
1 

 

Developing a Context-based Bounded Centrality Approach of Street 

Patterns in Flooding: A Case Study of London 

Xuhui Lina, Qiuchen Lua, Neil Gunnb, Simon Sølvstenb, c 

a University College London, UK 

b Willis Towers Watson, UK 

c European Centre for Risk & Resilience Studies 

zczlxl3@ucl.ac.uk 

Abstract. Floods affect an average of 21 million people worldwide each year, and their frequency 

is expected to increase due to climate warming, population growth, and rapid urbanization. Previous 

research on the robustness of transportation networks during floods has mainly used percolation 

theory. However, the component size of disrupted networks cannot capture the entire network's 

information and, more importantly, does not reflect the local reality. To address this issue, this study 

introduces a novel approach to context-based bounded centrality to extract the local impact of 

disruption. In particular, we propose embedding travel behaviour into the road network to calculate 

bounded centrality and develop new measures characterizing connected component size during 

flooding. Our analysis can identify critical road segments during floods by comparing the decreasing 

trend and dispersibility of component size on road networks. To demonstrate the feasibility of these 

approaches, a case study of the London transportation infrastructure that integrates road networks 

with relevant urban contexts is  presented in this paper. We find that this approach is beneficial for 

practical risk management, helping decision-makers allocate resources effectively in space and time. 

1. Introduction 

Floods have become increasingly catastrophic in recent decades, causing extensive losses 

worldwide. Climate change, extreme rainfall, and rising sea levels are significant factors that 

contribute to the frequency and severity of flood hazards (Dong et al., 2020). Due to the rapid 

development of economic assets and urbanization in flood-prone areas, global exposure to 

floods is expected to triple by 2050 (Aerts et al., 2018). This growing flood risk poses 

significant threats to infrastructure networks crucial for community well-being. Among these 

infrastructure networks, roadways are critical in transporting people and goods, evacuating 

individuals from affected regions, and providing access to resources and services for affected 

populations (Tachaudomdach et al., 2018). Disruptions in roadways can lead to more isolated 

communities, making emergency management more challenging due to limited access. To 

better understand the increasing risks and proactively mitigate the impacts on communities, a 

quantitative flood-risk assessment is needed to systematically estimate the local importance of 

roadways and the robustness of road networks (Jongman et al., 2015). Such an assessment can 

inform hazard mitigation, investment decisions, and prioritization of improvement projects. 

Roadway network robustness refers to the network's ability to access various destinations 

despite disruptions such as flood inundation (Snelder, van Zuylen and Immers, 2012). 

Percolation theory is often used to analyse network robustness under link and node disruption, 

with network robustness measured by topological connectivity based on the size of the largest 

connected component (Wang et al., 2019). While various studies have employed percolation 

theory to examine roadway robustness, these approaches do not fully capture the impact of local 

disruptions on the network during a flooding event (Loreti et al., 2022). They focus only on the 

overall size of the largest connected component in the network without considering the specific 

locations and characteristics of disrupted nodes and links. This incomplete understanding of 

network vulnerability and robustness can hinder efforts to mitigate the potential impact of 

disruptions on specific communities and areas (Berezin et al., 2015). To address these 
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limitations, a few research studies have proposed new models to evaluate the local impact of 

disruption. However, these studies have mainly focused on the accessibility of critical 

infrastructure, such as hospitals or stations, during flooding (Dong et al., 2019, 2020; Ouyang 

et al., 2019) rather than the impact of local disruption on the global road networks. 

This study presents a novel approach to evaluating the impact of local disruption on road 

networks by proposing a context-based boundary centrality indicator. The objective of this 

paper is twofold. Firstly, a boundary centrality indicator based on traveller behaviours is utilized 

to capture the impact of local disruption on road networks. Secondly, a new approach to 

evaluating network robustness based on component size is introduced. To demonstrate the 

feasibility of these approaches, a case study of the London transportation infrastructure that 

integrates road networks with relevant urban contexts is developed. The results of this case 

study highlight the efficacy of the proposed approaches in evaluating the impact of local 

disruption on road networks and provide valuable insights about destructiveness and 

dispersiveness into the underlying mechanisms that affect network robustness. 

This paper is structured as follows: Section 2 provides a comprehensive review of previous 

research and practice relevant to the topic of this study. Section 3 presents the research 

framework, which comprises three modules, and provides detailed descriptions of each module. 

Section 4 presents a case study based on the London transportation network, demonstrating the 

proposed framework's effectiveness. Finally, the conclusions of this study are presented in 

Section 5. 

2. Literature Review 

The investigation of robustness in disrupted networks typically involves the measurement of 

vulnerability and reliability (Sullivan, Aultman-Hall and Novak, 2009). Vulnerability refers to 

the extent to which a system cannot function following a disruption. Reliability can be defined 

as the probability that a system can maintain satisfactory operation over a significant time frame 

(Mattsson and Jenelius, 2015). Reliability analysis is classified into three categories: 

connectivity reliability, travel time reliability and capacity reliability (Murray and Grubesic, 

2007). These classifications are based on determining the probability that a node will remain 

connected, a trip between nodes can be completed within a specified time interval, and a 

network can accommodate a specific level of travel demand respectively. The reliability study 

in this context necessitates knowledge of the travel demand from a designated origin-

destination pair (Dong et al., 2019). However, the collection of actual post-disaster demand data 

is limited, making  such analyses in real-world studies impractical. 

The idea of network robustness is based on evaluating how well a system can sustain its 

performance in response to unforeseen internal or external events or alterations (Albert and 

Barabási, 2002). Regarding the evaluation of real-world network robustness, some research 

presents several common features (LaRocca et al., 2015). 1) Researchers typically generate 

empirical data or simulate a network through random graph generation or mapping real network 

data. 2) Measuring structural features of the network under investigation. 3) Implementing a 

random failure or targeted attack on networks. 4) Evaluating the performance of the network, 

both for static and dynamic cases. In the realm of road networks, this analysis involves viewing 

the road infrastructure as a system of nodes (intersections) and links (roads) to examine network 

disruption's impact on society as a whole. Due to this research, various network robustness 

measures have emerged in recent years.  

The measurement of giant connected components (GCC) based on percolation theory is a well-

established framework used in network science to assess the robustness of disrupted networks 

(Albert and Barabási, 2002; Newman, 2003). Researchers have applied percolation theory to 
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study the disruptive effects of earthquakes, traffic congestion, and flooding events on road 

networks (Loreti et al., 2022). Abdulla et al. (2020) presented a flood diffusion model to 

investigate the effects of flood diffusion on road network connectivity. By measuring the size 

of the giant components for each fraction of removed nodes, they found that the road networks' 

connectivity was particularly vulnerable to the flood propagation that started from nodes with 

high values of betweenness. Based on this study, Farahmand et al. (2020) proposed a 

probabilistic approach to examine the failure of road networks, which was assessed through the 

calculation of the giant component size of the network.   Removing nodes resulted in significant 

drops in the network's connectivity, as indicated by the size of the giant component. This 

suggests the existence of crucial roads in the network. Dong et al. (2019) proposed a 

probabilistic link removal to mimic earthquake-induced failures and addressed the effects on 

the Portland Road network. They claimed that measures of network's robustness should 

consider critical infrastructures rather than giant components size based on global networks. 

Likewise, Loreti et al (2022) propose to partition the road network based on Voronoi Cell of 

critical infrastructure and define new measures that characterize the impact of the flooding 

event. However, in urban environments, the coverage range and spatial distribution of 

infrastructures with different hierarchical levels is often not spatially uniform. This can be 

observed in the varying coverage range of national and regional infrastructure. Furthermore, 

when a network is split into smaller sub-networks, nodes located on the boundary of these sub-

networks lose neighbouring properties because these nodes are no longer considered part of the 

larger network.  

In most of these previous studies related to the application of percolation-based flood modelling 

on the road system, the network's functionality was expressed through the size of the GCC and 

its evolution when roads are removed. However, GCC is an aggregated quantity that does not 

capture the entire network's information and, more importantly, does not reflect the local reality. 

Therefore, more precise information is necessary, particularly on a local scale, for a realistic 

evaluation of the disruption's effects. 

3. Research Framework 

A research framework in this study is raised to evaluate road network robustness under flood 

via exploring local impacts of disruption. The research framework comprises three modules, as 

illustrated in Fig. 1. Module 1 involves collecting relevant datasets, such as road networks, 

commuter behaviours, and road hierarchy, for calculating the bounded centrality of nodes in 

Module 2. In addition, module 1 includes creating an inundation map of road networks based 

on flood simulation software. 

Module 2 proposes a centrality map that integrates road networks' bounded centrality and 

exposure rate and establishes a framework for extracting the local importance of nodes from 

road networks. The centrality map consists of three steps: 1) Calculating bounded centrality 

based on commuter behaviours to capture the local impact of nodes. 2) Extracting the exposure 

rate of network segments from the flood map. 3) Devising an integrated centrality map that 

combines different levels of bounded centrality and exposure rate to create a context-based road 

centrality map for evaluating road network robustness in Module 3. 
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Figure 1 Framework of Exploring the Impact of Road Disruption under Flood. 

In Module 3, a new method for evaluating network robustness is presented, which is based on 

the component size list. The method involves removing nodes of high local importance at 

multiple levels, in order to investigate the impact on the speed of network collapse and 

dispersion. 

3.1 Module 1: Data & context Layers 

The challenges for integrating context information with road segments involve (i) no explicit 

local community representation as the boundary for road networks since local impacts of nodes 

on networks often rely on explicit topology information (Hillier and Hanson, 1984); (ii) no 

uniform framework to integrate road networks with various levels of local impact under 

flooding event, which require inundation map information (Wang et al., 2019). Corresponding 

to the above challenges, this module is designed to collect related datasets to support further 

calculation.  

In order to set up the boundary for road segments, firstly, the coverage range of a single road 

network refers to the road segments that people commonly use within a certain distance. As 

described in Figure 2, different levels of roads have different coverage ranges, for example, 2-

5 km for primary roads and 1-2 km for secondary and tertiary roads. However, due to the 

coverage range also depending on surrounding information, such as population density and 

location, this study applied different radii to road segments, such as 500m, 1000m and 2000m, 

to capture their local centrality in various scales. Based on this method, the surrounding 

relationships of the selected road segments can be calculated in Module 2. 

Secondly, in order to obtain the flood map based on road networks, we simulate the flood using 

the High-Performance Integrated hydrodynamic Modelling System (HiPIMS) (Liang and 

Smith, 2015) for given runoffs with flood distribution and obtain the direct failures of a road 

network measured by the inundated intersections. HiPIMs treated the whole catchment as the 

computational domain and will be discretized using a uniform grid at a hyper-resolution of 

5∼10 m (Xia, Liang and Ming, 2019). High-quality DEM integrated with the terrain and 

building height information could provide background information on HiPIMs. In addition, 

land-cover data brought information on Manning coefficient-based related friction. Also, 

directly using rainfall as input, HiPIMS predicts the dynamics of surface water moving between 

grid cells based on these input data. 



5 

 

 
Figure 2 Framework of Module 1 

3.2 Module 2: Modelling Layer 

The challenges for extracting the local importance of road segments: (i) Most existing methods 

have difficulties capturing precise local information (Loreti et al., 2022); (ii) Although some 

methods attempt to capture local value, they focus on critical infrastructure rather than 

pedestrian travel behaviour (Dong et al., 2019). This approach would overlook some urban 

areas with fewer critical infrastructures, such as commercial areas. 

The second module proposes a centrality calculation approach to integrating the urban context 

information to extract the local importance of road segments in the whole network. The shortest 

path betweenness centrality measures a node's importance in a network based on its ability to 

connect different network parts (Freeman, 1977). The betweenness 𝐶𝐵(𝑣) of a vertex v ∈ V is 

defined to be. 

𝐶𝐵(𝑣) = ∑
𝜎(𝑠, 𝑡|𝑣)

𝜎(𝑠, 𝑡)
𝑠,𝑡 ∈ 𝑉

(1) 

𝑠, 𝑡 stands for the head and tail of the shortest path, denote by 𝜎(𝑠, 𝑡) the number of shortest 
(𝑠, 𝑡)-paths and let 𝜎(𝑠, 𝑡|𝑣) be the number of shortest (𝑠, 𝑡)-paths passing through some vertex 

v other than 𝑠, 𝑡. In the context of road networks, traditional network graph treated intersection 

as ‘node’, and road segment as ‘link’. To explore the impact of local network segments, this 

study constructed a network graph by treating roads as nodes and their connection as links. A 

road segment with high betweenness centrality indicates an important link between different 

network parts. Therefore, if this road segment is disrupted or damaged, it may significantly 

impact the overall network's functionality and connectivity. By using betweenness centrality in 

road robustness assessment, transportation planners and decision-makers can identify critical 

road segments that, if disrupted, could have severe consequences on the network's performance. 

This information can help prioritise investments in road maintenance, improve emergency 

response planning, and inform decisions about infrastructure investments.  

Due to the standard measure of betweenness considering shortest paths, irrespective of their 

length, very long distances may not be realistic for network relations (Brandes, 2008). Thus, it 

would not be sufficient to capture the importance of road segments among networks if only 

considering the global betweenness of roads, as other factors, such as the road's importance to 
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local communities, would also be relevant. Hence, incorporating contextual information is 

essential and necessary, and it can be crucial for a more comprehensive importance assessment, 

which was not included in the previous research studies. Borgatti and Everett (2006) define the 

k-betweenness of a vertex as the sum of dependencies of pairs at most k apart, i.e., only 

contributions from shortest paths of length bounded by a constant k are included. Let 

𝐶𝐵(𝑘)(𝑣) = ∑
𝜎(𝑠, 𝑡|𝑣)

𝜎(𝑠, 𝑡)
𝑠,𝑡 ∈ 𝑉:𝑑𝑖𝑠𝑡(𝑠,𝑡)≤𝑘

(2) 

If paths longer than a certain distance (k) are to be excluded, the breadth-first search algorithm 

can be stopped when a vertex that is k distances away from the starting vertex. Thus, in this 

paper, based on the distance set by the coverage range of road segments in Module 1, the 

community local spatial scale has been embedded into graph calculation via setting k as 500m, 

1000m, 2000m, 3000m and global to capture node's neighbourhood relationship on networks. 

 
Figure 3 Framework of Module 2 

3.3 Module 3: Evaluation Layer 

Based on percolation theory, the challenges faced by the indicators to evaluate network 

robustness include: (1) Existing methods only focus on the giant connected component, 

ignoring the connectivity of the entire network and therefore failing to evaluate the 

comprehensive performance of networks (Loreti et al., 2022). 

Module 3 aims to evaluate the effectiveness of the network from different spatial scales by 

analyzing component sizes. This module also seeks to validate the feasibility of context-based 

bounded centrality methods in identifying critical road networks during flooding. In network 

theory, a component is a subset of nodes connected but not to any nodes outside that subset. It 

refers to a group of nodes that are "reachable" from each other but not from any other nodes 

outside that group (Albert and Barabási, 2002). Understanding component sizes in networks is 

crucial to comprehend network structure and behaviour (Newman, 2010). There are various 

types of components in a network, including the giant component, which is the largest 

connected component containing a significant proportion of nodes in the network. Networks 

with a larger giant component are generally more robust and less vulnerable to disruption than 

networks with a smaller giant component. It is noteworthy that smaller components in the 

network. However, they may consist of just a few nodes and can also reflect the type of network 

interruption that can quickly reduce urban connectivity (Wang et al., 2019). Ignoring these 

small, connected components may exacerbate emergency management difficulties due to 

limited access. Evaluating the number and size of these smaller connected components can 

provide valuable insights into the localized road disruption that can lead to a rapid reduction in 

urban connectivity. 

In this paper, a novel approach is proposed to measure the size of components in disrupted 

networks. Since the centrality map built in Module 2 is an undirected graph, a breadth-first 

search algorithm (Goerdt, 1997) is utilized to calculate the connected components in the graph. 
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Unlike previous approaches that only rely on the size of the giant component, our approach 

preserves the sizes of all components. As shown in Figure 4(c), this component size list enables 

us to compare the network's dispersal after disruption via component amount, the average value 

and standard deviation of component size. In addition, Augmented Dickey-Fuller (ADF) 

(Dickey and Fuller, 1979) test is utilized to evaluate the stability of the component size list. Our 

approach offers three benefits. Firstly, the changing trend in component size and count is 

demonstrated by plotting component size, amount, and probability of removal on a Cartesian 

coordinate system, as shown in Figure 4(d). Secondly, the data from the component size list is 

analysed to determine whether roads with high local betweenness centrality are more 

detrimental than those with high global value. Thirdly, the dispersal of the connected 

components is calculated to assess the local disruption's ability to fragment into multiple 

disconnected components at spatial scales. This approach is valuable in studying network 

resilience and can help in designing more robust network systems. 

 
Figure 4 Framework of Module 3 

4. Case Analysis 

To test our approach and our new indicator, a portion of the Central London Road network (OS 

MasterMap Highways Network, 2022) was selected as a test area, which covers 29.5km2(edge 

length: 5500m), shown in Fig. 5(b). Firstly, to simulate the flood map of the chosen area, 

HiPIMs was used to simulate the 2 hours of surface runoffs after 1.2 hours(50mm/h) rain based 

on the DEM (Lidar Composite Digital Terrain Model England 2m resolution, 2020), land-cover 

data (Land Cover map of Great Britain, 2021) and rainfall mask data(Met Office, 2023). The 

result can be seen in Fig.5(c). Secondly, graphs are constructed by adding different levels of 

radius (radius: 500m, 1000m, 2000m, 3000m, global) to incorporate travelling behaviours and 

calculate the boundary betweenness centrality. The resulting graphs have a node count of 7250. 

Thirdly, combining the exposure rate of road networks under flood and their local importance 

to create a context-based bounded centrality map, as seen in Fig 6(c). Fourthly, the performance 

of the network was observed by removing the roads based on the ranking of the importance of 

road segments. During this calculation, the component size list has been utilized to evaluate 

networks' decreasing trend and dispersibility based on their giant component size, average size, 

amount, standard deviation and ADF test.  

 
Figure 5 Chosen Area in London 
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From Fig7(a), it can be observed that removing those nodes with high local betweenness 

centrality results in greater damage to the giant connected component in initial disruption, 

which is highlighted in the red rectangle box. For example, compared with those nodes with 

high global centrality value (decreasing from 7100 to 5040), removing those nodes with high 

local betweenness values in R=1000m, 2000m, and 3000m reduces the giant component size 

from 7100 to around 2880. However, after removing 25% of nodes, R=Global has the stronger 

power to reduce the size of giant connect components compared with others. 

 
Figure 6 Context-based Bounded Centrality Map 

Fig 7(b,c) gives us a lesson that, in the first and second stages, those networks with high local 

importance, especially R=1000m, 2000m, and 3000m, have a higher component amount and 

smaller average component size than those networks with high global value. In addition, 

compared with removing the road network with high global centrality and randomly removing 

nodes, removing the road network with high local leads to a significant difference in the size of 

network components, with relatively large fluctuations at different stages (Fig7(d, e)). Thus, 

removing the road network with high local centrality can quickly divide the network into 

smaller components in the short term. At the same time, from the perspective of the effect of 

network division, removing the road network with high local attributes also makes the network 

size more unbalanced and dispersed. Therefore, understanding the importance of these nodes 

at different levels can help identify and mitigate the impact of disruptions, which is particularly 

important for ensuring the resilience of local communities.  

This paper presents three potential contributions. Firstly, a novel approach is proposed to 

capture nodes' local centrality, demonstrating that removing nodes with high local centrality 

could cause more significant damage to the network compared to traditional methods. 

Secondly, a new evaluation method is introduced to assess the network's performance during 

node disruption, focusing on the components' destructiveness and dispersibility. However, the 

presented approach has some limitations, 1) the absence of transportation simulation after node 

removal and 2) the need to rebuild the network and recalculate the component size after each 

node removal. Future research could explore 1) the effect of removing roads with different 

levels of local centrality on network robustness and travel time for commuters and 2) the 

development of an algorithm that can accelerate the calculation speed of component size based 

on previous stages. 

 
Figure 7 Indicators of Component Size List 
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5. Conclusion 

In conclusion, floods pose a serious threat to transportation networks, and with climate change, 

population growth, and rapid urbanization, the frequency and severity of floods are likely to 

increase. To understand the effects of floods on road systems, experts use various 

methodologies, including percolation theory, to measure network robustness. However, 

examining network robustness based solely on the giant connected component may not 

accurately represent the impact of flooding on local communities. This paper proposes a 

context-based boundary centrality approach for calculating the impact of local communities on 

each road network segment and a novel approach for evaluating network robustness based on 

network component size. The case study conducted on the London transportation network 

validates the feasibility of these approaches. By considering the impact of local disruption, our 

proposed approach provides a more comprehensive and accurate assessment of network 

robustness and can aid in urban disaster management. 
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