐸∕ has additive, potentially good reduction and char(𝑘) ⩾ 5, then𝑤(𝐸∕) = (−1)⌊ 𝑣(Δ)∣𝑘∣12
⌋,

where Δ is the minimal discriminant of 𝐸.
(viii) If 𝐸∕ has additive, potentially good reduction and char(𝑘) ⩾ 3, let 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐

be a Weierstrass equation for 𝐸 and let Δ𝐸 be the discriminant of this model.
∙ If the Kodaira type† is I∗

0
, then

𝑤(𝐸∕) =
(
−1

𝑘

)
.

∙ If the Kodaira type is III or III∗, then

𝑤(𝐸∕) =
(
−2

𝑘

)
.

∙ If the Kodaira type is II, IV, II∗ or IV∗, then there exists a Weierstrass equation for which
3 ∤ 𝑣(𝑐). For such an equation, we have

𝑤(𝐸∕) = 𝛿 ⋅ (Δ𝐸, 𝑐) ⋅
(
𝑣(𝑐)

𝑘

)𝑣(Δ𝐸)

⋅
(
−1

𝑘

) 𝑣(Δ𝐸)(𝑣(Δ𝐸)−1)

2
,

where 𝛿 ∈ {±1} and 𝛿 = 1 if and only if
√
Δ𝐸 ∈ .

The semistable case follows from the definitions in [14, 69], Rohrlich proved (𝑖𝑖)–(𝑣𝑖𝑖) in [55,
§19] and [57, Theorem 2] (the case of = ℚ2 in (𝑣𝑖) can be found in [9, §3]), and (𝑣𝑖𝑖𝑖) is a result
of Kobayashi [44, Theorem 1.1]. The statements of (𝑖)–(𝑣) and (𝑣𝑖𝑖), as they are written, are found
in [24, Theorem 3.1]. For elliptic curves over local fields of positive characteristic, there is a similar
classification of root numbers in [10, Theorem 3.1].
Theorem2.3 does not tell us how to calculate local root numberswhen𝐸 has additive potentially

good reduction over a local field of residue characteristic 2. For 𝐸∕ℚ2, one can use a classification
of Halberstadt [36], which was extended to non-minimalWeierstrass models and potentially mul-
tiplicative reduction by Rizzo (see [54, Table III]). The tables that classify the local root number
𝑤(𝐸∕ℚ2) can be found in the Appendix. Generalising Rizzo’s and Halberstadt’s tables to exten-
sions ofℚ2 seems unfeasible as there would bemany cases to check for large extensions. However,
in the case of potentially good reduction over an extension of ℚ2, the local root number can be

†Recall that the Kodaira type of 𝐸∕ can be calculated using Tate’s algorithm (see [63, Ch. IV §9]).
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8 COWLAND KELLOCK and DOKCHITSER

described in terms of Gal((𝐸[3])∕) ⊂ GL(2, 𝔽3), see [20]. There is also a formula ([22, Theo-
rem 1.12]) for local root numbers in terms of the Tamagawa number of 𝐸 and the curves that are
2-isogenous to 𝐸 over subfields of (𝐸[2]); the Tamagawa numbers can be read off from Tate’s
algorithm [68] (or see [63, p. 365]).

Corollary 2.4. Let 𝐸 be an elliptic curve over a local field of characteristic zero and residue char-
acteristic 𝑝 ⩾ 5. Let 𝑘 denote the residue field of  and let ( ∗

𝑘
) denote the quadratic residue symbol

on 𝑘. Then

𝑤(𝐸∕) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if 𝐸∕ has Kodaira type I0;(
−1

𝑘

)
if 𝐸∕ has type II, II∗, I∗𝑛 or I

∗
0
;(

−2

𝑘

)
if 𝐸∕ has type III or III∗;(

−3

𝑘

)
if 𝐸∕ has type IV or IV∗;

−
(
6𝑏

𝑘

)
if 𝐸∕ has type I𝑛,

where 𝐸 is given by a Weierstrass equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, with 𝑎, 𝑏 ∈ .

Proof. For = ℚ𝑝, this was proved in [56, Proposition 2]. If 𝐸∕ has Kodaira type I0, I∗0 , I
∗
𝑛, III or

III∗, these expressions follow immediately from the theorem. If 𝐸∕ has type I𝑛, the root number
depends on whether the reduction type is split or non-split. We may assume that the Weierstrass
equation for 𝐸 is minimal, since a change of model changes the value of 𝑏 by a sixth power. Write

�̄� ∶ 𝑦2 = (𝑥 − 𝛼)2(𝑥 − 𝛽) (mod 𝑚)

for the reduction of 𝐸 modulo the maximal ideal of . 𝐸∕ has split multiplicative reduction if
and only if 𝛼 − 𝛽 ∈ 𝑘×2. Since −𝛼2𝛽 = 𝑏 and 2𝛼 + 𝛽 = 0 in 𝑘, we have

4𝛼2(𝛼 − 𝛽) = 4(𝛼3 + 𝑏) = 4

(
−
𝛼 ⋅ 𝑏
𝛽

+ 𝑏

)
= 4

(
𝑏

2
+ 𝑏

)
= 6𝑏,

so that ( 𝛼−𝛽
𝑘
) = (6𝑏

𝑘
) and 𝑤(𝐸∕) = −(6𝑏

𝑘
).

For the remaining cases of potentially good reduction, we show how the corollary follows from
Theorem 2.3(𝑣𝑖𝑖). If 𝐸∕ has type II, then 𝑣(Δ) = 2 so

𝑤(𝐸∕) = (−1)

⌊ |𝑘|
6

⌋
=

{
+1 if |𝑘| ≡ 1 or 5 (mod 12)

−1 if |𝑘| ≡ 7 or 11 (mod 12)
=
(
−1

𝑘

)
.

A similar argument shows that if 𝐸∕ has type II∗, 𝑤(𝐸∕) = (−1
𝑘
). If 𝐸∕ has type IV,

𝑤(𝐸∕) = (−1)

⌊ |𝑘|
3

⌋
=

{
+1 if |𝑘| ≡ 1 (mod 6)

−1 if |𝑘| ≡ 5 (mod 6)
=
(
−3

𝑘

)
,

and similarly, if 𝐸 has type IV∗, 𝑤(𝐸∕) = (−3
𝑘
), which completes the proof. □
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ROOT NUMBERS AND PARITY PHENOMENA 9

Corollary 2.5. Let 𝐸 be a semistable elliptic curve defined over a number field 𝐾. Then

𝑤(𝐸∕𝐾) = (−1)𝑚+𝑢,

where𝑚 is the number of primes of𝐾 where 𝐸 has split multiplicative reduction and 𝑢 is the number
of infinite places of 𝐾.

Example 2.6. Let us take the curve

𝐸 ∶ 𝑦2 + 𝑦 = 𝑥3 − 𝑥2. (11𝐴3)

This curve has split multiplicative reduction at 11 and good reduction everywhere else, so

𝑤(𝐸∕ℚ) = 𝑤(𝐸∕ℚ11) ⋅ 𝑤(𝐸∕ℝ) = (−1)(−1) = +1.

Assuming the parity conjecture, this tells us that the rank of 𝐸∕ℚ is even. In fact, 𝐸 has rank 0
over ℚ.

Example 2.7. Let us take the curve 11A3 as in the above example. We know that𝑤(𝐸∕ℚ) = 1. Let
us look at what happens to the global root number of 𝐸 over𝐾 = ℚ(

√
−2). Since−2 is a quadratic

residue modulo 11, 11 splits in 𝐾 into, say, 𝑣 and 𝑣. Then 𝑤(𝐸∕𝐾𝑣) = 𝑤(𝐸∕𝐾𝑣) = −1 since the
reduction over 𝐾𝑣 and 𝐾𝑣 is split multiplicative. Hence,

𝑤(𝐸∕𝐾) = 𝑤(𝐸∕𝐾𝑣) ⋅ 𝑤(𝐸∕𝐾𝑣) ⋅ 𝑤(𝐸∕ℂ) = (−1)2 ⋅ (−1) = −1.

Assuming the parity conjecture, this tells us that 𝐸 must acquire a point of infinite order over 𝐾.

Asking what happens to local root numbers when we look at the curve over an extension of
the base field will inform many of our examples of curious parity phenomena in §3. The above
example illustrates the following key feature of root numbers of elliptic curves.

Lemma 2.8. Let 𝐸∕𝐾 be an elliptic curve and let 𝐹 be a Galois extension of 𝐾. Let 𝑣 be a prime of 𝐾
and let 𝑣1 and 𝑣2 be primes above 𝑣 in 𝐹. Then

𝑤(𝐸∕𝐹𝑣1) = 𝑤(𝐸∕𝐹𝑣2).

Proof. Since 𝐹∕𝐾 is Galois, 𝐹𝑣1 is isomorphic to 𝐹𝑣2 . The isomorphism from 𝐹𝑣1 to 𝐹𝑣2 preserves
the equation for 𝐸 and the root number 𝑤(𝐸∕𝐹𝑣𝑖 ) only depends on the isomorphism class of
𝐸∕𝐹𝑣𝑖 . □

2.3 Root numbers of quadratic twists of elliptic curves

If 𝐸 ∶ 𝑦2 = 𝑓(𝑥) is an elliptic curve defined over a number field 𝐾 and 𝑑 ∈ 𝐾×, we call
𝐸𝑑 ∶ 𝑑𝑦

2 = 𝑓(𝑥) the quadratic twist of 𝐸 by 𝑑. Recall the following well-known relationship
between the rank of 𝐸 and the rank of 𝐸𝑑.
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10 COWLAND KELLOCK and DOKCHITSER

Lemma 2.9. Let 𝐸 be an elliptic curve defined over a number field 𝐾 and let 𝑑 ∈ 𝐾× ⧵ 𝐾×2. Then

rk(𝐸∕𝐾(
√
𝑑)) = rk(𝐸∕𝐾) + rk(𝐸𝑑∕𝐾).

Lemma 2.10. Let 𝐸∕𝐾 and 𝐸𝑑∕𝐾 be as above. Then

𝑤(𝐸∕𝐾(
√
𝑑)) = 𝑤(𝐸∕𝐾) ⋅ 𝑤(𝐸𝑑∕𝐾).

Remark 2.11. We caution the reader that the statement of Lemma 2.10 is not true on the level of
local root numbers, see [7] Proposition 3.11 for the analogous statement in the local setting. The
lemma follows from the local statement, along with the product formula for Hilbert symbols.

Lemma 2.10 tells us that the statement of the parity conjecture is consistent with what we know
about the ranks of 𝐸 and 𝐸𝑑. One can exploit this relationship between global root numbers and
use the parity conjecture to predict the existence of points of infinite order on quadratic twists of
elliptic curves.

Example 2.12. Let us take 𝐸 to be the curve 11A3 over ℚ and let 𝐾 = ℚ(
√
−2). We saw in

Examples 2.6 and 2.7 that 𝑤(𝐸∕ℚ) = +1 and 𝑤(𝐸∕𝐾) = −1. So, by Lemma 2.10, 𝑤(𝐸−2∕ℚ) = −1

and the parity conjecture implies that there is a rational point of infinite order on 𝐸−2 ∶ 𝑦
2 =

𝑥3 − 𝑥2 − 𝑥 − 1 over ℚ. In fact, 𝐸−2 has rank 1 over ℚ.

Theorem 2.13. Let 𝐸 be an elliptic curve over ℚ.

(i) The function 𝑑 ↦ 𝑤(𝐸𝑑∕ℚ) is periodic on the set of positive (resp. negative) square-free inte-
gers. The period divides

∏
𝑝|𝑁𝐸

𝑝2 if 𝑁𝐸 is odd and 4
∏

𝑝|𝑁𝐸
𝑝2 if 𝑁𝐸 is even; in particular, it

divides 4𝑁2
𝐸
.

(ii) Root numbers of quadratic twists of 𝐸 satisfy

𝑤(𝐸𝑑∕ℚ) =

{
+1 for 50% of square-free 𝑑;
−1 for 50% of square-free 𝑑.

Proof. These results are well known, but we prove them here for lack of a reference.
(𝑖) Let 𝐷 =

∏
𝑝|𝑁𝐸

𝑝2 if𝑁𝐸 is odd and 𝐷 = 4
∏

𝑝|𝑁𝐸
𝑝2 if𝑁𝐸 is even. Suppose 𝑑1 ≡ 𝑑2 (mod 𝐷)

and 𝑑1 and 𝑑2 have the same sign, and let 𝑝 ∣ 𝑁𝐸 . First suppose 𝑝 > 2. Since 𝑑1 ≡ 𝑑2 (mod 𝑝2)

and 𝑑1 and 𝑑2 are square-free, it follows that 𝑑1∕𝑑2 ≡ 1 (mod 𝑝), so 𝑑1∕𝑑2 is a square in ℚ𝑝 by
Hensel’s lemma. So, ℚ𝑝(

√
𝑑1) = ℚ𝑝(

√
𝑑2) and for a prime 𝑣 ∣ 𝑝 in ℚ(

√
𝑑1) and 𝑣 in ℚ(

√
𝑑2),

𝑤(𝐸∕ℚ(
√
𝑑1)𝑣) = 𝑤(𝐸∕ℚ(

√
𝑑2)𝑣). Since 𝑝 has the same splitting behaviour in ℚ(

√
𝑑1) and

ℚ(
√
𝑑2), ∏

𝑣∣𝑝

𝑤(𝐸∕ℚ(
√
𝑑1)𝑣) =

∏
𝑣∣𝑝

𝑤(𝐸∕ℚ(
√
𝑑2)𝑣).

Now, if 𝑁𝐸 is even and 𝑝 = 2, 𝑑1 ≡ 𝑑2 (mod 16) and since 𝑑1 and 𝑑2 are square-free, it
follows that 𝑑1∕𝑑2 ≡ 1 (mod 8) and 𝑑1∕𝑑2 is a square in ℚ2. Thus,

∏
𝑣∣2 𝑤(𝐸∕ℚ(

√
𝑑1)𝑣) =∏

𝑣∣2 𝑤(𝐸∕ℚ(
√
𝑑2)𝑣) by the same argument as above. Finally, note thatℚ(

√
𝑑1) andℚ(

√
𝑑2) have
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ROOT NUMBERS AND PARITY PHENOMENA 11

the same number of infinite places. Hence,

𝑤(𝐸∕ℚ(
√
𝑑1)) = (−1)𝑣∣∞

∏
𝑣∣𝑁𝐸

𝑤(𝐸∕ℚ(
√
𝑑1)𝑣) = (−1)𝑣∣∞

∏
𝑣∣𝑁𝐸

𝑤(𝐸∕ℚ(
√
𝑑2)𝑣) = 𝑤(𝐸∕ℚ(

√
𝑑2)).

Thus, 𝑤(𝐸𝑑1∕ℚ) = 𝑤(𝐸𝑑2∕ℚ) by Lemma 2.10.
(𝑖𝑖) First, we claim that we can find a 𝑑0 < 0 such that (𝑑0, 2𝑁𝐸) = 1 and, for every 𝑑, we have

𝑤(𝐸𝑑𝑑0∕ℚ) = −𝑤(𝐸𝑑∕ℚ).

Indeed, choose 𝑑0 < 0 such that all the primes of bad reduction of 𝐸 split in ℚ(
√
𝑑0) and

(𝑑0, 2𝑁𝐸) = 1. By Lemma 2.8, this ensures that 𝑤(𝐸∕ℚ(
√
𝑑0)) = −1. If 𝑑 = 𝑑0, by Lemma 2.10,

𝑤(𝐸𝑑2
0
∕ℚ) = 𝑤(𝐸∕ℚ) = 𝑤(𝐸∕ℚ(

√
𝑑0))𝑤(𝐸𝑑0∕ℚ) = −𝑤(𝐸𝑑0∕ℚ).

If 𝑑 ≠ 𝑑0, by Lemmas 2.10 and 2.8,

𝑤(𝐸∕ℚ) ⋅ 𝑤(𝐸𝑑0∕ℚ) ⋅ 𝑤(𝐸𝑑∕ℚ) ⋅ 𝑤(𝐸𝑑𝑑0∕ℚ) = 𝑤(𝐸∕ℚ(
√
𝑑,
√
𝑑0)) = +1

since ℚ(
√
𝑑,
√
𝑑0) has two infinite places and all finite places dividing the discriminant of 𝐸 split

into an even number of places in ℚ(
√
𝑑,
√
𝑑0). Now,

𝑤(𝐸∕ℚ) ⋅ 𝑤(𝐸𝑑0∕ℚ) = 𝑤(𝐸∕ℚ(
√
𝑑0)) = −1.

Hence, 𝑤(𝐸𝑑∕ℚ) ⋅ 𝑤(𝐸𝑑𝑑0∕ℚ) = −1 and we have proved the claim.
Now, to finish proving the theorem, take 𝑑0 as above and𝐷 as in the proof of (𝑖). By part (𝑖) of the

theorem, the function 𝑑 ↦ 𝑤(𝐸𝑑∕ℚ) is periodic on the set of positive (resp. negative) square-free
integerswith the period dividing𝐷. The involution 𝑑 ↔ 𝑑 ⋅ 𝑑0 changes the sign of the root number
that is, for any 𝑑 such that 𝑤(𝐸𝑑∕ℚ) = +1, we have 𝑤(𝐸𝑑⋅𝑑0∕ℚ) = −1. Since 𝑑0 is coprime to 𝐷,
the density of square-free integers congruent to 𝑑 modulo 𝐷 is the same as the density of those
congruent to 𝑑𝑑0 modulo 𝐷, see, for example, [39]. The result follows. □

Theorem 2.13 gives a heuristic for Goldfeld’s conjecture, which states that there is a 50∕50 dis-
tribution of the rank being 0 and 1 in a quadratic twist family over ℚ, see [31, Conjecture B]. Over
general number fields, root numbers of quadratic twists are also periodic (by essentially the same
proof). However, the distribution of the root numbers can be different. As an extreme case, it is
possible for all quadratic twists to have the same root number; see §3.9 or [21] for the original
discussion. In [42, Example 7.11] and [43], it is shown that the set of proportions that appear for
elliptic curves is dense in [0,1]. In [42] and [43], this is phrased in terms of 2-Selmer ranks— this is
equivalent to the corresponding statement for global root numbers because the 2-parity conjecture
is known in this instance by [23, Theorem 1.3].

Remark 2.14. We expect that for elliptic curves over ℚ in a suitable ordering, there is a 50∕50
distribution of the global root number being +1 and −1 (for the ordering used, see Notation 4.2).
Despite the fact that this is a statement about root numbers rather than about ranks, this remains
an open problem.
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12 COWLAND KELLOCK and DOKCHITSER

2.4 Root numbers of Artin twists of elliptic curves

Let 𝐸∕𝐾 be an elliptic curve and let 𝐹 be a Galois extension of 𝐾. Then 𝐸(𝐹) ⊗ℤ ℂ is naturally a
Gal(𝐹∕𝐾)-representation by letting elements of the Galois group act on the co-ordinates of the 𝐹-
rational points of 𝐸. There is a parity conjecture for Artin twists of elliptic curves which describes
the parity of themultiplicity of an irreducible, self-dual Gal(𝐹∕𝐾)-representation 𝜌 in 𝐸(𝐹) ⊗ℤ ℂ.
Since rk(𝐸∕𝐹) = dim𝐸(𝐹) ⊗ℤ ℂ, this can tell us about the existence of rational points over 𝐹.
The parity conjecture for twists is especially striking when the usual parity conjecture does not
provide us with any information about the existence of rational points (see Example 2.19). We
state the parity conjecture for Artin twists here and present a theorem that allows us to explicitly
calculate global root number of twists of elliptic curves over ℚ by self-dual Artin representations
when the conductor of 𝜌 is coprime to the conductor of 𝐸.

Parity Conjecture for Twists. Let 𝐸∕𝐾 be an elliptic curve over a number field and let 𝜌 be a self-
dual Artin representation of Gal(�̄�∕𝐾) that factors through Gal(𝐹∕𝐾), for a finite extension 𝐹∕𝐾.
Then

(−1)⟨𝜌,𝐸(𝐹)⊗ℤℂ⟩ = 𝑤(𝐸∕𝐾, 𝜌),

where 𝑤(𝐸∕𝐾, 𝜌) is the global root number of the twist of 𝐸 by 𝜌.

Theorem 2.15 [27, Corollary 2]. Let 𝜌 be a self-dual Artin representation of Gal(ℚ̄∕ℚ). Let 𝐸 be an
elliptic curve over ℚ whose conductor𝑁𝐸 is coprime to the conductor of 𝜌. Then

𝑤(𝐸∕ℚ, 𝜌) = 𝑤(𝐸∕ℚ)dim𝜌 ⋅ sign(𝛼𝜌) ⋅
(
𝛼𝜌

𝑁𝐸

)
,

where ( ∗
∗
) is the Jacobi symbol and 𝛼𝜌 = 1 if det(𝜌) = 𝟙 and, otherwise, 𝛼𝜌 is such that the character

det(𝜌) factors through ℚ(
√
𝛼𝜌). We adopt the convention that (

𝛼𝜌

2
) = −1 if 𝛼𝜌 ≡ 5 (mod 8) and

(
𝛼𝜌

2
) = +1 if 𝛼𝜌 ≡ 1 (mod 8).

Note that if 2 ∣ 𝑁𝐸 , then 2 does not ramify in ℚ(
√
𝛼𝜌) since we assumed the conductor of 𝜌 to

be coprime to the conductor of 𝐸, and hence 𝛼𝜌 ≡ 1 or 5 (mod 8). For a statement that allows
multiplicative reduction at primes dividing the conductor of 𝜌, see [27, Theorem 1]. Local root
numbers of Artin twists of elliptic curves have been classified by Rohrlich (with restrictions in
residue characteristic 2 and 3), see [57, Theorem 2].
We present the following important properties of global root numbers of twists, which are also

of use when predicting the existence of rational points of infinite order using the parity conjecture
for twists (see Example 2.19). For reference, (𝑖) and (𝑖𝑖) follow from the definition of local root
numbers (see [14] for more details) and (𝑖𝑖𝑖) and (𝑖𝑣) can be found in [23, Proposition A.2].

Theorem 2.16. Let 𝐸 be an elliptic curve over a number field 𝐾. Let 𝜌 and 𝜌′ be Artin represen-
tations of 𝐺𝐾 = Gal(�̄�∕𝐾). Let 𝐿∕𝐾 be a finite extension and let 𝜏 be an Artin representation of
𝐺𝐿 = Gal(�̄�∕𝐿). Then

(i) 𝑤(𝐸∕𝐾, 𝟙) = 𝑤(𝐸∕𝐾);
(ii) 𝑤(𝐸∕𝐾, 𝜌 ⊕ 𝜌′) = 𝑤(𝐸∕𝐾, 𝜌) ⋅ 𝑤(𝐸∕𝐾, 𝜌′);
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ROOT NUMBERS AND PARITY PHENOMENA 13

(iii) 𝑤(𝐸∕𝐾, Ind𝐺𝐾
𝐺𝐿
𝜏) = 𝑤(𝐸∕𝐿, 𝜏) and, in particular, 𝑤(𝐸∕𝐿) = 𝑤(𝐸∕𝐾, Ind

𝐺𝐾
𝐺𝐿
𝟙);

(iv) 𝑤(𝐸∕𝐾, 𝜌 ⊕ 𝜌∗) = +1, where 𝜌∗ is the dual representation.

We can relate the rank over subfields of 𝐹 to the representation 𝐸(𝐹) ⊗ℤ ℂ using the following
lemma.

Lemma 2.17. Let 𝐸 be an elliptic curve over 𝐾 and let 𝐹 be a Galois extension with 𝐺 = Gal(𝐹∕𝐾).
Then for every𝐻 ⩽ 𝐺,

rk(𝐸∕𝐹𝐻) = ⟨ℂ[𝐺∕𝐻], 𝐸(𝐹) ⊗ℤ ℂ⟩𝐺.
Proof. For a subgroup𝐻 ⩽ 𝐺, we have rk(𝐸∕𝐹𝐻) = dim(𝐸(𝐹) ⊗ℤ ℂ)

𝐻 and

dim(𝐸(𝐹) ⊗ℤ ℂ)
𝐻 = ⟨𝟙,Res𝐺𝐻𝐸(𝐹) ⊗ℤ ℂ⟩𝐻 (1)

= ⟨Ind𝐺𝐻𝟙, 𝐸(𝐹) ⊗ℤ ℂ⟩𝐺 = ⟨ℂ[𝐺∕𝐻], 𝐸(𝐹) ⊗ℤ ℂ⟩𝐺,
where (1) follows from Frobenius reciprocity. □

The following lemma tells us that in many cases (for instance symmetric groups), the parity
conjecture for twists follows from the usual parity conjecture.

Lemma 2.18. Let 𝐸∕𝐾 be an elliptic curve and let 𝐹∕𝐾 be a Galois extension of number fields. Let
𝜌 be a representation of 𝐺 = Gal(𝐹∕𝐾) that can be written as a linear combination of permutation
modules, that is,

𝜌 ⊕
⨁
𝑖

Ind𝐺𝐻𝑖
𝟙 ≃

⨁
𝑗

Ind𝐺
𝐻′
𝑗

𝟙

for some𝐻𝑖 ,𝐻′
𝑗
⩽ 𝐺. If the parity conjecture holds for 𝐸 over 𝐿𝑖 = 𝐹𝐻𝑖 for all 𝑖 and 𝐿′

𝑗
= 𝐹

𝐻′
𝑗 for all

𝑗, then the twisted parity conjecture holds for 𝐸 and 𝜌.

Proof. By Theorem 2.16 and assuming the usual parity conjecture for 𝐿𝑖 and 𝐿𝑗 ,

𝑤(𝐸∕𝐾, 𝜌) =

∏
𝑗 𝑤(𝐸∕𝐾, Ind

𝐺
𝐻′
𝑗

𝟙)∏
𝑖 𝑤(𝐸∕𝐾, Ind

𝐺
𝐻𝑖
𝟙)

=

∏
𝑗 𝑤(𝐸∕𝐿𝑗)∏
𝑖 𝑤(𝐸∕𝐿𝑖)

= (−1)
∑
𝑗 rk(𝐸∕𝐿𝑗)−

∑
𝑖 rk(𝐸∕𝐿𝑖).

By Lemma 2.17,∑
𝑗

rk(𝐸∕𝐿𝑗) −
∑
𝑖

rk(𝐸∕𝐿𝑖) =
∑
𝑗

⟨𝐸(𝐹) ⊗ℤ ℂ, Ind
𝐺
𝐻′
𝑗

𝟙⟩ −∑
𝑖

⟨𝐸(𝐹) ⊗ℤ ℂ, Ind
𝐺
𝐻𝑖
𝟙⟩

= ⟨𝐸(𝐹) ⊗ℤ ℂ, 𝜌⟩.
Thus, the parity conjecture for twists holds for 𝐸 and 𝜌. □

When the condition of Lemma 2.18 is not satisfied, the parity conjecture for twists gives us
more information about the arithmetic of elliptic curves than the usual parity conjecture, as we
now illustrate.
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14 COWLAND KELLOCK and DOKCHITSER

Example 2.19. Let us take the elliptic curve of rank 1 over ℚ

𝐸 ∶ 𝑦2 + 𝑦 = 𝑥3 − 𝑥. (37𝐴1)

Let 𝐹 be the splitting field of the polynomial

𝑥10 − 𝑥9 + 6𝑥8 − 3𝑥7 + 11𝑥6 − 3𝑥5 + 11𝑥4 − 3𝑥3 + 6𝑥2 − 𝑥 + 1,

which has discriminant −475. Then 𝐺 = Gal(𝐹∕ℚ) = 𝐷10, the dihedral group with 10 elements.
We can predict the existence of points of infinite order on 𝐸∕𝐹 using the parity conjecture for
twists as follows.
The subgroups of 𝐷10, up to conjugacy, are the trivial group, 𝐶2, 𝐶5 and 𝐷10. The irre-

ducible representations of 𝐷10 are the trivial representation 𝟙, sign representation 𝜖 and two
2-dimensional representations 𝜌1 and 𝜌2. Now let 𝑉 = 𝐸(𝐹) ⊗ℤ ℂ. This is a 𝐺-representation, so
we can decompose it as

𝑉 = 𝟙⊕𝑎 ⊕ 𝜖⊕𝑏 ⊕ 𝜌⊕𝑐
1

⊕ 𝜌⊕𝑑
2
.

Since the character of this representation is rational, 𝜌1 and 𝜌2 must appear with the same
multiplicity as their characters are 𝐺ℚ-conjugate. So, we have 𝑉 = 𝟙⊕𝑎 ⊕ 𝜖⊕𝑏 ⊕ 𝜌⊕𝑐

1
⊕ 𝜌⊕𝑐

2
. By

Lemma 2.17, for any subgroup𝐻 ⩽ Gal(𝐹∕ℚ),

rk(𝐸∕𝐹𝐻) = dim𝑉𝐻 = ⟨ℂ[𝐺∕𝐻], 𝑉⟩𝐺.
Observe that

ℂ[𝐷10∕𝐷10] = 𝟙, ℂ[𝐷10∕𝐶5] = 𝟙 ⊕ 𝜖, ℂ[𝐷10∕𝐶2] = 𝟙 ⊕ 𝜌1 ⊕ 𝜌2,

ℂ[𝐷10] = 𝟙 ⊕ 𝜖 ⊕ 𝜌⊕2
1

⊕ 𝜌⊕2
2
.

Hence,

rk(𝐸∕𝐹𝐻) =

⎧⎪⎪⎨⎪⎪⎩

𝑎 when𝐻 = 𝐷10;

𝑎 + 𝑏 when𝐻 = 𝐶5;

𝑎 + 2𝑐 when𝐻 = 𝐶2;

𝑎 + 𝑏 + 4𝑐 when𝐻 = {1}.

𝐸 has non-split multiplicative reduction at 37 and good reduction everywhere else. Since 37 splits
in 𝐹𝐶5 = ℚ(

√
−47), by Corollary 2.5, we find that

𝑤(𝐸∕ℚ) = −1 and 𝑤(𝐸∕ℚ(
√
−47)) = −1.

So, the parity conjecture and our calculations above imply that the rank of 𝐸 is odd over all four
intermediate fields. In particular, we could, in principle, have rk(𝐸∕𝐹) = rk(𝐸∕ℚ).
We now use the parity conjecture for twists to show that 𝑐 is odd, and hence rk(𝐸∕𝐹) ⩾

rk(𝐸∕ℚ) + 4 ⩾ 5. Using the notation of Theorem 2.15, we have 𝑁𝐸 = 37 and 𝛼𝜌1 = −47 since
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ROOT NUMBERS AND PARITY PHENOMENA 15

det(𝜌1) = 𝜖. Hence, by Theorem 2.15,

𝑤(𝐸∕ℚ, 𝜌1) = (−1)2 ⋅ (−1) ⋅
(
−47

37

)
= −1.

Thus, since ⟨𝜌1, 𝐸(𝐹) ⊗ℤ ℂ⟩ = 𝑐, the parity conjecture for twists tells us that 𝑐 must be odd and
hence rk(𝐸∕𝐹) ⩾ 5. In fact, assuming the parity conjecture for twists, the rank of 𝐸∕𝐹 is larger
than the rank of 𝐸 over any of the subfields.

3 PARITY PHENOMENA

We now turn to examples of phenomena that are predicted by the parity conjecture as a result
of root number calculations. Subsections 3.6 and 3.14–3.17 deal with consequences of the parity
conjecture for Artin twists. We stress that all ‘parity phenomena’ that we describe, including the
statements in all of the subsection titles, are conditional on the parity conjecture and are effectively
unsolved problems. Most of these have been observed before; only §3.8, §3.14 and §3.15 are new.
The titles are designed to give specific examples of what will be discussed; the general statements
will be contained within the subsections. The subsections are largely independent of one another
and can be read in almost any order.

3.1 Every 𝑬∕ℚ has even rank over ℚ(
√
−𝟑,

√
𝟏𝟑)

Example 3.1 (See also [26], Conjecture 8.7). The parity conjecture predicts that every elliptic curve
𝐸∕ℚ has even rank over 𝐾 = ℚ(

√
−3,

√
13). To see this, we note that every rational prime splits

into an even number of primes in 𝐾. Indeed, the decomposition group of rational primes away
from the discriminant of 𝐾 is cyclic and so cannot be isomorphic to 𝐶2 × 𝐶2. Hence, these primes
split into two or four primes in 𝐾. The primes that divide the discriminant of 𝐾 are 3 and 13, and
we note that 3 splits in ℚ(

√
13) and 13 splits in ℚ(

√
−3). So, 3 and 13 each split into two primes in

𝐾. Thus,

𝑤(𝐸∕𝐾) =
∏
𝑣∣∞

𝑤(𝐸∕𝐾𝑣) ⋅
∏
𝑣∣𝑁𝐸

𝑤(𝐸∕𝐾𝑣) = 𝑤(𝐸∕ℂ)2 ⋅
∏
𝑝∣𝑁𝐸

∏
𝑣∣𝑝

𝑤(𝐸∕𝐾𝑣) = (−1)2 ⋅
∏
𝑝∣𝑁𝐸

(±1)2 or 4

= +1,

where 𝑣 runs over primes of 𝐾 and 𝑝 runs over primes of ℚ. Here, we have used the fact that if 𝑣
and 𝑣′ lie above the same prime 𝑝, then𝑤(𝐸∕𝐾𝑣) = 𝑤(𝐸∕𝐾𝑣′) by Lemma 2.8. Assuming the parity
conjecture, we deduce that 𝐸 has even rank over 𝐾.

The same reasoning gives us the following lemma.

Lemma 3.2. Let 𝐸∕𝐾 be an elliptic curve and let 𝐹 be a finite Galois extension of 𝐾 in which every
place of 𝐾 splits into an even number of places. Then, assuming the parity conjecture, 𝐸 has even
rank over 𝐹.
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16 COWLAND KELLOCK and DOKCHITSER

Example 3.3. Let

𝐸 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 − 𝑥2 + 4𝑥 − 3. (73A1)

Since 𝐸 has split multiplicative reduction at 73, Corollary 2.5 tells us that 𝑤(𝐸∕ℚ) = +1. This
curve has a fairly obvious point over𝐾 = ℚ(

√
−3,

√
13), namely (0,

√
−3), which turns out to have

infinite order. Example 3.1 tells us that rk(𝐸∕𝐾) is even, so there should be another (independent)
point of infinite order over𝐾. In effect, the existence of a point of infinite order overℚ(

√
−3) forces

the existence of another point of infinite order over ℚ(
√
−3), ℚ(

√
13) or ℚ(

√
−39). In this case,

local root number calculations show that𝑤(𝐸∕ℚ(
√
13)) = −1, so, assuming the parity conjecture,

there should also be a 𝐾-rational point of infinite order coming from points on 𝐸 over ℚ(
√
13).

Indeed, the point (3, −3
√
13+3

2
) lies on 𝐸 and generates the infinite part of the Mordell–Weil group

of 𝐸∕ℚ(
√
13). It is not at all clear how the points over ℚ(

√
13) relate to those over ℚ(

√
−3), and

why the existence in one of the fields guarantees the existence in the other.

3.2 Every 𝑬∕ℚ has even rank over any 𝑪𝟐 × 𝑪𝟐 × 𝑪𝟐 × 𝑪𝟐 extension of ℚ

Lemma 3.2 also gives us the following example.

Example 3.4. Let 𝐾 be any Galois extension ofℚwith Galois group 𝐶𝑑
2
, where 𝑑 ⩾ 4 and let 𝐸 be

an elliptic curve defined overℚ. We claim that 𝐸 should have even rank over𝐾. As in Example 3.1,
all unramified primes split into an even number of primes in 𝐾. We claim that every ramified
prime splits into an even number of primes in 𝐾, too. If 𝑝 > 2, note that the largest extension
of ℚ𝑝 we can get when we localise at a prime 𝑣 above 𝑝 in 𝐾 has Galois group 𝐶2 × 𝐶2 since
ℚ×
𝑝∕ℚ

×2
𝑝 ≅ 𝐶2 × 𝐶2 for 𝑝 > 2. Hence, the decomposition group of 𝑣 ∣ 𝑝 has size at most 4, and

so, there must be at least four primes above 𝑝 in 𝐾. Similarly, for 𝑝 = 2, the largest extension of
ℚ2 we can get when we localise at a prime 𝑣 above 2 has Galois group 𝐶2 × 𝐶2 × 𝐶2, and so, the
decomposition group of 𝑣 ∣ 2has size atmost 8 and there are at least two primes above 2 in𝐾. Since
𝐾 has an even number of infinite places, Lemma 3.2 tells us that, assuming the parity conjecture,
𝐸 has even rank over 𝐾.

Remark 3.5. The parity conjecture implies that if 𝐸∕ℚ has a point of infinite order over a 𝐶2 ×
𝐶2 × 𝐶2 × 𝐶2-extension of ℚ, it must automatically acquire a second one. This suggests that over
any 𝐶2 × 𝐶2 × 𝐶2 × 𝐶2-extension of ℚ, there might be some as yet unknown extra symmetry, for
instance, in the Mordell–Weil group, which would explain why the rank is even. As Example 3.3
illustrates, it is not clear what such a symmetry might be.

3.3 𝒚𝟐 + 𝒙𝒚 = 𝒙𝟑 + 𝑨𝒙 + 𝑩where 𝑨 ≡ 𝑩 (𝐦𝐨𝐝 𝟐) has infinitely many
solutions over ℚ(𝜻𝟖)

Example 3.6. Theparity conjecture predicts that every elliptic curve𝐸∕ℚwith splitmultiplicative
reduction at 2 has infinitely many rational points over 𝐾 = ℚ(𝜁8). Here, the only ramified prime
is 2, which is totally ramified. So, if 𝐸 has split multiplicative reduction at 2, for the unique prime
𝑣 above 2 in 𝐾, we have 𝑤(𝐸∕𝐾𝑣) = −1 by Theorem 2.3. Note that Gal(𝐾∕ℚ) ≅ 𝐶2 × 𝐶2, so in the
same vein as Example 3.1, all primes away from 2 split into an even number of primes in𝐾, which
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ROOT NUMBERS AND PARITY PHENOMENA 17

means that their product contributes a +1 to the root number. There are two infinite places, and
so, these also contribute a +1 to the root number. Hence,𝑤(𝐸∕𝐾) = −1 and the parity conjecture
predicts that 𝐸 has odd rank over𝐾. In particular, it says that 𝐸 has infinitely manyℚ(𝜁8)-rational
points. We emphasise that it is not at all clear how to construct these points!

The above working tells us that every elliptic curve over ℚ of the form 𝐸 ∶ 𝑦2 + 𝑥𝑦 =

𝑥3 + 𝐴𝑥 + 𝐵, where𝐴 ≡ 𝐵 (mod 2), has infinitely many points overℚ(𝜁8) since every such curve
has split multiplicative reduction at 2. The example easily generalises to the following statement.

Lemma 3.7. Suppose that 𝐾∕ℚ is a biquadratic extension and that exactly one prime 𝑝 does not
split in 𝐾∕ℚ. If the parity conjecture holds, then every elliptic curve 𝐸∕ℚ with split multiplicative
reduction at 𝑝 has a point of infinite order over 𝐾.

Example 3.8. The curves

(i) 𝐸 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 − 3𝑥 + 1 (34A1),
(ii) 𝐸′ ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 − 34𝑥 + 68 (102B1) and
(iii) 𝐸′′ ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 − 2𝑥 − 2 (922A1).

each have split multiplicative reduction at 2, so by Example 3.6, the parity conjecture implies that
these curves all have infinitely many points overℚ(𝜁8). In fact, all of these curves have global root
number+1 overℚ, so the rankmust grow inℚ(𝜁8). One can perform descent calculations to show
that the rank of each of these curves over ℚ(𝜁8) is 1. However, the point comes from a different
quadratic subfield for each curve: 𝐸 has a point of infinite order over ℚ(

√
2), 𝐸′ has a point of

infinite order over ℚ(
√
−1) and 𝐸′′ has a point of infinite order over ℚ(

√
−2).

Remark 3.9 (See also [25], Remark 4). Consider the elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑥2 − 𝑥, which has
Kodaira type IV overℚ2. By computing root numbers of the quadratic twists of 𝐸 by−1, 2 and−2
and using Lemma 2.10, we find that 𝑤(𝐸∕ℚ(𝜁8)) = −1. The parity conjecture predicts that 𝐸 has
odd rank over ℚ(𝜁8) in a similar way to Example 3.6. The fact that 𝐸∕ℚ(𝜁8) has odd analytic rank
has the following consequence for 𝐿-functions.
Since all primes away from 2 split inℚ(𝜁8) and 𝐸 has additive reduction at the prime above 2 in

ℚ(𝜁8), the Euler product of the 𝐿-function of 𝐸∕ℚ(𝜁8) is formally a square, in the sense that each
Euler factor appears an even number of times:

𝐿(𝐸∕ℚ(𝜁8), 𝑠) = 1 ⋅
1

(1 + 2 ⋅ 9−𝑠 + 91−2𝑠)2
1

(1 + 25−𝑠)2
1

(1 + 10 ⋅ 49−𝑠 + 491−2𝑠)2
⋯ .

If we define 𝐹(𝑠) by the square root of this Euler product so that 𝐹(𝑠)2 = 𝐿(𝐸∕ℚ(𝜁8), 𝑠) for
Re(𝑠) > 3

2
, then 𝐹(𝑠) shares many properties that one would expect from an 𝐿-function. How-

ever, it does not have analytic continuation to 𝑠 = 1 since the order of vanishing of 𝐿(𝐸∕ℚ(𝜁8), 𝑠)
at 𝑠 = 1 is odd.

3.4 𝒚𝟐 + 𝒚 = 𝒙𝟑 + 𝒙𝟐 + 𝒙 has infinitely many ℚ( 𝟑
√
𝒎)-rational solutions

for every𝒎

Example 3.10 (As considered in [27]). The elliptic curve

𝐸 ∶ 𝑦2 + 𝑦 = 𝑥3 + 𝑥2 + 𝑥 (19A3)
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18 COWLAND KELLOCK and DOKCHITSER

has rank 0 over ℚ. We claim that, assuming the parity conjecture, it has infinitely many ℚ( 3
√
𝑚)-

rational solutions for every cube-free𝑚 > 1. First, note thatΔ𝐸 = 19, and𝐸 has splitmultiplicative
reduction at 19. Hence, 𝑤(𝐸∕𝐾𝑣) = −1 at primes 𝑣 above 19. So, to calculate the global root
number, all we need to know is how many primes there are above 19 in ℚ( 3

√
𝑚). If 19 ∤ 𝑚, the

Kummer–Dedekind theorem tells us that there is either one or three primes above 19, correspond-
ing to whether 𝑋3 − 𝑚 is irreducible or splits completely over 𝔽19. If 19 ∣ 𝑚, it is totally ramified.
The product of local root numbers at the infinite places is+1 sinceℚ( 3

√
𝑚)has one real embedding

and one complex embedding. This tells us that

𝑤(𝐸∕ℚ( 3
√
𝑚)) = (−1)1 or 3 = −1.

So, assuming the parity conjecture, 𝐸 must have infinitely many ℚ( 3
√
𝑚)-rational points.

We can numerically compute the points of infinite order on 𝐸 over ℚ( 3
√
𝑚) for small 𝑚 (for

𝑚 = 1,… , 7, 𝐸 has rank 1 over ℚ( 3
√
𝑚)).

𝒎 Generator of 𝑬(ℚ( 𝟑
√
𝒎))∕𝑬(ℚ( 𝟑

√
𝒎))tors

2 (2
3
√
2
2
−

3
√
2, −2

3
√
2
2
+

3
√
2 + 5)

3 (
13

3
√
3
2
+6

3
√
3−3

25
,

−52
3
√
3
2
−24

3
√
3−213

125
)

4 (
−

3
√
4
2
+4

3
√
4

2
,

3
√
4
2
−4

3
√
4+10

2
)

5 (
82 3

√
5
2
−144 3

√
5−160

529
,

−574 3
√
5
2
+1008 3

√
5−6815

12 167
)

6 (
7340

3
√
6
2
−8885

3
√
6−9450

90 774
,

748 680
3
√
6
2
−906 270

3
√
6−992 477

11 165 202
)

7 (
50 3

√
7
2
−40 3

√
7

63
,

−150 3
√
7
2
+120 3

√
7+811

189
)

Without the parity conjecture, proving the existence of these points for all𝑚 seems completely
out of reach. In [18], it is shown that for an elliptic curve 𝐸 over a number field 𝐾, the rank of 𝐸
goes up in infinitely many extensions of 𝐾 obtained by adjoining a cube root of an element of 𝐾.
However, these points account for very few𝑚 in Example 3.10.

Remark 3.11. We caution the reader that in the above example there are no parametric solutions
of the form

𝑓 ∶ 𝑚 ↦ 𝑃𝑚 ∈ 𝐸(ℚ( 3
√
𝑚)).

Indeed, if 𝑓 were analytic, it would give an analytic map ℙ1 → 𝐸(ℂ) which contradicts the
Riemann–Hurwitz formula. If 𝑓 were only assumed to be continuous, it would give a map
ℝ → 𝐸(ℝ). For 𝑚 ∈ ℚ×3, this could only take values (0,0), (0,1) or , which would force 𝑓 to
be constant.

3.5 𝑬 ∶ 𝒚𝟐 + 𝒚 = 𝒙𝟑 + 𝒙𝟐 + 𝒙 has rank at least 𝒏 over ℚ( 𝟑𝒏
√
𝒎)

Example 3.12. Example 3.10 tells us that the rank of 𝐸 ∶ 𝑦2 + 𝑦 = 𝑥3 + 𝑥2 + 𝑥 (19A3) must grow
overℚ( 3

√
𝑚). Assuming the parity conjecture, it grows at every step of the tower (ℚ( 3𝑛

√
𝑚))𝑛⩾1. To
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ROOT NUMBERS AND PARITY PHENOMENA 19

see this, we claim that 19 splits into an odd number of places in ℚ( 3𝑛
√
𝑚). Indeed, ℚ19(𝜁3𝑛 ,

3𝑛
√
𝑚)

is an odd degree extension of ℚ19 and so 𝑒𝑣𝑓𝑣 is odd for every prime 𝑣 above 19 in ℚ(𝜁3𝑛 , 3𝑛
√
𝑚),

where 𝑒𝑣 is the ramification degree and 𝑓𝑣 is the residue degree of 𝑣 over 19. Let 𝑣 be a prime
above 19 in ℚ( 3𝑛

√
𝑚). Since 𝑒𝑣𝑓𝑣 divides 𝑒𝑣𝑓𝑣, 𝑒𝑣𝑓𝑣 is also odd. Then, since [ℚ( 3𝑛

√
𝑚) ∶ ℚ] is odd

and [ℚ( 3𝑛
√
𝑚) ∶ ℚ] =

∑𝑘
𝑖=1 𝑒𝑣𝑖𝑓𝑣𝑖 , the sum over all primes above 19 in ℚ( 3𝑛

√
𝑚), this tells us that

𝑘 is odd and there are an odd number of primes above 19. Hence,

𝑤(𝐸∕ℚ( 3𝑛
√
𝑚)) = (−1)odd number ⋅ (−1)𝑛+1 = (−1)𝑛,

sinceℚ( 3𝑛
√
𝑚) has an even number of infinite places when 𝑛 is odd and an odd number when 𝑛 is

even. Since the sign of the global root number changes at each step, the parity conjecture implies
that the rank of 𝐸 must grow at every step of the tower (ℚ( 3𝑛

√
𝑚))𝑛⩾0. In particular, the rank of 𝐸

over ℚ( 3𝑛
√
𝑚) is at least 𝑛.

In [27], Example 3.12 is generalised to the setting of root numbers of elliptic curves defined over
ℚ in the towers of extensions (ℚ( 𝑝𝑛

√
𝑚))𝑛⩾0 and (ℚ(𝜁𝑝𝑛 , 𝑝𝑛

√
𝑚))𝑛⩾0, where𝑝 is an odd prime. Here,

we present the results in the setting of semistable elliptic curves.

Theorem 3.13 ([27], Theorem 6). Let 𝐸 be a semistable elliptic curve over ℚ. Let 𝑝 be an odd prime
at which𝐸 has good reduction. Let𝑚 > 1 be an𝑝-th power free integer.† Then the global root number
for 𝐸 over 𝐾 = ℚ( 𝑝𝑛

√
𝑚) is

𝑤(𝐸∕𝐾) = 𝑤(𝐸∕ℚ) ⋅ (−1)𝑛(
𝑝−1

2
+𝑡),

where 𝑡 is the number of primes of multiplicative reduction of 𝐸 that do not divide 𝑚 and that are
non-squares modulo 𝑝.

Corollary 3.14. Let𝐸 be a semistable elliptic curve overℚand let𝑝 ≡ 3 (mod 4) be a prime atwhich
𝐸 has good reduction. Suppose that every prime of multiplicative reduction is a square modulo 𝑝. If
the parity conjecture holds then the rank of 𝐸 over ℚ( 𝑝𝑛

√
𝑚) is at least 𝑛 for every 𝑝-th power-free

integer𝑚.

Proof. Since 𝑤(𝐸∕ℚ( 𝑝𝑛
√
𝑚)) = 𝑤(𝐸∕ℚ) ⋅ (−1)𝑛, assuming the parity conjecture the rank of 𝐸

increases at every step of the tower of number fields (ℚ( 𝑝𝑛
√
𝑚))𝑛⩾0. □

Example 3.15. Assuming the parity conjecture, the curve

𝐸 ∶ 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 (11A3)

has rank at least 𝑛 overℚ( 7𝑛
√
𝑚) for any positive 7-th power-free integer𝑚. Indeed, we have Δ𝐸 =

−11 and 𝐸 has split multiplicative reduction at 11. Since 11 is a squaremodulo 7, the rank is at least
𝑛 over ℚ( 7𝑛

√
𝑚). In particular, the parity conjecture implies that 𝐸 has rank at least 1 over ℚ( 7

√
3).

Magma fails to find the point of infinite order on 𝐸∕ℚ( 7
√
3).

†We call𝑚 ‘𝑝-th power free’ if 𝑥𝑝 ∤ 𝑚 for any 𝑥, i.e. it is the generalisation of square-free and cube-free.
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20 COWLAND KELLOCK and DOKCHITSER

3.6 𝑬 ∶ 𝒚𝟐 + 𝒚 = 𝒙𝟑 + 𝒙𝟐 + 𝒙 has rank at least 𝟑𝒏 over ℚ(𝜻𝟑𝒏,
𝟑𝒏
√
𝒎)

Example 3.16. Let us study what happens to the rank of the curve 𝐸 ∶ 𝑦2 + 𝑦 = 𝑥3 + 𝑥2 + 𝑥

(19A3) from Examples 3.10 and 3.12 over 𝐾𝑛 = ℚ(𝜁3𝑛 ,
3𝑛
√
𝑚). We claim that, assuming the par-

ity conjecture for twists (see §2.4), 𝐸 has rank at least 3𝑛 over ℚ(𝜁3𝑛 , 3𝑛
√
𝑚), for every cube-free

integer𝑚 > 1. Let 𝐺 = Gal(𝐾𝑛∕ℚ) and 𝑉 = 𝐸(𝐾𝑛) ⊗ℤ ℂ. Then, by Lemma 2.17, for any subgroup
𝐻 ⩽ Gal(𝐾𝑛∕ℚ), we have

rk(𝐸∕𝐾𝐻
𝑛 ) = ⟨Ind𝐺𝐻𝟙, 𝑉⟩𝐺.

We can use this, along with our knowledge from Example 3.12 about what happens to 𝐸 over
ℚ( 3𝑛

√
𝑚), to say something about the rank of 𝐸 over 𝐾𝑛. Firstly, note that

𝜎𝑛 = Ind𝐺
Gal(𝐾𝑛∕ℚ( 3

𝑛√
𝑚))

𝟙 = 𝟙 ⊕ 𝜌1⋯⊕ 𝜌𝑛,

where 𝜌𝑘 is an irreducible representation of dimension 𝑝𝑘−1(𝑝 − 1), see [27] §5.2 for more details.
By Theorem 2.16, we have

𝑤(𝐸∕ℚ( 3𝑛
√
𝑚)) = 𝑤(𝐸∕ℚ) ⋅ 𝑤(𝐸∕ℚ, 𝜌1)⋯𝑤(𝐸∕ℚ, 𝜌𝑛),

whence, 𝑤(𝐸∕ℚ, 𝜌𝑘) = −1 as we saw in Example 3.12 that 𝑤(𝐸∕ℚ) = +1 and 𝑤(𝐸∕ℚ( 3𝑛
√
𝑚)) =

(−1)𝑛. Assuming the parity conjecture for twists, this tells us that 𝜌𝑘 appears in 𝑉 with odd mul-
tiplicity for all 𝑘 ∈ {1, … , 𝑛}. Now, ℂ[𝐺] has dim ρk copies of 𝜌𝑘, whereby rk(𝐸∕𝐾𝑛) = ⟨ℂ[𝐺], 𝑉⟩𝐺
is at least

∑𝑛
𝑘=1 dim𝜌𝑘 = 3𝑛 − 1. Note that 𝑤(𝐸∕ℚ(𝜁3)) = −1 since 19 splits in ℚ(𝜁3), so the parity

conjecture implies rk(𝐸∕ℚ(𝜁3)) ⩾ 1 and, in particular,

rk(𝐸∕ℚ(𝜁3)) = ⟨ℂ[Gal(ℚ(𝜁3)∕ℚ)], 𝑉⟩𝐺 ⩾ 1.

Since ℂ[Gal(ℚ(ζ3)∕ℚ)] appears in ℂ[𝐺] and is orthogonal to the 𝜌𝑘, along with our previous
working this tells us that

rk(𝐸∕𝐾𝑛) = ⟨ℂ[𝐺], 𝑉⟩𝐺 ⩾ 3𝑛.

Remark 3.17. By Lemma 2.18, the result in the above example could have been deduced from the
parity conjecture for 𝐸 over intermediate fields rather than the parity conjecture for twists.

In [27], the methods demonstrated in the example above are generalised in order to prove the
following result (which for simplicity we state just for semistable elliptic curves).

Theorem 3.18 ([27], Corollary 13). Let 𝑝 ≡ 3 (mod 4) be a prime number and let 𝐸 be a semistable
elliptic curve with good reduction at 𝑝 and such that every prime of multiplicative reduction is a
square modulo 𝑝. If the parity conjecture holds then, for every 𝑝-th powerfree integer𝑚 > 1, the rank
of 𝐸 over ℚ(𝜁𝑝𝑛 , 𝑝𝑛

√
𝑚) is at least 𝑝𝑛.

Example 3.19. Assuming the parity conjecture, the curve 𝐸 ∶ 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 (11A3) from
Example 3.15 has rank at least 7𝑛 over ℚ(𝜁7𝑛 , 7𝑛

√
𝑚), for any 7-th power free integer𝑚 > 1.
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ROOT NUMBERS AND PARITY PHENOMENA 21

Remark 3.20. For a possible approach to explaining these points of infinite order using Heegner
points, see [12].

3.7 Every positive 𝒅 ∈ ℚ×∕ℚ×𝟐 can be represented by 𝒙𝟑 − 𝟗𝟏𝒙 − 𝟏𝟖𝟐

Theorem 2.13 tells us that half of the quadratic twists of an elliptic curve over ℚ by 𝑑 have global
root number +1 and half have global root number −1. This distribution can be such that the root
number is determined only by the sign of 𝑑, and a description of elliptic curves 𝐸∕ℚ for which
this occurs can be found in [16, Theorem 1.1]. If we believe the parity conjecture, we can use this
to deduce that every positive rational number 𝑑 can be written in the form 𝑑 = 𝑠2(𝑡3 − 91𝑡 − 182)

for 𝑠 and 𝑡 in ℚ. For example, letting 𝑓(𝑥) = 𝑥3 − 91𝑥 − 182:

1 =
1

82
⋅ 𝑓(−3), 2 =

272

162
⋅ 𝑓

(
−
19

9

)
, 3 =

92

642
⋅ 𝑓

(
−
17

3

)
, 5 =

6752

1 185 8482
⋅ 𝑓

(
11 209

45

)
.

It is not clear how one might prove this property of 𝑓(𝑥) without the parity conjecture.

Example 3.21 (As in [16], Example 4). We claim that all positive quadratic twists of the curve

𝐸 ∶ 𝑦2 = 𝑥3 − 91𝑥 + 182 (8281H1)

have root number+1 and all negative quadratic twists have root number−1. Theminimal discrim-
inant of 𝐸 is Δ = 72 ⋅ 132 and 𝐸 has type II reduction at both primes. By Theorem 2.3, 𝑤(𝐸∕ℚ7) =

(−1)⌊ 2⋅712 ⌋ = −1 and similarly 𝑤(𝐸∕ℚ13) = +1. Hence, 𝑤(𝐸∕ℚ) = +1. Let 𝑑 ∈ ℚ×⧵ℚ×2,
𝐾 = ℚ(

√
𝑑) and let 𝑣 denote a prime above 7 in 𝐾. If 7 is ramified in 𝐾, then

𝑤(𝐸∕𝐾𝑣) = (−1)⌊ 4⋅712 ⌋ = +1.

By a similar calculation, if 7 is inert in 𝐾, then 𝑤(𝐸∕𝐾𝑣) = +1. If 7 splits, by Lemma 2.8, there are
two distinct places with the same root number. In all cases,

∏
𝑣|7 𝑤(𝐸∕𝐾𝑣) = +1. We can do the

same calculation for 𝑣 above 13 to find
∏

𝑣|13 𝑤(𝐸∕𝐾𝑣) = +1. Thus,

𝑤(𝐸∕𝐾) =

{
+1 if 𝑑 > 0;

−1 if 𝑑 < 0,

and our claim follows from Lemma 2.10. In particular, the parity conjecture implies that all
negative quadratic twists of 𝐸 have infinitely many points.

Definition 3.22. We say that 𝑑 ∈ ℚ×∕ℚ×2 can be represented by 𝑓(𝑥) ∈ ℚ[𝑥] if there exists an
𝑠 ∈ ℚ× and 𝑡 ∈ ℚ such that 𝑑 = 𝑠2𝑓(𝑥). If 𝑓(𝑥) is a cubic and the quadratic twist of the elliptic
curve 𝐸 ∶ 𝑦2 = 𝑓(𝑥) by 𝑑 ∈ ℚ×∕ℚ×2 has positive rank, then 𝑑 is represented by 𝑓(𝑥).

Example 3.23. Let

𝐸 ∶ 𝑦2 = 𝑥3 − 91𝑥 − 182. (132496E1)
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22 COWLAND KELLOCK and DOKCHITSER

This is the quadratic twist by −1 of the curve in Example 3.21 so

𝑤(𝐸𝑑∕ℚ) =

{
−1 for 𝑑 > 0;

+1 for 𝑑 < 0.

The parity conjecture implies that every positive 𝑑 ∈ ℚ×∕ℚ×2 is representable by 𝑥3 − 91𝑥 − 182.

Remark 3.24. Assuming Goldfeld’s conjecture that there is a 50∕50 distribution of the rank of
quadratic twists of an elliptic curve 𝐸∕ℚ being 0 and 1, from Example 3.23, we deduce† that 0% of
negative integers (up to squares) can be represented by 𝑥3 − 91𝑥 − 182. This is a peculiar property
for a cubic polynomial: its positive values hit all possible classes modulo squares, whereas its
negative values hit a very sparse set.

3.8 Every 𝒅 ∈ ℚ×∕ℚ×𝟐 can be represented by 𝟒𝒙𝟑 − 𝟑𝟐𝒙 − 𝟑𝟓 or
𝟗𝒙𝟑 + 𝟏𝟔𝒙 + 𝟏𝟔

Examples 3.23 and 3.21 show that, assuming the parity conjecture, for every 𝑑 ∈ ℚ at least one of
the equations

𝑑 ⋅ 𝑦2 = 𝑥3 − 91𝑥 + 182 and 𝑑 ⋅ 𝑦2 = 𝑥3 − 91𝑥 − 182

has a rational solution. In particular, every 𝑑 ∈ ℚ×∕ℚ×2 can be represented by 𝑥3 − 91𝑥 + 182 or
𝑥3 − 91𝑥 − 182. It turns out that every cubic 𝑓(𝑥) has an auxiliary cubic g(𝑥) with this property.

Theorem 3.25. Let 𝑓(𝑥) ∈ ℚ[𝑥] be a separable cubic polynomial. Assuming the parity conjecture,
there exists a separable cubic polynomial g(𝑥) ∈ ℚ[𝑥] such that every 𝑑 ∈ ℚ×∕ℚ×2 is represented by
𝑓(𝑥) or g(𝑥).

Proof. Take g(𝑥) = 𝑑0𝑓(𝑥), where 𝑑0 < 0 is such that all primes of bad reduction of 𝐸 ∶ 𝑦2 = 𝑓(𝑥)

split in ℚ(
√
𝑑0). Then 𝐸𝑑0 ∶ 𝑦

2 = g(𝑥) = 𝑑0𝑓(𝑥) is the quadratic twist of 𝐸 by 𝑑0. By the proof of
Theorem 2.13(ii), for any 𝑑 ∈ ℚ×∕ℚ×2, the root number of the quadratic twists of 𝐸𝑑0 and 𝐸 by 𝑑
satisfy𝑤(𝐸𝑑𝑑0∕ℚ) = −𝑤(𝐸𝑑∕ℚ). The parity conjecture implies that at least one of 𝐸𝑑 and 𝐸𝑑𝑑0 has
a point of infinite order, and thus, every 𝑑 ∈ ℚ×∕ℚ×2 is represented by 𝑓(𝑥) or g(𝑥). □

We can also find examples of such curves that are not quadratic twists of each other.

Example 3.26. Let

𝐸 ∶ 𝑦2 = 𝑥3 + 16𝑥2 − 3072𝑥 − 68 608.

By similar calculations to those in Example 3.21, all the positive quadratic twists of the curve have
root number +1 over ℚ, and all the negative quadratic twists have root number −1. Thus, every
𝑑 ∈ ℚ×∕ℚ×2 can be represented by 𝑥3 − 91𝑥 − 182 or by 𝑥3 + 16𝑥2 − 3072𝑥 − 68 608.

†None of the quadratic twists of 𝐸 have torsion points as Galois has maximal image on 𝐸[𝑝] for all 𝑝 > 2 and 𝐸(ℚ)[2] = 0.
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ROOT NUMBERS AND PARITY PHENOMENA 23

Theorem 2.13 tells us that the global root number in a quadratic twist family is periodic; we can
use this to come up with curves that are not quadratic twists of each other, for which one of their
quadratic twists always has root number−1 and where the root number does not only depend on
the sign of 𝑑.

Example 3.27. Let 𝐸 and 𝐸′ be given by

𝐸 ∶ 𝑦2 = 4𝑥3 − 32𝑥 − 35 and 𝐸′ ∶ 𝑦2 = 9𝑥3 + 16𝑥 + 16.

We claim that for every 𝑑 ∈ ℚ×∕ℚ×2, either 𝑤(𝐸𝑑∕ℚ) = −1 or 𝑤(𝐸′
𝑑
∕ℚ) = −1.

Both 𝐸 and the quadratic twist 𝐸′
−3

have minimal discriminant −307 and split mul-
tiplicative reduction at 307. Thus, 𝑤(𝐸∕ℚ) = 𝑤(𝐸′

−3
∕ℚ) = +1. Since 307 ≡ 1 (mod 3), ℚ307

contains
√
−3 and so 307 has the same splitting behaviour in ℚ(

√
𝑑) as it does in ℚ(

√
−3𝑑).

Thus, 𝑤(𝐸∕ℚ(
√
𝑑)) = −𝑤(𝐸′

−3
∕ℚ(

√
−3𝑑)) by Corollary 2.5 and, by Lemma 2.10, 𝑤(𝐸𝑑∕ℚ) =

−𝑤(𝐸′
𝑑
∕ℚ). This proves the claim. The parity conjecture implies that every 𝑑 ∈ ℚ×∕ℚ×2 can be

represented as 𝑓(𝑥) = 4𝑥3 − 32𝑥 − 35 or g(𝑥) = 9𝑥3 + 16𝑥 + 16.

Remark 3.28. This representation of 𝑑 ∈ ℚ×∕ℚ×2 as one of two cubics can be given by values of 𝑥
with very large height. In Example 3.27, the ‘smallest’ (in terms of the height of 𝑥) representation
of −17 is

−17 =
223 280 590 408 502 625 944 275 649 356 615 800 8972

6 034 892 905 593 758 120 664 851 652 128 224 164 4892

⋅ g
(
−
330 029 825 965 445 476 649 347 569

29 773 633 899 834 719 965 546 857

)
.

3.9 All quadratic twists of 𝒚𝟐 = 𝒙𝟑 + 𝟓

𝟒
𝒙𝟐 − 𝟐𝒙 − 𝟕 over ℚ(𝜻𝟑,

𝟑
√
𝟏𝟏) have

infinitely many points

As mentioned at the end of §2.3, the 50∕50 distribution of root numbers of quadratic twists of
elliptic curves over ℚ can fail quite dramatically over number fields; there are elliptic curves over
number fields for which all quadratic twists have the same root number.

Example 3.29 (As considered in [21]). Let 𝐾 = ℚ(𝜁3,
3
√
11). We claim that all quadratic twists of

the curve

𝐸 ∶ 𝑦2 = 𝑥3 +
5

4
𝑥2 − 2𝑥 − 7

over 𝐾 have root number −1 and so should have positive rank. Indeed, the minimal discriminant
of 𝐸∕ℚ is 114, and 𝐸 acquires everywhere good reduction over 𝐾. Since 𝐾 has three complex
places and 𝐾(

√
𝑑) has six, for 𝑑 ∈ 𝐾× ⧵ 𝐾×2, we have 𝑤(𝐸∕𝐾) = −1 and 𝑤(𝐸∕𝐾(

√
𝑑)) = +1. By

Lemma 2.10,

𝑤(𝐸𝑑∕𝐾) = 𝑤(𝐸∕𝐾(
√
𝑑))𝑤(𝐸∕𝐾) = −1.
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24 COWLAND KELLOCK and DOKCHITSER

So, assuming the parity conjecture, 𝐸𝑑 has a point of infinite order for every 𝑑 ∈ 𝐾×. See
Theorem 3.33 below for a more general result concerning this behaviour.

Remark 3.30. Example 3.29 shows that, assuming the parity conjecture, the polynomial
𝑥3 + 5∕4𝑥2 − 2𝑥 − 7 takes every value in 𝐾×∕𝐾×2.

3.10 𝑬 ∶ 𝒚𝟐 = 𝒙𝟑 + 𝒙𝟐 − 𝟏𝟐𝒙 − 𝟔𝟕

𝟒
has even rank over every field

extension of ℚ( 𝟒
√
−𝟑𝟕)

Consider the elliptic curve

𝐸 ∶ 𝑦2 = 𝑥3 + 𝑥.

It has complex multiplication defined over 𝐾 = ℚ(𝑖) with End𝐾(𝐸) ≅ ℤ[𝑖], where 𝑖 acts by
[𝑖] ⋅ (𝑥, 𝑦) = (−𝑥, 𝑖𝑦). The rank of 𝐸 over 𝐾 is even, and similarly, rk(𝐸∕𝐹) is even for any exten-
sion 𝐹 of 𝐾, since 𝐸(𝐹) ⊗ℤ ℚ is naturally a ℚ(𝑖)-vector space, and so has even dimension over ℚ.
Moreover, using the fact that rk(𝐸𝑑∕𝐾) = rk(𝐸∕𝐾(

√
𝑑)) − rk(𝐸∕𝐾), we see that rk(𝐸𝑑∕𝐾) is even

for any 𝑑 ∈ 𝐾×. The parity conjecture forces some non-CM elliptic curves to exhibit the same
behaviour.

Example 3.31 (As considered in [21]). Let us take the curve

𝐸 ∶ 𝑦2 = 𝑥3 + 𝑥2 − 12𝑥 −
67

4
. (1369E1)

ThenΔ𝐸 = 373 and 𝑗(𝐸) = 212, so 𝐸∕ℚ has potentially good reduction at 37 and it has everywhere
good reduction over 𝐾 = ℚ(

4
√
−37) and over every extension 𝐹 of 𝐾. Since 𝐹 has an even number

of infinite places, 𝑤(𝐸∕𝐹) = +1. In particular, assuming the parity conjecture, 𝐸 has even rank
over every extension of 𝐾.

Remark 3.32. Such a field𝐾 exists for every elliptic curve 𝐸 with integral 𝑗-invariant as this means
that 𝐸 has potentially good reduction everywhere, so we can find an extension of the base field
over which 𝐸 acquires everywhere good reduction.

As in §3.1 and §3.2, onewouldhope that there is some extra structure analogous to complexmul-
tiplication that would explain why 𝐸 always has even rank over extensions of 𝐾 in Example 3.31.
However, it is not clear how to prove this behaviour of ranks for any non-CMcurvewithout assum-
ing the parity conjecture. Elliptic curves that display this phenomenon, and that described in §3.9,
are classified by the following theorem.

Theorem 3.33 ([21], Theorem 1). For an elliptic curve 𝐸 over a number field 𝐾, the following are
equivalent.

(i) All quadratic twists of 𝐸∕𝐾 have the same root number.
(ii) 𝑤(𝐸∕𝐹) = 𝑤(𝐸∕𝐾)[𝐹∶𝐾] for every finite extension 𝐹 of 𝐾.
(iii) 𝐾 has no real places, and 𝐸 acquires everywhere good reduction over an abelian extension of𝐾.
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ROOT NUMBERS AND PARITY PHENOMENA 25

Theorem 3.33 tells us that if 𝐸∕𝐾 satisfies (𝑖𝑖𝑖) and 𝑤(𝐸∕𝐾) = +1, then, assuming the parity
conjecture, 𝐸 will have even rank over every extension of 𝐾.

Remark 3.34. It turns out that the criteria in Theorem 3.33 are equivalent to 𝐾 having no real
places, and for all primes 𝓁 and all places 𝑣 ∤ 𝓁 of 𝐾, the action of the absolute Galois group of
𝐾𝑣 on the Tate module 𝑇𝓁(𝐸) being abelian (see [21]). This is another way in which 𝐸 resembles a
CM curve, since (in view of the Tate conjecture) an elliptic curve has CM if and only if the action
of the global absolute Galois group on the 𝓁-adic Tate module is abelian.

3.11 The rank of 𝑬 ∶ 𝒚𝟐 + 𝒙𝒚 = 𝒙𝟑 − 𝒙𝟐 − 𝟐𝒙 − 𝟏 grows in extensions of
ℚ(

√
−𝟏) of even degree

Theorem 3.33 tells us that there exist elliptic curves over number fields for which all quadratic
twists have the same root number. We can also use the theorem to come up with examples of
elliptic curves 𝐸∕𝐾 whose rank grows in every even degree extension of 𝐾.

Example 3.35 (As considered in [21]). Let

𝐸 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 − 𝑥2 − 2𝑥 − 1. (49A1)

We have Δ𝐸 = −73, 𝑗(𝐸) = −33 ⋅ 53 and 𝐸 has additive, potentially good, type III reduction at 7.
We claim that the rank of 𝐸must grow in every extension of𝐾 = ℚ(

√
−1) of even degree. Indeed,

7 is inert in ℚ(
√
−1) and by Theorem 2.3, 𝑤(𝐸∕𝐾𝑣) = +1, where 𝑣 is the unique prime above

7 in 𝐾, and so, 𝑤(𝐸∕𝐾) = −1. Note that 𝐾 has no real places and 𝐸 acquires everywhere good
reduction over ℚ(

√
−1, 4

√
7), which is an abelian extension of 𝐾. By Theorem 3.33, for any even

degree extension 𝐹 of 𝐾,

𝑤(𝐸∕𝐹) = 𝑤(𝐸∕𝐾)[𝐹∶𝐾] = (−1)even number = +1 ≠ 𝑤(𝐸∕𝐾),

and the parity conjecture predicts that rk(𝐸∕𝐹) > rk(𝐸∕𝐾).

3.12 Every positive integer 𝒏 ≡ 𝟓, 𝟔 or 𝟕 (𝐦𝐨𝐝 𝟖) is a congruent
number

The classical congruent number problem asks: for a natural number 𝑛, can it be realised as the area
of a right-angled triangle with rational sides? We call such 𝑛 congruent numbers. The congruent
number problem dates back to Arab manuscripts from the 10th century and, to this day, it is not
known in full generality, although it has been extensively studied. Heegner [37] proved that if 𝑝 is
a prime congruent to 5modulo 8, then it is a congruent number, and other cases have been proved
using the theory of Heegner points onmodular curves, see [70]. Smith [65] has announced a proof
that at least 55.9% of positive square-free integers congruent to 5, 6 or 7 modulo 8 are congruent
numbers. Kriz has announced a proof that 100% of such integers are congruent numbers and 100%
of those congruent to 1, 2 or 3 are not congruent numbers (see [45, Theorem 10.17]). It has been
long expected that every positive integer congruent to 5, 6 or 7 (mod 8) is a congruent number,
and we will explain how this can be deduced from the parity conjecture.
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26 COWLAND KELLOCK and DOKCHITSER

Example 3.36. There is a right-angled triangle with sides of length 3, 4, 5 which has area 6, so
that 6 is a congruent number. Similarly, the right-angled triangle with sides of length 35

12
, 24
5
and

337

60
has area 7, whence 7 is a congruent number.

Definition 3.37. The elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 − 𝑥 is called the congruent number curve because
the quadratic twist of the curve by 𝑛 ∈ ℕ, 𝐸𝑛 ∶ 𝑦2 = 𝑥(𝑥 − 𝑛)(𝑥 + 𝑛), has a point of infinite order
over ℚ if and only if 𝑛 is a congruent number (see, e.g. [71] for details on why this is the case). For
these elliptic curves, a rational point (𝑥, 𝑦) has infinite order if and only if 𝑦 ≠ 0.

Example 3.38. We already know that 7 is a congruent number. Indeed, the elliptic curve

𝐸7 ∶ 𝑦
2 = 𝑥(𝑥 − 7)(𝑥 + 7)

has a rational point of infinite order, namely (25,120).

Example 3.39. There is a point on the curve

𝐸166 ∶ 𝑦
2 = 𝑥(𝑥 − 166)(𝑥 + 166),

which is given by

𝑥 = −
7 969 693 283

98 823 481
and 𝑦 = −

1 280 060 076 599 271

982 404 224 621
.

This tells us that 166 is a congruent number. The height of the generator 𝐸166 is already very large.
What if we wanted to know whether 800 006 was a congruent number? Magma [3] cannot find a
point of infinite order on 𝐸800 006 and cannot tell us whether 800 006 is not a congruent number.
Assuming the parity conjecture, we can easily show that it is.

Theorem 3.40. Let 𝑛 be a positive, square-free integer. Then

𝑤(𝐸𝑛∕ℚ) =

{
+1 if 𝑛 ≡ 1, 2 or 3 (mod 8),

−1 if 𝑛 ≡ 5, 6 or 7 (mod 8).

Proof. By Theorem 2.13(𝑖), 𝑤(𝐸𝑛∕ℚ) depends only on 𝑛 (mod 16). So, all one needs to do is cal-
culate the root numbers for one square-free 𝑛 in each of the congruence classes modulo 16. For
𝐸1 ∶ 𝑦

2 = 𝑥3 − 𝑥, we have 𝑐4 = 24 ⋅ 3, 𝑐6 = 0 andΔ𝐸1 = 26. In the terminology of Notation A.1, we
have 𝑐′

4
= 3 and 𝑐′

4
− 4𝑐6,7 = 3 so that, by the table in the Appendix, 𝑤(𝐸1∕ℚ2) = −1 and hence

𝑤(𝐸1∕ℚ) = +1. For 𝐸5 ∶ 𝑦2 = 𝑥3 − 25𝑥, we have 𝑐4 = 24 ⋅ 3 ⋅ 52, 𝑐6 = 0,Δ𝐸5 = 26 ⋅ 56, 𝑐′
4
= 75 ≡ 3

(mod 4) and 𝑐′
4
− 4𝑐6,7 ≡ 11 (mod 16). Again, by the table, 𝑤(𝐸5∕ℚ2) = +1. By Theorem 2.3,

𝑤(𝐸5∕ℚ5) = (−1)⌊ 6⋅512 ⌋ = +1, so 𝑤(𝐸5∕ℚ) = −1. Similarly, we have

𝑤(𝐸41∕ℚ) = 𝑤(𝐸2∕ℚ) = 𝑤(𝐸10∕ℚ) = 𝑤(𝐸3∕ℚ) = 𝑤(𝐸11∕ℚ) = +1;

𝑤(𝐸13∕ℚ) = 𝑤(𝐸6∕ℚ) = 𝑤(𝐸14∕ℚ) = 𝑤(𝐸7∕ℚ) = 𝑤(𝐸15∕ℚ) = −1,

which completes the proof. □
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ROOT NUMBERS AND PARITY PHENOMENA 27

Corollary 3.41. Assuming the parity conjecture, every square-free positive integer 𝑛 ≡ 5, 6, or 7
(mod 8) is the area of a right-angled triangle with rational sides.

We can deduce immediately from this corollary that, assuming the parity conjecture, 800 006
is a congruent number. Stephens was the first to apply parity-type conjectures to the congruent
number problem [67] and proved that Selmer’s second conjecture (see §1.2) implies that positive
integers 𝑛 ≡ 5, 6, 7 (mod 8) are congruent numbers.

3.13 E ∶ 𝒚𝟐 = 𝒙(𝒙𝟐 − 𝟒𝟗(𝟏 + 𝒕𝟒)𝟐) has a point of infinite order for every
𝒕 ∈ ℚ but 𝐫𝐤 E ∕ℚ(𝒕) = 𝟎

One incentive for studying root numbers is to study ranks in families of elliptic curves. Consider
a one parameter family of elliptic curves

E ∶ 𝑦2 = 𝑥3 + 𝐴(𝑡)𝑥 + 𝐵(𝑡),

for some fixed 𝐴(𝑡), 𝐵(𝑡) ∈ ℚ(𝑡), where ΔE ≠ 0. A point of infinite order over ℚ(𝑡) gives a para-
metric family of points over the fibres E𝑡. A natural question to ask is ‘if every fibre has positive
rank, does it mean there is a point of infinite order over ℚ(𝑡)?’ Assuming the parity conjecture,
the answer is ‘no’.

Theorem 3.42 (As considered in [6]). Let E ∶ 𝑦2 = 𝑥(𝑥2 − 49(1 + 𝑡4)2). Then

(i) rk E ∕ℚ(𝑡) = 0;
(ii) assuming the parity conjecture, for every 𝑡 ∈ ℚ, the fibre E𝑡 has rk(E𝑡∕ℚ) ⩾ 1.

Proof. In [6], it is shown that E ∶ 𝑦2 = 𝑥(𝑥2 − 49(1 + 𝑡4)2) has rank 0 over ℚ(𝑡). For (𝑖𝑖), let
𝑡 = 𝑙∕𝑚 where (𝑙,𝑚) = 1. Then E𝑡 is isomorphic to a curve of the form

𝑦2 = 𝑥(𝑥 − 𝑛)(𝑥 + 𝑛)

over ℚ, where 𝑛 = 7𝑙4 + 7𝑚4. Clearly, 𝑛 ≡ 6 or 7 (mod 8) so, by Theorem 3.40, 𝑤(E𝑡∕ℚ) = −1.
□

The family E in Theorem 3.42 has constant 𝑗-invariant. In [15, Theorem 1.2], Desjardins proved
that, for a familywith non-constant 𝑗-invariant, assumingChowla’s conjecture and the Squarefree
conjecture (see [15, Conjectures 2.1 and 2.7]), the function 𝑡 ↦ 𝑤(E𝑡∕ℚ) is never constant. She used
this to prove that the sets

𝑊+ = {𝑡 ∈ ℙ1 ∶ 𝑤(E𝑡∕ℚ) = +1},

𝑊− = {𝑡 ∈ ℙ1 ∶ 𝑤(E𝑡∕ℚ) = −1}

are infinite, and so, assuming the parity conjecture, the rational points E (ℚ) are Zariski dense in
E .
Since the sets𝑊+ and𝑊− are infinite when the 𝑗-invariant is non-constant, one might expect

that the root numbers are equidistributed and that the average root number is 0. This is not
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28 COWLAND KELLOCK and DOKCHITSER

always the case, as shown in [38], where Helfgott proved that if E has no places of multiplicative
reduction, the average root number need not be zero.
For a family with non-constant 𝑗-invariant, if one restricts to 𝑡 ∈ ℤ, the function 𝑡 ↦ 𝑤(E𝑡∕ℚ)

may be constant. For example, in [54], it is shown that the surface

E ∶ 𝑦2 = 𝑥3 + 𝑡𝑥2 − (𝑡 + 3)𝑥 + 1

has 𝑤(E𝑡∕ℚ) = −1 for every 𝑡 ∈ ℤ. This example was first investigated by Washington [72] who
proved via 2-descent that, for every 𝑡 ∈ ℤ such that 𝑡2 + 3𝑡 + 9 is square free and assuming the
finiteness of the Tate–Shafarevich group, the rank of E𝑡 is odd.

3.14 𝒚𝟐 + 𝒚 = 𝒙𝟑 − 𝒙 acquires new solutions over 𝑲(
√
𝚫𝑲)whenever

𝟑𝟕 ∤ 𝚫𝑲 and
√
𝚫𝑲 ∉ 𝑲

We saw in §3.5 and §3.6 that the parity conjecture can predict the growth of the rank of ellip-
tic curves in towers of fields of the form ℚ( 𝑝𝑛

√
𝑚) and ℚ(𝜁𝑝𝑛 , 𝑝𝑛

√
𝑚). The parity conjecture also

predicts that the rank of an elliptic curve over ℚ can grow in many generic number fields.

Theorem 3.43. Let 𝐾 be any number field that does not contain
√
Δ𝐾 and set 𝐹 = 𝐾(

√
Δ𝐾).

Assuming the parity conjecture, every 𝐸∕ℚ with 𝑤(𝐸∕ℚ) = −1 and (𝑁𝐸, Δ𝐾) = 1 has rk(𝐸∕𝐹) >
rk(𝐸∕ℚ).

Proof. Let �̃�∕ℚ be the Galois closure of 𝐾∕ℚ, 𝐺 = Gal(�̃�∕ℚ) and𝐻 = Gal(�̃�∕𝐾). Write Ind𝐺
𝐻
𝟙 =

𝟙 ⊕ 𝜌 and 𝜖 for the nontrivial character of Gal(ℚ(
√
Δ𝐾)∕ℚ). By Frobenius reciprocity (see

Lemma 2.17),

rk(𝐸∕𝐹) = ⟨Ind𝐺Gal(�̃�∕𝐹)𝟙, 𝐸(�̃�) ⊗ℤ ℂ⟩.
Note that

Ind𝐺Gal(�̃�∕𝐹)𝟙 = Ind𝐺𝐻(𝟙 ⊕ Res𝐺𝐻𝜖) = 𝟙 ⊕ 𝜌 ⊕ 𝜖 ⊕ (𝜖 ⊗ 𝜌)

so, assuming the parity conjecture for twists, it will suffice to show that one of 𝑤(𝐸∕ℚ, 𝜌),
𝑤(𝐸∕ℚ, 𝜖) and 𝑤(𝐸∕ℚ, 𝜖 ⊗ 𝜌) is −1. In fact, by Lemma 2.18, it suffices to assume the parity
conjecture for 𝐸 over the subfields of �̃�.
Let 𝐾 = ℚ(𝛼). The permutation action of 𝐺 on the cosets of 𝐻 agrees with the permutation

action on the Galois conjugates of 𝛼, since both actions are transitive with𝐻 as a point-stabiliser.
Even permutations are precisely those fixing

√
Δ𝐾 , and therefore, det(Ind𝐺𝐻𝟙) = det 𝜌 cuts out

the extension ℚ(
√
Δ𝐾)∕ℚ so that det 𝜌 = 𝜖. It follows that det(𝜖 ⊗ 𝜌) = 𝜖⊗dim𝜌 ⊗ det 𝜌 is either

𝟙 or 𝜖 if dim𝜌 is odd or even, respectively. By Theorem 2.15, if [𝐾 ∶ ℚ] is even, then dim𝜌 is
odd and 𝑤(𝐸∕ℚ, 𝜖 ⊗ 𝜌) = 𝑤(𝐸∕ℚ)dim𝜌 = −1. Similarly, if [𝐾 ∶ ℚ] is odd, then dim𝜌 is even and
𝑤(𝐸∕ℚ, 𝜌)𝑤(𝐸∕ℚ, 𝜖) = 𝑤(𝐸∕ℚ, 𝜌 ⊕ 𝜖) = 𝑤(𝐸∕ℚ)dim𝜌+1 = −1. □

Remark 3.44. Theorem 3.43 applies to generic extensions 𝐾∕ℚ. If [𝐾 ∶ ℚ] = 𝑛 > 2 and the Galois
closure of 𝐾 over ℚ has Galois group 𝑆𝑛, then 𝐾 does not contain

√
Δ𝐾 . We therefore expect the

rank of every 𝐸∕ℚ with 𝑤(𝐸∕ℚ) = −1 to increase in splitting fields of most polynomials.
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3.15 𝑬 ∶ 𝒚𝟐 + 𝒚 = 𝒙𝟑 − 𝒙 has rank at least 434 over any 𝑺𝟏𝟒-extension
𝑲∕ℚwith 𝟑𝟕 ∤ 𝚫𝑲

Example 3.45. Let 𝐸∕ℚ be an elliptic curve with 𝑤(𝐸∕ℚ) = −1 and let 𝐹 be an 𝑆5-extension
of ℚ with (𝑁𝐸, Δ𝐹) = 1. We claim that rk(𝐸∕𝐹) ⩾ 6. Indeed, 𝑆5 has seven irreducible represen-
tations, all of which are self-dual. These are the trivial representation 𝟙, sign representation 𝜖,
two 4-dimensional representations 𝜌1 and 𝜌2 = 𝜌1 ⊗ 𝜖, two 5-dimensional representations 𝜏1 and
𝜏2 = 𝜏1 ⊗ 𝜖 and one 6-dimensional representation 𝜎. We can write

𝐸(𝐹) ⊗ℤ ℂ = 𝟙⊕𝑎 ⊕ 𝜖⊕𝑏 ⊕ 𝜌⊕𝑐
1

⊕ 𝜌⊕𝑑
2

⊕ 𝜏⊕𝑒
1

⊕ 𝜏
⊕𝑓
2

⊕ 𝜎⊕g .

Since rk(𝐸∕𝐹) = dim(𝐸(𝐹) ⊗ℤ ℂ),

rk(𝐸∕𝐹) = 𝑎 + 𝑏 + 4𝑐 + 4𝑑 + 5𝑒 + 5𝑓 + 6g .

Now, det(𝜏1 ⊗ 𝜖) = 𝜖⊗dim𝜏1 ⊗ det 𝜏1, so either det(𝜏1) = 𝟙 or det(𝜏2) = 𝟙. By Theorem 2.15,

𝑤(𝐸∕ℚ, 𝜏1) = −1 or 𝑤(𝐸∕ℚ, 𝜏2) = −1.

By assumption, we have𝑤(𝐸∕ℚ, 𝟙) = 𝑤(𝐸∕ℚ) = −1 so, assuming the parity conjecture for twists,
𝑎 is odd and either 𝑒 or 𝑓 is odd. Hence, rk(𝐸∕𝐹) ⩾ 6.

Theorem 3.46. Let 𝐸∕ℚ be an elliptic curve with 𝑤(𝐸∕ℚ) = −1. Assume the parity conjecture for
twists.

(i) Let𝜌 be an odd-dimensional irreducible self-dual Artin representationwith det 𝜌 = 𝟙 andwhose
conductor is coprime to𝑁𝐸 . Then ⟨𝜌, 𝐸(𝐹) ⊗ℤ ℂ⟩ > 0, where 𝜌 factors through 𝐹∕ℚ.

(ii) For a Galois extension 𝐹∕ℚ with (𝑁𝐸, Δ𝐹) = 1,

rk(𝐸∕𝐹) ⩾
𝑘

𝑚
,

where 𝑘 is the sum of dimensions of the odd-dimensional irreducible self-dual representations of
Gal(𝐹∕ℚ) and𝑚 is the number of one-dimensional representations ofGal(𝐹∕ℚ) of order 1 or 2.

Proof. (𝑖) This follows immediately from Theorem 2.15. (𝑖𝑖) Let 𝐺 = Gal(𝐾∕ℚ) and let 𝜌 be any
irreducible odd-dimensional self-dual representation of 𝐺. Denote the order two 1-dimensional
representations of 𝐺 by 𝜖1, … , 𝜖𝑚−1. Since 𝜌 is odd-dimensional, taking 𝜖 = det 𝜌, we obtain
det(𝜌 ⊗ 𝜖) = 𝜖⊗dim𝜌 ⊗ det 𝜌 = 𝟙. We also have det(𝜌 ⊗ 𝜖 ⊗ 𝜖𝑖) = 𝜖𝑖 for 𝑖 = 1, … ,𝑚 − 1. Thus, the
odd-dimensional irreducible self-dual representations come in sets of size𝑚, each with the same
dimension and different determinant character 𝟙, 𝜖1, … , 𝜖𝑚−1. By (𝑖), 𝜌 ⊗ 𝜖 appears in 𝐸(𝐹) ⊗ℤ ℂ

and the result follows. □

Remark 3.47. Theorem 3.46 implies that for a fixed elliptic curve 𝐸∕ℚ with 𝑤(𝐸∕ℚ) = −1, every
odd-dimensional irreducible self-dual Artin representation which has trivial determinant and
whose conductor is coprime to𝑁𝐸 must appear in the Mordell–Weil group of 𝐸 over an extension
of ℚ.
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30 COWLAND KELLOCK and DOKCHITSER

To generalise Example 3.45 to finding a lower bound on the rank of𝐸 over an 𝑆𝑛-extension ofℚ,
we need to understand the odd-dimensional irreducible representations of 𝑆𝑛. For a given 𝑛, the
dimensions of the irreducible representations of 𝑆𝑛 can be calculated using the Young tableaux,
see [30, p. 50]. We will instead use a known case of the McKay conjecture to find a crude lower
bound on the expected rank of a rational elliptic curve 𝐸 over an 𝑆𝑛-extension of ℚ for general 𝑛.

Theorem 3.48 (McKay conjecture for 𝑝 = 2, see [46]). Let 𝐺 be a finite group and let 𝑃 ⩽ 𝐺 be a
2-Sylow subgroup. For𝐻 ⩽ 𝐺, let Irr(𝐻) denote the set of isomorphism classes of complex irreducible
representations of𝐻. Let Irr′(𝐻) = {𝜌 ∈ Irr(𝐻) ∶ 2 ∤ dim𝜌}. Then

∣ Irr′(𝐺) ∣=∣ Irr′(𝑁𝐺(𝑃)) ∣,

where𝑁𝐺(𝑃) is the normaliser of 𝑃 in 𝐺.

Lemma 3.49 (See Exercise 4.14 in [30]). For 𝑛 > 6, there are precisely four representations of 𝑆𝑛 of
dimension less than 𝑛. Two of these have dimension 1 and two have dimension 𝑛 − 1.

Lemma3.50. Let𝑃𝑘 be the 2-Sylow subgroup of 𝑆2𝑘 . Then𝑃𝑘∕[𝑃𝑘, 𝑃𝑘] ≅ 𝐶𝑘
2
, where [𝑃𝑘, 𝑃𝑘] denotes

the commutator subgroup.

Proof. We have 𝑃𝑘 = 𝐶≀𝑘
2
= 𝐶2 ≀⋯ ≀ 𝐶2, the wreath product with 𝑘 copies of 𝐶2 (see, e.g. [17,

Example 2.6.1]), so we proceed by induction. For 𝑘 = 1, we have 𝑃1 = 𝐶≀1
2
= 𝐶2. We assume

that 𝑃𝑘∕[𝑃𝑘, 𝑃𝑘] ≅ 𝐶𝑘
2
. Now, if 𝐻 is the abelianisation of 𝐺, then the abelianisation of 𝐺 ≀ 𝐶2 is

the abelianisation of 𝐻 ≀ 𝐶2. Hence, 𝑃𝑘+1∕[𝑃𝑘+1, 𝑃𝑘+1] is the abelianisation of 𝐶𝑘2 ≀ 𝐶2 which is
𝐶𝑘+1
2

. □

Theorem 3.51. Let 𝐸∕ℚ be any elliptic curve with 𝑤(𝐸∕ℚ) = −1 and let 𝐾 be any extension of ℚ
with Gal(𝐾∕ℚ) = 𝑆𝑛. Suppose that (𝑁𝐸, Δ𝐾) = 1. If the parity conjecture holds, then

rk(𝐸∕𝐾) ⩾
𝑛

2

(∏
𝑘

2𝑘𝑎𝑘 − 2

)
,

where 𝑛 =
∑

𝑘 𝑎𝑘2
𝑘 is the binary expansion of 𝑛 with 𝑎𝑘 = 0 or 1.

Proof. By Lemma 2.18, the parity conjecture for 𝐸 over all subfields of𝐾 implies the parity conjec-
ture for the twist of 𝐸 by any irreducible self-dual representation 𝜌 of Gal(𝐹∕ℚ) (the fact that all
representations of 𝑆𝑛 can be written as linear combination of permutation modules follows from
[40, §6.1]). Thus, it suffices to prove that the parity conjecture for twists implies the result.
The irreducible representations of 𝑆𝑛 are self-dual and there are two one-dimensional irre-

ducible representations. Thus, by Theorem 3.46, to find a lower bound on the rank, it suffices
to find a lower bound on the number of pairs of odd-dimensional irreducible representations
of 𝑆𝑛.
Theorem 3.48 says that the number of odd-dimensional irreducible representations of 𝑆𝑛 is

equal to the number of one-dimensional representations of a 2-Sylow subgroup of 𝑆𝑛, since the
normaliser of a 2-Sylow subgroup of 𝑆𝑛 is itself and the dimension of an irreducible representation
divides the order of the group. Since 𝑛 =

∑
𝑘 𝑎𝑘2

𝑘, the 2-Sylow subgroup of 𝑆𝑛 is the 2-Sylow
subgroup of

∏
𝑘∶𝑎𝑘≠0

𝑆2𝑘 . By Lemma 3.50, the number of one-dimensional representations of the
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ROOT NUMBERS AND PARITY PHENOMENA 31

2-Sylow subgroup of 𝑆2𝑘 is 2𝑘. Hence, the number of one-dimensional representations of the 2-
Sylow subgroup of

∏
𝑘∶𝑎𝑘≠0

𝑆2𝑘 is
∏

𝑘 2
𝑘𝑎𝑘 . Theorem 3.48 then tells us that there are 1

2

∏
𝑘 2

𝑘𝑎𝑘

pairs of odd-dimensional representations of 𝑆𝑛.
By Lemma 3.49, for 𝑛 > 6 other than the trivial and the sign representation, all of the odd-

dimensional representations have dimension at least 𝑛, unless 𝑛 is even in which case there are
also two (𝑛 − 1)-dimensional representations. Hence, assuming the parity conjecture for twists,
for 𝑛 > 6, we have

rk(𝐸∕𝐾) = dim(𝐸(𝐾) ⊗ℤ ℂ) ⩾
𝑛

2

(∏
𝑘

2𝑘𝑎𝑘 − 2

)
.

Using Theorem 3.46(𝑖𝑖), a simple check shows that the result is also true for 𝑛 ⩽ 6. □

Example 3.52. Fix 𝐸 ∶ 𝑦2 + 𝑦 = 𝑥3 − 𝑥 and 𝐾 an 𝑆14-extension of ℚ with 37 ∤ Δ𝐾 . Then
𝑤(𝐸∕ℚ) = −1 and 14 = 2 + 22 + 23, so assuming the parity conjecture for twists, rk(𝐸∕𝐾) ⩾
14

2
⋅ (26 − 2) = 434.

Remark 3.53. The bound in Theorem 3.51 is much lower than we expect the rank to be since most
of the representations have dimension significantly larger than 𝑛. For example, let 𝐾 be an 𝑆7-
extension of ℚ and let 𝐸∕ℚwith 𝑤(𝐸∕ℚ) = −1. Our bound says that rk(𝐸∕𝐾) ⩾ 21. However, the
dimensions of the odd-dimensional irreducible representations of 𝑆7 are 1, 1, 15, 15, 21, 21, 35 and
35. So, assuming the parity conjecture for twists, Theorem 3.46(𝑖𝑖) gives rk(𝐸∕𝐾) ⩾ 72.

3.16 Heegner hypothesis

When studyingHeegner points, one often imposes theHeegner hypothesis, that the quadratic field
𝐾 is imaginary and that all primes of bad reduction of 𝐸∕ℚ split in 𝐾 (e.g. in Kolyvagin’s work
on the Birch–Swinnerton-Dyer conjecture, see [34]). From root number calculations, this ensures
the odd order of vanishing of 𝐿-functions of 𝐸 over𝐾 and of certain twists of 𝐸, as we now explain.

Proposition 3.54. Let 𝐸∕ℚ be an elliptic curve and let𝐾 be a quadratic extension ofℚ that satisfies
the Heegner hypothesis. Let 𝐹 be a 𝐶𝑛-extension of 𝐾 and assume further that Gal(𝐹∕ℚ) = 𝐷2𝑛, the
dihedral group with 2𝑛 elements. Assume that (𝑁𝐸, Δ𝐹) = 1. Then

(i) For 𝜒 any of the one-dimensional representations of Gal(𝐹∕𝐾), ord𝑠=1𝐿(𝐸∕𝐾, 𝜒, 𝑠) is odd.
(ii) The order of vanishing of the 𝐿-function of 𝐸∕𝐹 satisfies ord𝑠=1𝐿(𝐸∕𝐹, 𝑠) ⩾ 𝑛.
(iii) Assuming the parity conjecture for twists, rk(𝐸∕𝐹) ⩾ 𝑛.

Proof. Let 𝐻 = Gal(𝐹∕𝐾) and 𝐺 = Gal(𝐹∕ℚ) = 𝐷2𝑛. The representations of 𝐷2𝑛 are all self-dual.
The one-dimensional representations are 𝟙, the representation 𝜖 that factors through Gal(𝐾∕ℚ),
and, if 𝑛 is even, two more representations 𝜖1 and 𝜖2. There are

𝑛−1

2
irreducible two-dimensional

representations if 𝑛 is odd and 𝑛−2

2
irreducible two-dimensional representations if 𝑛 is even. Call

the irreducible two-dimensional representations 𝜌𝑖 .

(i) By the inductivity of 𝐿-functions, for 𝜒 any of the one-dimensional representations of
Gal(𝐹∕𝐾),

𝐿(𝐸∕𝐾, 𝜒, 𝑠) = 𝐿(𝐸∕ℚ, Ind𝐺𝐻𝜒, 𝑠) = 𝐿(𝐸∕ℚ, 𝜌, 𝑠),
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32 COWLAND KELLOCK and DOKCHITSER

where 𝜌 is a two-dimensional representation of 𝐷2𝑛. The determinant character of 𝜌 is 𝜖
since 𝜌 is either 𝟙 ⊕ 𝜖, 𝜖1 ⊕ 𝜖2 or 𝜌𝑖 , all of which have determinant character 𝜖. Hence, by the
Heegner hypothesis on 𝐾 and in the notation of Theorem 2.15, 𝛼𝜌 is negative and satisfies
(
𝛼𝜌

𝑁𝐸
) = +1. Thus,

𝑤(𝐸∕ℚ, 𝜌) = (±1)2 ⋅ (−1) ⋅ (+1) = −1.

By the inductivity of root numbers (Theorem 2.16(𝑖𝑖𝑖)),𝑤(𝐸∕𝐾, 𝜒) = −1 and, since we know
the analytic continuation of 𝐿(𝐸∕𝐾, 𝜒, 𝑠) and that it satisfies a functional equation whose
sign is𝑤(𝐸∕𝐾, 𝜒) (see, e.g. [61, Proposition 4⋅13]), this implies that ord𝑠=1𝐿(𝐸∕𝐾, 𝜒, 𝑠) is odd.

(ii) By the inductivity of 𝐿-functions,

𝐿(𝐸∕𝐹, 𝑠) =
∏
𝜒

𝐿(𝐸∕𝐾, 𝜒, 𝑠),

where𝜒 runs over the one-dimensional representations of Gal(𝐹∕𝐾). The result follows from
part (i).

(iii) Assuming the parity conjecture for twists, ⟨𝜌, 𝐸(𝐹) ⊗ℤ ℂ⟩ ⩾ 1where 𝜌 is 𝜌𝑖 , 𝟙 ⊕ 𝜖 or 𝜖1 ⊕ 𝜖2
by the root number calculation in part (i). Hence, rk(𝐸∕𝐹) ⩾ 𝑛. □

3.17 Artin representations that always appear with even multiplicity
in 𝑬(𝑲) ⊗ℤ ℂ

The parity conjecture for twists tells us the parity of the multiplicity of a representation 𝜌 in
𝐸(𝐾) ⊗ℤ ℂ. Conversely, if 𝜌 is self-dual, irreducible and has Schur index 2 (e.g. 𝜌 is symplectic),
then it must appear with even multiplicity in 𝐸(𝐾) ⊗ℤ ℂ. This has been checked to be compat-
ible with root numbers in most cases, see [57, Proposition E] and [58]. On the other hand, root
numbers suggest that certain representations must always appear with even multiplicity despite
having Schur index 1.

Proposition 3.55 (Rohrlich [57], Proposition D). Let 𝐾 be a Galois extension of ℚ where
Gal(𝐾∕ℚ) = 𝐷2𝑞 × 𝐷2𝑟 × 𝐷2𝑠 × 𝐷2𝑡 for distinct primes 𝑞, 𝑟, 𝑠, 𝑡 ⩾ 5 and let 𝜏 be an irreducible
16-dimensional representation of Gal(𝐾∕ℚ). Then 𝑤(𝐸∕ℚ, 𝜏) = +1 for every 𝐸 over ℚ.

Proposition 3.55 tells us that, assuming the parity conjecture for twists, the multiplicity of 𝜏 in
𝐸(𝐾) ⊗ℤ ℂ is always even,which is asmysterious as the fact that every𝐸∕ℚ should have even rank
over any number field which is Galois over ℚ and in which all places split into an even number
of places (see Lemma 3.2).

4 MINIMALIST CONJECTURE FOR TWISTS

There is a folklore ‘minimalist conjecture’, which says that, generically, the rank of an elliptic
curve 𝐸∕ℚ is 0 or 1 depending on whether 𝑤(𝐸∕ℚ) = +1 or −1 (see, e.g. [26, Conjecture 8.2]).
We propose a minimalist conjecture for Artin twists, which gives the expected Galois module
structure of 𝐸(𝐹) ⊗ℤ ℂ for most elliptic curves 𝐸∕ℚ, where 𝐹 is a finite Galois extension of ℚ
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ROOT NUMBERS AND PARITY PHENOMENA 33

(see Conjecture 4.3 and Theorems 4.7 and 4.10 below). It says that, generically, if 𝐸∕ℚ is an ellip-
tic curve and 𝜌 is an irreducible self-dual Artin representation that factors through 𝐹∕ℚ, then 𝜌
appears in 𝐸(𝐹) ⊗ℤ ℂ with multiplicity 0 or 1, depending on whether the global root number of
the twist of 𝐸 by 𝜌 is +1 or −1.

Example 4.1. Let 𝐸∕ℚ be any elliptic curve with 𝑤(𝐸∕ℚ) = −1, and let 𝐹 be any extension of ℚ
with Gal(𝐹∕ℚ) = 𝐴5 and (𝑁𝐸, Δ𝐹) = 1. By the conductor-discriminant formula, this means that
𝑁𝐸 is coprime to the conductors of the representations of Gal(𝐹∕ℚ). We claim that rk(𝐸∕𝐹) ⩾ 12.
There are five irreducible representations of𝐴5 and they are all self-dual: 𝟙, one 4-dimensional

representation 𝜌, one 5-dimensional representation 𝜎 and two 3-dimensional representations 𝜏1
and 𝜏2. We can write

𝐸(𝐹) ⊗ℤ ℂ = 𝟙⊕𝑎 ⊕ 𝜌⊕𝑏 ⊕ 𝜎⊕𝑐 ⊕ 𝜏⊕𝑑
1

⊕ 𝜏⊕𝑒
2
.

Since rk(𝐸∕𝐹) = dim(𝐸(𝐹) ⊗ℤ ℂ),

rk(𝐸∕𝐹) = 𝑎 + 4𝑏 + 5𝑐 + 3𝑑 + 3𝑒.

We have det(𝜎) = det(𝜏𝑖) = 𝟙 since 𝐴5 has no subgroup of index 2. Hence, by Theorem 3.46, the
parity conjecture for twists implies that 𝑎, 𝑐, 𝑑 and 𝑒 are odd. In particular, rk(𝐸∕𝐹) ⩾ 12.
We typically expect to have exactly

𝐸(𝐹) ⊗ℤ ℂ = 𝟙 ⊕ 𝜎 ⊕ 𝜏1 ⊕ 𝜏2,

and rk(𝐸∕𝐹) = 12. This is based on a ‘minimalist conjecture for twists’. The idea is that for any
elliptic curve 𝐸∕ℚ and any self-dual irreducible Artin representation 𝜏 that factors through an
extension𝐹∕ℚ, the contribution to the rank of𝐸∕𝐹 by 𝜏 should be as small as the parity conjecture
for twists will allow.

Notation 4.2. For 𝐸∕ℚ an elliptic curve, it is isomorphic to a unique curve 𝐸𝐴,𝐵 ∶ 𝑦
2 =

𝑥3 + 𝐴𝑥 + 𝐵 where 𝐴, 𝐵 ∈ ℤ and for all primes 𝑝, either 𝑝4 ∤ 𝐴 or 𝑝6 ∤ 𝐵. The naive height of
𝐸𝐴,𝐵 is

𝐻(𝐸𝐴,𝐵) = max(4|𝐴3|, 27𝐵2).
We say that 100% of elliptic curves over ℚ satisfy a property 𝑇 if

lim
𝑋→∞

#{𝐸𝐴,𝐵|𝐻(𝐸𝐴,𝐵) < 𝑋 and 𝐸𝐴,𝐵 satisfies property 𝑇}
#{𝐸𝐴,𝐵|𝐻(𝐸𝐴,𝐵) < 𝑋}

= 1,

where for all primes 𝑝, either 𝑝4 ∤ 𝐴 or 𝑝6 ∤ 𝐵.

Conjecture 4.3 (Minimalist conjecture for twists). Let 𝐹 be a Galois extension ofℚ and let 𝜌 be an
irreducible Artin representation that factors through 𝐹∕ℚ. For 100% of elliptic curves 𝐸∕ℚ,

⟨𝜌, 𝐸(𝐹) ⊗ℤ ℂ⟩ = ⎧⎪⎨⎪⎩
0 if 𝜌 is not self-dual,
0 if 𝑤(𝐸∕ℚ, 𝜌) = +1,

1 if 𝑤(𝐸∕ℚ, 𝜌) = −1.
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34 COWLAND KELLOCK and DOKCHITSER

Since the global root number of the twist is the conjectured sign in the functional equation relat-
ing 𝐿(𝐸∕ℚ, 𝜌, 𝑠) and 𝐿(𝐸∕ℚ, 𝜌∗, 2 − 𝑠), if 𝜌 is self-dual, the parity of the order of vanishing of
𝐿(𝐸∕ℚ, 𝜌, 𝑠) at 𝑠 = 1 is governed by 𝑤(𝐸∕ℚ, 𝜌). For most elliptic curves, one expects the order
of vanishing of the twisted 𝐿-function to be as small as is allowed by the functional equation. If 𝜌
is not self-dual, the functional equation does not tell us anything about the order of vanishing of
𝐿(𝐸∕ℚ, 𝜌, 𝑠) at 𝑠 = 1. In this case, for most elliptic curves, we expect the order of vanishing to be
zero and that 𝜌 does not appear in 𝐸(𝐹) ⊗ℤ ℂ.

Remark 4.4. If 𝜌 is a complex irreducible representation with Schur index 𝑛 that factors through
𝐹∕ℚ, the multiplicity of 𝜌 in 𝐸(𝐹) ⊗ℤ ℂ is divisible by 𝑛. The Schur index of an irreducible self-
dual character can only be 1 or 2 by the Brauer–Speiser theorem [4, 29, 66]. So, in the context
of root numbers and the minimalist conjecture, Schur indices never force the multiplicity of an
irreducible self-dual representation 𝜌 in 𝐸(𝐹) ⊗ℤ ℂ to be greater than 1.

Lemma4.5. Let𝐹 be aGalois extension ofℚ, let 𝜌 be an irreducible Artin representation that factors
through 𝐹∕ℚ and let 𝐷 be a non-zero integer. The minimalist conjecture for twists implies that for
100% of elliptic curves 𝐸∕ℚ with (𝑁𝐸, 𝐷) = 1,

⟨𝜌, 𝐸(𝐹) ⊗ℤ ℂ⟩ = ⎧⎪⎨⎪⎩
0 if 𝜌 is not self-dual,
0 if 𝑤(𝐸∕ℚ, 𝜌) = +1,

1 if 𝑤(𝐸∕ℚ, 𝜌) = −1.

Proof. It is known that, for any integer 𝐷, when ordered by the height of the coefficients, there
is a positive proportion of elliptic curves over ℚ whose conductor is coprime to 𝐷 (see, e.g. Theo-
rem 4.2(2) of [11]; their ordering is slightly different, which may result in a different density, but
we only need to know that this density is non-zero). In other words, lim𝑋→∞

#𝑁

#𝑇
= 𝑘 > 0 where

𝑇 is the set of curves 𝐸𝐴,𝐵 such that 𝐻(𝐸𝐴,𝐵) < 𝑋 and 𝑁 ⊂ 𝑇 is the set of elliptic curves 𝐸𝐴,𝐵
such that (𝑁𝐸, 𝐷) = 1. Let 𝑀 ⊂ 𝑇 be the set of curves 𝐸𝐴,𝐵 that do not satisfy the conclusion of
Conjecture 4.3, so that

#𝑁 ∩𝑀

#𝑁
⩽
#𝑀

#𝑁
=
#𝑀

#𝑇
⋅
#𝑇

#𝑁
→ 0 ⋅

1

𝑘
= 0 as 𝑋 → ∞,

where we have used Conjecture 4.3 for #𝑀∕#𝑇 → 0. This proves the lemma. □

Lemma 4.6. Let 𝐸∕ℚ be an elliptic curve. Let 𝐹 be a Galois extension ofℚ that does not contain any
quadratic number field. For any self-dual Gal(𝐹∕ℚ)-representation 𝜌 whose conductor is coprime
to𝑁𝐸 ,

𝑤(𝐸∕ℚ, 𝜌) = 𝑤(𝐸∕ℚ)dim𝜌.

Proof. Since Gal(𝐹∕ℚ) has no index 2 subgroup, in the notation of Theorem 2.15, 𝛼𝜌 = 1 for any
self-dual Gal(𝐹∕ℚ)-representation 𝜌. So, by Theorem 2.15, 𝑤(𝐸∕ℚ, 𝜌) = 𝑤(𝐸∕ℚ)dim𝜌. □

Theorem 4.7. Let 𝐹 be a Galois extension of ℚ that does not contain any quadratic number
field. Write 𝑊𝐺 for the direct sum of the odd-dimensional irreducible self-dual representations of
𝐺 = Gal(𝐹∕ℚ) and 𝑘 = dim𝑊𝐺 . Assuming the minimalist conjecture for twists, for 100% of elliptic
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ROOT NUMBERS AND PARITY PHENOMENA 35

curves 𝐸∕ℚ with (𝑁𝐸, Δ𝐹) = 1

𝐸(𝐹) ⊗ℤ ℂ =

{
𝑊𝐺 if 𝑤(𝐸∕ℚ) = −1,

0 if 𝑤(𝐸∕ℚ) = +1.

In particular, for 100% of elliptic curves 𝐸∕ℚ with (𝑁𝐸, Δ𝐹) = 1,

rk(𝐸∕𝐹) =

{
𝑘 if 𝑤(𝐸∕ℚ) = −1,

0 if 𝑤(𝐸∕ℚ) = +1.

Proof. Let 𝜌 be a representation of Gal(𝐹∕ℚ). By the conductor-discriminant formula, this ensures
that the conductor of 𝜌 is coprime to 𝑁𝐸 . If 𝜌 is not self-dual, by Lemma 4.5, the minimalist con-
jecture for twists implies that 𝜌 does not appear in 𝐸(𝐹) ⊗ℤ ℂ for 100% of elliptic curves 𝐸∕ℚ
with (𝑁𝐸, Δ𝐹) = 1. If 𝜌 is self-dual, since Gal(𝐹∕ℚ) has no index 2 subgroup, by Lemma 4.6,
𝑤(𝐸∕ℚ, 𝜌) = 𝑤(𝐸∕ℚ)dim𝜌 for 𝐸∕ℚ any elliptic curve with (𝑁𝐸, Δ𝐹) = 1. By Lemma 4.5, the
minimalist conjecture for twists implies that, for 100% of elliptic curves 𝐸∕ℚ with (𝑁𝐸, Δ𝐹) = 1,

⟨𝜌, 𝐸(𝐹) ⊗ℤ ℂ⟩ = {
1 if 𝜌 has odd dimension and 𝑤(𝐸∕ℚ, 𝜌) = −1,
0 otherwise,

which gives us the result. □

Remark 4.8. Theorem 4.7 says that elliptic curves of rank 1 over ℚ tend to gain many points
over Galois extensions with no quadratic subfields, while elliptic curves of rank 0 over ℚ tend
not to obtain any new points. It suggests that the equation 𝑦2 + 𝑦 = 𝑥3 − 𝑥 is ‘easy to solve’,
whereas the equation 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 is ‘hard to solve’ over most Galois extensions of ℚ with
no quadratic subfield.

Remark 4.9. In the setting of Theorem 4.7, we expect even-dimensional irreducible Artin
representations to be very rare inside Mordell–Weil groups.

Theorem 4.10. Let 𝐹 be a Galois extension ofℚ. Assuming the minimalist conjecture for twists, for
100% of 𝐸∕ℚ with (𝑁𝐸, 2Δ𝐹) = 1, the Galois module 𝐸(𝐹) ⊗ℤ ℂ depends only on 𝑁𝐸 (mod 8Δ𝐹)

and 𝑤(𝐸∕ℚ).

Proof. By Lemma 4.5, it is enough to show that 𝑤(𝐸∕ℚ, 𝜌) only depends on 𝑁𝐸 (mod 8Δ𝐹) and
𝑤(𝐸∕ℚ) for every self-dual representation 𝜌 of Gal(𝐹∕ℚ). Let 𝜌 be any self-dual representation of
Gal(𝐹∕ℚ) and suppose that we have 𝐸 and 𝐸′ elliptic curves over ℚ with 𝑁𝐸 ≡ 𝑁𝐸′ (mod 8Δ𝐹),
(𝑁𝐸, 2Δ𝐹) = 1 = (𝑁𝐸′ , 2Δ𝐹) and 𝑤(𝐸∕ℚ) = 𝑤(𝐸′∕ℚ). By the conductor-discriminant formula,
this ensures that 𝑁𝐸 and 𝑁𝐸′ are coprime to the conductor of 𝜌, so we can apply Theorem 2.15
to calculate 𝑤(𝐸∕ℚ, 𝜌). In the notation of Theorem 2.15, 𝛼𝜌 ∣ Δ𝐹 . Since𝑁𝐸 ≡ 𝑁𝐸′ (mod 8𝛼𝜌) and
𝑁𝐸 and 𝑁𝐸′ are odd, by quadratic reciprocity, we have (

𝛼𝜌

𝑁𝐸
) = (

𝛼𝜌

𝑁𝐸′
). Hence, by Theorem 2.15,

𝑤(𝐸∕ℚ, 𝜌) = 𝑤(𝐸′∕ℚ, 𝜌). □

Example 4.11. Let 𝐹 be the splitting field of the polynomial

𝑥10 + 5𝑥8 + 15𝑥6 + 20𝑥4 + 25𝑥2 + 15.
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36 COWLAND KELLOCK and DOKCHITSER

Then, Gal(𝐹∕ℚ) = 𝐷10 and Δ𝐹 = −35 ⋅ 513. Theorem 4.10 tells us that, for 100% of elliptic curves
𝐸∕ℚ with (𝑁𝐸, 2Δ𝐹) = 1, the Galois module structure of 𝐸(𝐹) ⊗ℤ ℚ depends on 𝑁𝐸 modulo
8 ⋅ 35 ⋅ 513 and 𝑤(𝐸∕ℚ). In fact, we will show that it only depends on 𝑁𝐸 (mod 15) and 𝑤(𝐸∕ℚ).
The representations of Gal(𝐹∕ℚ) are the trivial representation 𝟙, one 1-dimensional represen-

tation 𝜖 that factors through ℚ(
√
−15) and two 2-dimensional representations 𝜌1 and 𝜌2, both of

which have determinant 𝜖. Thus, when (𝑁𝐸, 2Δ𝐹) = 1, by Theorem 2.15,

𝑤(𝐸∕ℚ, 𝜖) =

⎧⎪⎨⎪⎩
−𝑤(𝐸∕ℚ) if

(
−15

𝑁𝐸

)
= +1,

𝑤(𝐸∕ℚ) if
(
−15

𝑁𝐸

)
= −1,

𝑤(𝐸∕ℚ, 𝜌𝑖) =

⎧⎪⎨⎪⎩
−1 if

(
−15

𝑁𝐸

)
= +1,

+1 if
(
−15

𝑁𝐸

)
= −1.

We have (
−15

𝑁𝐸

)
=

{
+1 if 𝑁𝐸 ≡ 1, 2, 4 or 8 (mod 15);

−1 if 𝑁𝐸 ≡ 7, 11, 13 or 14 (mod 15).

Note that when (𝑁𝐸, 2Δ𝐹) = 1, these congruence classes are the only possibilities for 𝑁𝐸

modulo 15. Hence, assuming the minimalist conjecture for twists, for 100% of elliptic curves 𝐸∕ℚ
with (𝑁𝐸, 2Δ𝐹) = 1

𝐸(𝐹) ⊗ℤ ℂ =

⎧⎪⎪⎨⎪⎪⎩

𝜖 ⊕ 𝜌1 ⊕ 𝜌2 if 𝑁𝐸 ≡ 1, 2, 4 or 8 (mod 15) and 𝑤(𝐸∕ℚ) = +1;

𝟙 ⊕ 𝜌1 ⊕ 𝜌2 if 𝑁𝐸 ≡ 1, 2, 4 or 8 (mod 15) and 𝑤(𝐸∕ℚ) = −1;

0 if 𝑁𝐸 ≡ 7, 11, 13 or 14 (mod 15) and 𝑤(𝐸∕ℚ) = +1;

𝟙 ⊕ 𝜖 if 𝑁𝐸 ≡ 7, 11, 13 or 14 (mod 15) and 𝑤(𝐸∕ℚ) = −1.

APPENDIX A: LOCAL ROOT NUMBERS OF ELLIPTIC CURVES OVER ℚ𝟐

The following table can be used to calculate 𝑤(𝐸∕ℚ2), including when 𝐸∕ℚ2 has additive reduc-
tion. It is based on Table III in [54], which generalises results of Halberstadt [36] to non-minimal
Weierstrass equations. For a discussion on what can be done to calculate root numbers over
extensions of ℚ2, see §2.2.

Notation A.1. Let 𝐸∕ℚ2 be an elliptic curve given by a Weierstrass equation.

∙ Let𝑚 = min{⌊𝑣2(Δ𝐸)∕12⌋, ⌊𝑣2(𝑐6)∕6⌋, ⌊𝑣2(𝑐4)∕4⌋}. Define
(𝐶Δ, 𝐶6, 𝐶4) = (𝑣2(Δ𝐸) − 12𝑚, 𝑣2(𝑐6) − 6𝑚, 𝑣2(𝑐4) − 4𝑚).

In other words, take (𝑣2(Δ𝐸), 𝑣2(𝑐6), 𝑣2(𝑐4)) and subtract multiples of (12,6,4) entry-wise until
reaching the smallest triple of non-negative integers (𝐶Δ, 𝐶6, 𝐶4). By convention, 𝑣2(0) = ∞.

∙ 𝑥′ = 𝑥∕2𝑣2(𝑥).
∙ 𝑐6,𝑒 = 𝑐6∕2

𝑣2(𝑐6)−𝐶6+𝑒; if 𝑐6 = 0, then 𝑐6,𝑒 = 0.

Example A.2. If 𝐸 ∶ 𝑦2 = 𝑥3 − 64𝑥 − 128, then Δ𝐸 = 218 ⋅ 37, 𝑐6 = 212 ⋅ 3 and 𝑐4 = 210 ⋅ 3 so
(𝐶Δ, 𝐶6, 𝐶4) = (6, 6, 6). We have 𝑐′

6
= 3 and the table below tells us that 𝑤(𝐸∕ℚ2) = −1.
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ROOT NUMBERS AND PARITY PHENOMENA 37

𝑪𝚫 𝑪𝟔 𝑪𝟒 Extra conditions 𝒘(𝑬∕ℚ𝟐)

0 0 0 𝑐′
6
≡ 3 (mod 4) +1

⩾ 0 0 0 𝑐′
6
≡ 1 (mod 4) −1

0 3 3 𝑐′
4
≡ 1 (mod 4) and 𝑐′

6
≡ ±1 (mod 8) or 𝑐′

4
≡ 3 (mod 4)

and 𝑐′
6
≡ 1 or 3 (mod 8)

+1

0 3 3 𝑐′
4
≡ 1 (mod 4) and 𝑐′

6
≡ 3 or 5 (mod 8) or 𝑐′

4
≡ 3

(mod 4) and 𝑐′
6
≡ 5 or 7 (mod 8)

−1

0 3 ⩾ 4 𝑐′
6
≡ 1 (mod 4) +1

0 3 ⩾ 4 𝑐′
6
≡ 3 (mod 4) −1

0 4 2 𝑐′
4
≡ 1 (mod 4) and 𝑐′

4
+ 4𝑐′

6
≡ 9 or 13 (mod 16) +1

0 4 2 𝑐′
4
≡ 1 (mod 4) and 𝑐′

4
+ 4𝑐′

6
≢ 9 or 13 (mod 16) −1

0 ⩾ 4 2 𝑐′
4
≡ 3 (mod 4) and 𝐶6 = 4 +1

0 ⩾ 4 2 𝑐′
4
≡ 3 (mod 4) and 𝐶6 ≠ 4 −1

0 5 2 𝑐′
4
≡ 1 (mod 4) and 𝑐′

4
+ 4𝑐6,4 ≡ 5 or 9 (mod 16) −1

0 5 2 𝑐′
4
≡ 1 (mod 4) and 𝑐′

4
+ 4𝑐6,4 ≢ 5 or 9 (mod 16) +1

0 ⩾ 6 2 𝑐′
4
≡ 1 (mod 4) and 𝑐′

4
+ 4𝑐6,4 ≡ 5 or 9 (mod 16) +1

0 ⩾ 6 2 𝑐′
4
≡ 1 (mod 4) and 𝑐′

4
+ 4𝑐6,4 ≢ 5 or 9 (mod 16) −1

⩾ 1 0 0 𝑐′
6
≡ 3 (mod 4) and 𝑐′

6
≡ 3 (mod 8) +1

⩾ 1 0 0 𝑐′
6
≡ 3 (mod 4) and 𝑐′

6
≢ 3 (mod 8) −1

1 3 2 𝑐′
4
+ 4𝑐′

6
≡ 3 (mod 16) or 𝑐′

4
≡ 11 (mod 16) +1

1 3 2 𝑐′
4
+ 4𝑐′

6
≢ 3 (mod 16) and 𝑐′

4
≢ 11 (mod 16) −1

2 3 2 Δ′
𝐸
≡ 𝑐′

6
(mod 4) +1

2 3 2 Δ′
𝐸
≢ 𝑐′

6
(mod 4) −1

2 4 3 𝑐′
4
+ 𝑐′

6
≡ 0 or 6 (mod 8) +1

2 4 3 𝑐′
4
+ 𝑐′

6
≢ 0 or 6 (mod 8) −1

2 4 ⩾ 4 𝑐′
6
≡ 1 (mod 4) +1

2 4 ⩾ 4 𝑐′
6
≢ 1 (mod 4) −1

3 3 2 Δ′
𝐸
≡ 3 (mod 4) +1

3 3 2 Δ′
𝐸
≢ 3 (mod 4) −1

3 5 3 2𝑐′
6
+ 𝑐′

4
≡ 1 or 3 (mod 8) +1

3 5 3 2𝑐′
6
+ 𝑐′

4
≡ 5 or 7 (mod 8) −1

3 ⩾ 6 3 𝑐′
4
≡ 5 or 7 (mod 8) +1

3 ⩾ 6 3 𝑐′
4
≡ 1 or 3 (mod 8) −1

⩾ 4 3 2 𝑐′
6
≡ 3 (mod 4) +1

⩾ 4 3 2 𝑐′
6
≢ 3 (mod 4) −1

4 5 4 𝑐′
4
≡ 𝑐′

6
(mod 4) and 𝑐′

4
≡ 1 (mod 4) +1

4 5 4 𝑐′
4
≡ 𝑐′

6
(mod 4) and 𝑐′

4
≡ 3 (mod 4) −1

4 5 4 𝑐′
4
≡ 1 ≡ −𝑐′

6
(mod 4) and 𝑐′

4
𝑐′
6
≡ 3 (mod 8) +1

4 5 4 𝑐′
4
≡ 1 ≡ −𝑐′

6
(mod 4) and 𝑐′

4
𝑐′
6
≢ 3 (mod 8) −1

4 5 4 𝑐′
6
≡ 1 ≡ −𝑐′

4
(mod 4) −1

4 5 5 𝑐′
6
≡ 1 (mod 4) and 𝑐′

6
≡ 5 (mod 8) +1

4 5 5 𝑐′
6
≡ 1 (mod 4) and 𝑐′

6
≡ 1 (mod 8) −1

4 5 ⩾ 5 𝑐′
6
≡ 3 (mod 4) and 𝐶4 = 5 +1

(Continues)
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38 COWLAND KELLOCK and DOKCHITSER

𝑪𝚫 𝑪𝟔 𝑪𝟒 Extra conditions 𝒘(𝑬∕ℚ𝟐)

4 5 ⩾ 5 𝑐′
6
≡ 3 (mod 4) and 𝐶4 ≠ 5 −1

4 5 ⩾ 6 𝑐′
6
≡ 1 (mod 4) −1

6 6 5 𝑐′
4
≡ 3 (mod 4) +1

6 6 5 𝑐′
4
≡ 1 (mod 4) −1

6 6 ⩾ 6 𝑐′
6
≡ 1 (mod 4); +1

6 6 ⩾ 6 𝑐′
6
≡ 3 (mod 4); −1

6 ⩾ 7 4 𝑐′
4
≡ 1 (mod 4) and 𝐶6 = 7 +1

6 ⩾ 7 4 𝑐′
4
≡ 1 (mod 4) and 𝐶6 ≠ 7 −1

6 ⩾ 7 4 𝑐′
4
≡ 3 (mod 4) and 𝑐′

4
− 4𝑐6,7 ≡ 7 or 11 (mod 16) +1

6 ⩾ 7 4 𝑐′
4
≡ 3 (mod 4) and 𝑐′

4
− 4𝑐6,7 ≢ 7 or 11 (mod 16) −1

7 6 4 𝑐′
6
≡ 5 or 5𝑐′

4
(mod 8) +1

7 6 4 𝑐′
6
≢ 5 or 5𝑐′

4
(mod 8) −1

8 6 4 2𝑐′
6
+ 𝑐′

4
≡ 3 (mod 16) +1

8 6 4 2𝑐′
6
+ 𝑐′

4
≡ 15 (mod 16) −1

8 6 4 2𝑐′
6
+ 𝑐′

4
≡ 23 (mod 32) +1

8 6 4 2𝑐′
6
+ 𝑐′

4
≡ 7 (mod 32) −1

8 6 4 2𝑐′
6
+ 𝑐′

4
≡ 11 (mod 16) −1

8 7 5 2𝑐′
4
+ 𝑐′

6
≡ 7 (mod 8) or 𝑐′

6
≡ 3 (mod 8) +1

8 7 5 2𝑐′
4
+ 𝑐′

6
≢ 7 (mod 8) and 𝑐′

6
≢ 3 (mod 8) −1

8 7 6 𝑐′
6
≡ 1 (mod 4) and 2𝑐′

4
+ 𝑐′

6
≡ 3 (mod 8) +1

8 7 6 𝑐′
6
≡ 1 (mod 4) and 2𝑐′

4
+ 𝑐′

6
≢ 3 (mod 8) −1

8 7 ⩾ 6 𝑐′
6
≡ 3 (mod 4) and 𝐶4 = 6 +1

8 7 ⩾ 6 𝑐′
6
≡ 3 (mod 4) and 𝐶4 ≠ 6 −1

8 7 ⩾ 7 𝑐′
6
≡ 1 (mod 4) −1

9 6 4 2𝑐′
6
+ 𝑐′

4
≡ 11 (mod 32) or 𝑐′

6
≡ 7 (mod 8) +1

9 6 4 2𝑐′
6
+ 𝑐′

4
≢ 11 (mod 32) and 𝑐′

6
≢ 7 (mod 8) −1

9 8 5 2𝑐′
6
+ 𝑐′

4
≡ ±1 (mod 8) +1

9 8 5 2𝑐′
6
+ 𝑐′

4
≡ 3 or 5 (mod 8) −1

9 ⩾ 9 5 𝑐′
4
≡ 1 or 3 (mod 8) +1

9 ⩾ 9 5 𝑐′
4
≡ 5 or 7 (mod 8) −1

10 6 4 𝑐′
6
≡ 1 (mod 4) +1

10 6 4 𝑐′
6
≡ 3 (mod 4) and 𝑐′

4
− 2𝑐′

6
≡ 3 or 19 (mod 64) +1

10 6 4 𝑐′
6
≡ 3 (mod 4) and 𝑐′

4
− 2𝑐′

6
≢ 3 or 19 (mod 64) −1

10 8 6 𝑐′
4
𝑐′
6
≡ 3 (mod 4) +1

10 8 6 𝑐′
4
𝑐′
6
≡ 1 (mod 4) −1

10 8 ⩾ 7 𝑐′
6
≡ 1 (mod 4) +1

10 8 ⩾ 7 𝑐′
6
≡ 3 (mod 4) −1

11 6 4 𝑐′
6
≡ 1 (mod 4) +1

11 6 4 𝑐′
6
≡ 3 (mod 4) and 𝑐′

6
≡ 3 (mod 8) +1

11 6 4 𝑐′
6
≡ 3 (mod 4) and 𝑐′

6
≡ 7 (mod 8) −1
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There appear to be a couple of typos in Table III of [54]: it shows (> 0, 0, 0) instead of (⩾ 0, 0, 0)

and the definition of 𝑐6,𝑒 is not consistent with Halberstadt’s definition. We have checked that all
possible cases for (𝐶Δ, 𝐶6, 𝐶4) are covered by the table, using the equation 1728Δ𝐸 = 𝑐3

4
− 𝑐2

6
. We

have also numerically checked that the table is consistent with the implementation in Magma [3]
of Halberstadt’s table in [36] for over one million curves (including examples from each entry).
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