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Abstract
Understanding the processes that drive interpopulation differences in demography 
and population dynamics is central to metapopulation ecology. In colonial species, 
populations are limited by local resource availability. However, individuals from larger 
colonies will travel greater distances to overcome density-dependent competition. 
Consequently, these individuals may also experience greater carry-over effects and 
interpopulation differences in demography. To test this prediction, we use mark-
recapture data collected over four decades from two breeding colonies of a seabird, 
the Manx shearwater (Puffinus puffinus), that exhibit strong spatial overlap throughout 
the annual cycle but differ in population size and maximum foraging distances. We 
quantify interpopulation differences and synchrony in rates of survival and assess 
whether local mean wind speeds act to strengthen or disrupt synchrony. In addition, 
we examine whether the imputed interpopulation differences in survival can generate 
population-level consequences. The colony where individuals travel further during 
the breeding season had slightly lower and more variable rates of survival, indicative 
of individuals experiencing greater carry-over effects. Fluctuations in survival were 
highly synchronous between the colonies, but neither synchronous, nor asynchro-
nous, variation could be strongly attributed to fluctuations in local mean wind speeds. 
Finally, we demonstrate that the imputed interpopulation differences in rates of sur-
vival could lead to considerable differences in population growth. We hypothesise 
that the observed interpopulation differences in rates of adult survival reflect carry-
over effects associated with foraging distances during the breeding season. More 
broadly, our results highlight that breeding season processes can be important for 
understanding interpopulation differences in the demographic rates and population 
dynamics of long-lived species, such as seabirds.
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1  |  INTRODUC TION

Understanding the mechanisms that generate interpopulation dif-
ferences in demography and population dynamics is central to meta-
population ecology. Populations of the same species may vary in their 
mean demographic rates, as well as exhibit differing levels of tem-
poral variation in these processes (Frederiksen et al., 2005; Horswill 
et al., 2019). Additionally, distinct populations may fluctuate in size and 
demography with varying degrees of synchrony over different spatial 
scales (Lindstrom et al., 1996; Sinclair, 1993; Steen et al., 1996; Sutcliffe 
et al., 1996). Such variation is often attributed to spatial autocorrelation 
in the relationships linking demographic rates with environmental vari-
ables (Grosbois et al., 2009; Sæther et al., 2006; Stenseth et al., 1999), 
or large-scale weather patterns generating regionally correlated pop-
ulation fluctuations (Hanski & Woiwod, 1993; Lindstrom et al., 1996; 
Sinclair, 1993). However, studies reporting these relationships rarely 
investigate the possible mechanisms connecting environmental covari-
ates to interpopulation differences in demography.

Ashmole's halo hypothesis predicts that populations of colonial 
species are limited by local resource availability (Ashmole,  1963). 

In this framework, density-dependent competition increases with 
population size forcing individuals to travel further to balance their 
self-feeding and offspring provisioning requirements. This mecha-
nistic link between population size, food availability and foraging 
behaviour has been repeatedly proposed in colonial seabirds (e.g. 
Ballance et al., 2009; Jovani et al., 2016; Lewis et al., 2001; Wake-
field et al., 2013). However, seabirds will also increase their average 
trip duration and distance during years with adverse prey or climatic 
conditions (Burke & Montevecchi, 2009; Campbell et al., 2019; Hor-
swill et al.,  2017). In this context, individuals from large colonies, 
which are already travelling further and potentially working harder to 
balance energy allocation to parent and offspring survival, are likely 
to experience greater energetic and reproductive costs, compared 
to their counterparts from smaller colonies (e.g. Fayet et al., 2021).

Energetic costs occurring in one season can influence how well 
individuals perform (i.e., reproduce or survive) in subsequent sea-
sons (Fayet et al., 2016; Harrison et al., 2011; Inger et al., 2010). For 
example, costs incurred during reproduction can effect changes 
in an organism's state, such as its energy reserves (e.g. Dawson 
et al.,  2000), thereby, influencing subsequent survival (e.g. Daan 

T A X O N O M Y  C L A S S I F I C A T I O N
Population ecology

F I G U R E  1 Manx shearwaters breeding on Copeland (red) and Skomer Island (blue) demonstrate a strong spatial overlap in foraging 
habitat use during the (a) breeding season and (b) overwintering period. Dashed grid square in panel (a) shows the area used to extract 
summer wind speed data. Figure adapted from Dean et al. (2015) and Kirk (2017). Kernel densities were calculated using 90% occupancy and 
(a) 35 birds for Copeland and 69 birds for Skomer Island, and (b) 13 birds for Copeland and 26 birds for Skomer Island.
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et al., 1996; Wanless et al., 2023). Such downstream consequences 
of resource allocation, often referred to as “carry-over effects”, can 
thereby generate major demographic consequences. Moreover, in-
terpopulation variation in these carry-over effects can lead to in-
terpopulation differences in demography (Wilson et al., 2022), and, 
potentially, population dynamics.

In this study, we quantify interpopulation differences and temporal 
synchrony in rates of adult survival between two colonies of a long-
lived seabird, the Manx shearwater (Puffinus puffinus). While the study 
colonies exhibit strong temporal and spatial overlap throughout the an-
nual cycle (Figure 1; also see Dean et al., 2015; Kirk, 2017), they diverge 
in terms of population size and the maximum foraging distances that 
individuals travel during the breeding season. Despite both colonies 
targeting similar foraging grounds, the smaller colony exhibits consider-
ably shorter maximum foraging distances (Figure 1a; Dean et al., 2015). 
We also examine how climate contributes to interpopulation synchrony 
in rate of survival using a variable previously identified as influential to 
Manx shearwaters, summer mean wind speed (Wood et al., 2021). Sim-
ilar to many other bird species, Manx shearwaters employ a flight strat-
egy characterised by bursts of flapping flight interspersed with gliding 
phases (Tobalske, 2001). Flapping duty cycles (representing the fraction 
of time spent actively beating the wings) increase during strong head-
winds until near-continuous flapping is exhibited (Spivey et al., 2014). 
Consequently, we hypothesise that individuals from the larger colony, 
where maximum foraging distances are longer on average, will expe-
rience more pronounced carry-over effects and lower rates of adult 
survival, particularly during years with elevated mean wind speeds. In 
this context, we anticipate that elevated wind speeds will contribute to 
desynchronising rates of adult survival between the two colonies.

2  |  METHODS

2.1  |  Study species

The Manx shearwater is a pelagic burrow-nesting seabird that repro-
duces once per year during the boreal summer. Most of the global 
population breed in the UK and Ireland, restricted to a small number of 
colonies on the Atlantic coast (BirdLife International, 2022). Individuals 
forage under central place constraint during chick rearing, travelling 
up to ca. 85 km from the colony each day (Dean et al.,  2015). Birds 
then undertake trans-equatorial, trans-Atlantic migration, converging 
on a restricted area that is close to the Argentinean coast, south of the 
Rio de la Plata (Figure 1b; Guilford et al., 2009; Kirk, 2017). Adults are 
highly site faithful once they start breeding, and any movements within 
a colony are usually short (Harris, 1966; Perrins et al., 1973). Natal dis-
persal between colonies also appears to be low (Harris, 1972).

2.2  |  Demographic data

Our analysis included mark-recapture data collected from two colo-
nies of Manx shearwater breeding in the UK: (1) Copeland Islands, 

Northern Ireland (54.43° N, 3.39° W) and (2) Skomer Island, Wales 
(51.74° N, 5.30° W; Figure 1). These colonies combined represent ap-
proximately 41% of the global breeding population. Copeland is esti-
mated to support 4850 breeding pairs of Manx shearwaters (Stewart 
& Leonard, 2007), and Skomer Island is estimated to support 350,000 
breeding pairs (Perrins et al., 2018). In line with predictions based 
on Ashmole's halo hypothesis (Ashmole, 1963), maximum foraging 
distances during the breeding season are also considerably shorter 
for individuals from Copeland, compared to their counterparts from 
Skomer Island: 72% shorter during incubation and 42% shorter dur-
ing chick-rearing (Figure 1a; Dean et al., 2015). Mark-recapture mon-
itoring of Manx shearwaters began in 1952 at Copeland and in 1977 
on Skomer Island. Therefore, to examine interpopulation synchrony 
in rates of apparent adult survival, we restricted these datasets to 
the 44-year period with concurrent data: 1977–2020.

In both study locations, breeding Manx shearwaters were ringed 
under licence using hard-metal British Trust for Ornithology (BTO) 
rings. Ringing and resighting data were predominantly collected 
during the beginning of the breeding season. Adult birds were se-
lected for ringing by capturing birds from breeding burrows and 
from the ground at night. This methodology introduces many po-
tentially transient or prospecting individuals into the dataset. There-
fore, to minimise individual heterogeneity in rates of survival, we 
removed the large number of individuals not observed again in the 
years following first release (Copeland: n = 7009; 55% of individuals, 
and Skomer Island: n = 440; 27% of individuals). These individuals 
may reflect a large pool of non-breeding adults, or, alternatively, that 
birds recruit outside of the immediate study plots. Recorded move-
ments of ringed individuals between the two study colonies are very 
limited (CBO,  2001; M. Wood personal observations, C. Acheson 
personal communications) and therefore assumed not to influence 
survival estimation (e.g., Horswill, Wood, et al., 2022). The final data-
set included 4849 individuals ringed on Copeland and 1164 individ-
uals ringed on Skomer Island. The sex of individual birds is unknown 
and therefore not included in our analyses. Individuals marked on 
Copeland before 1977 and resighted after 1977 (n = 590) were in-
cluded by reassigning the year of first release in these instances as 
1977. Any heterogeneity in recapture rates introduced by this co-
hort were isolated by modelling the recapture process as fully time 
varying with trap-dependence.

2.3  |  Synchrony in rates of adult survival

We used a state-space formulation of the Cormack-Jolly-Seber (CJS) 
model (Gimenez et al.,  2007) to estimate rates of apparent adult 
survival from the mark-recapture data. The resighting interval was 
1 year, from the end of the breeding season in year t–1 to the end of 
the breeding season in year t. In the state-space CJS model, annual 
survival events were modelled as the state process and annual recap-
ture probabilities were modelled as the observation process. Both 
processes were imputed using Bernoulli distributions with a logit link 
function. Initial goodness-of-fit testing conducted in program MARK 
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(v.9.x, White & Burnham, 1999) using the RELEASE program (Burnham 
et al.,  1987) identified trap-dependence (i.e., capture heterogeneity) 
in the data. Trap-dependence in mark-recapture data can lead to an 
underestimation of survival (Sandland & Kirkwood, 1981), and to miti-
gate this, we incorporated a trap response in the CJS model (i.e., trap-
dependent recapture rates). The functions for annual apparent survival 
(�) and recapture (p) for each colony (c) and year (t) were:

Here, α and δ are the intercept terms for adult survival and recap-
ture probabilities, respectively, whereby the recapture term is mod-
elled as a function of whether or not an individual was captured in 
the preceding year (δc,1 = Yes, δc,2 = No; Kéry & Schaub, 2012). All in-
tercept terms were transformed to the logit scale from uniform prior 
distributions bound between zero and one. To capture interpopu-
lation synchrony and asynchrony in survival rates we used random 
effect terms based on normal distributions. These were common 
across the two colonies for the synchronous term: � t ∼ N

(
0, �2

�

)
, and 

colony-specific for the asynchronous term: ��,c,t ∼ N
(
0, �2

�,�

)
. This 

colony-specific structure was also replicated to assign annual fluc-
tuations in recapture rates: �p,c,t ∼ N

(
0, �2

p,�

)
. We assigned the stan-

dard deviations for the three random effects on the logit scale using 
uniform prior distributions bound between 0.1 and 10 (see Figure S1 
for an illustration of the observed temporal variation resulting from 
the minimum value, i.e., 0.1).

To quantify synchronous variation in rates of adult survival, we 
calculated the intra-class correlation (ICC, Equation 2). Here, the ICC 
reflects the proportion of total variance explained by the synchronous 
term in the survival function (Equation 1) (e.g. Grosbois et al., 2009; 
Lahoz-Monfort et al., 2011; Reiertsen et al., 2021; Schaub et al., 2015):

An ICC score close to zero indicates that the local scale asyn-
chronous variance term is large relative to the global scale synchro-
nous term: i.e., that between-year variance is largely asynchronous 
between the colonies. By contrast, an ICC score close to one indi-
cates that the opposite is true, and between-year variance is largely 
synchronous between the colonies.

(1)
logit

(
�c,t

)
=�c+� t+��,c,t

logit
(
pc,t

)
=�c,k+�p,c,t

(2)ICC =
�2
�

�2
�
+ �2

�,�

F I G U R E  2 (a) Manx shearwaters from Copeland and Skomer Island demonstrated highly synchronous rates of apparent adult survival 
(ICC = 0.87, 95% CRI: 0.53–0.98). Grey diagonal line shows the 1:1 correlation between colonies for reference. Median posterior values of 
survival shown. Survival was slightly higher and less variable at (b) Copeland, compared to (c) Skomer Island. Grey lines in panels (b) and (c) 
represent the 95% credible intervals. In all panels, the survival estimates shown were obtained from the CJS model including summer wind 
speed as a covariate. In panels (b) and (c), survival probabilities estimated using separate colony-specific time-dependent models are also 
shown as dashed lines for examination of model fit.
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We fitted the CJS model using a Bayesian approach in JAGS 
(v. 4.3.0) (Plummer, 2003) via the “jagsUI” library (v 1.5.1) (Kellner, 2019) 
for program R (v. 4.0.2, R Core Team, 2020). We specified the prior 
distributions using biologically driven bounds (see Table S1 for details 
on all prior distributions). Model fitting involved running three Monte 
Carlo Markov chains (MCMC) for 1 × 105 iterations and retaining every 
100th step to minimise autocorrelation in the MCMC sampling. To 
confirm convergence of the chains we used the Brooks-Gelman-Rubin 
diagnostic tool (all values r̂  ≤ 1.01) and the effective sample size of the 
MCMC chains for each parameter (all values ≥ 300). Trace plots of the 
MCMC chains for imputed vital rates and parameters are provided in 
the supplementary information to show convergence (Figures S2–S8). 
We removed the first 5000 MCMC draws as burn-in, and visually 
checked that convergence of the MCMC chains had occurred before 
this cut off. We constructed additional independent CJS models for 
each colony (i.e., identical structure to Equation 1 but without γt) to 
demonstrate that including the synchronous random effect term did 
not influence the imputed rates of apparent survival (Appendix A1 in 
Appendix S1, Figure 2). Finally, we report the median posterior values 
of parameters imputed by the state-space CJS model, and detail annual 
values of survival in Table S2.

2.4  |  Contribution of wind to synchrony and 
asynchrony in rates of survival

To examine how climate contributed to synchrony in rates of adult 
survival, we used a variable previously identified as influential to 
the survival rates of adult Manx shearwaters at Skomer Island, i.e., 
summer mean wind speeds (Wood et al., 2021; Figure 1a). Here, the 
proposed mechanism is that conditions during the summer, breed-
ing season indirectly influence survival during the subsequent 
winter through sustained carry-over effects. Summer mean wind 
speeds (m/s) were calculated as the hypotenuse of mean northerly 
and mean easterly wind speeds, calculated from monthly averages 
available from NOAA's NCEP-NCAR CDAS-1 Reanalysis data set 
(Kalnay et al.,  1996). Data are available at http://iridl.ldeo.colum​
bia.edu/SOURC​ES/.NOAA/.NCEP-NCAR/.CDAS-1/.MONTHLY. 
These data are produced on a 2.5 × 2.5 degree grid and we ex-
tracted values for the two grid squares that combine the forag-
ing area utilised by Manx shearwaters from Copeland and Skomer 
Island during the summer months, i.e., May to August (Figure 1a; 
Dean et al., 2015). Summer mean wind speeds were positively cor-
related between the two grid squares (Spearman correlation coef-
ficient = 0.86), although were often slightly stronger in the square 
closest to Skomer Island (Figure S9). To ensure identifiability be-
tween the intercept and slope coefficient terms in the CJS model, 
we averaged the wind speed data over the two squares and cen-
tred it on zero by subtracting the mean (Ogle & Barber, 2020).

We quantified the contribution of summer wind speeds to syn-
chrony in Manx shearwater survival in two steps. Firstly, we adapted 
the survival function in the CJS model (Equation 1) to incorporate 
the summer wind speed covariate (Wt):

Here, each colony-specific coefficient describing the linear rela-
tionship between adult survival and summer wind speed (βc) was as-
signed from a normal prior distribution centred on zero with a standard 
deviation of 1. Previous analysis on Manx shearwaters indicates that 
the relationship between rates of adult survival and summer wind 
speed is negative, whereby higher winds are associated with lower 
rates of survival (Wood et al., 2021). However, the time series con-
sidered in our study spans a considerably longer time period (1977–
2020 vs. 1993–2019) and a larger range of summer wind speeds 
(1.14–3.37 m/s vs. 1.80–3.37 m/s). Therefore, we allowed the direction 
and strength of the colony-specific relationships with wind to be de-
termined during model fitting, i.e., centring the prior distributions for 
the wind speed coefficients on zero. Next, to measure the influence 
of summer wind speed in generating synchrony and asynchrony in 
rates of survival, we compared the residual variance imputed by the 
random effects in the CJS models with [�2

�
(res), �2

�,�
(res)] and without 

[�2
�
(total), �2

�,�
(total)] wind speed included (e.g. Grosbois et al., 2009; 

Lahoz-Monfort et al.,  2011). Here, we estimated how summer wind 
speed in the breeding foraging area influences the intercolony syn-
chronous term of between year variance as:

and the asynchronous term of between year variance as:

Examination of the relationship between imputed rates of sur-
vival and summer wind speeds indicated a potential non-linear rela-
tionship. We tested this post-hoc due to the large amount of residual 
variation in the CJS model including wind speed. Using the statistical 
package “segmented” (v 1.6.2, Muggeo, 2008) in program R (v. 4.1.2, 
R Core Team, 2020), we fitted a piece-wise linear model with one 
breakpoint to the posterior median values of survival. Here, sensi-
tivity of the estimated breakpoint to starting values was evaluated 
using bootstrap restarting (Wood,  2001) and we retained the de-
fault number of bootstrap samples (n = 10; Muggeo, 2008). To esti-
mate the confidence interval of the breakpoint, we used the Delta 
method.

2.5  |  Population projection modelling

We constructed Leslie matrix models for each colony to test 
whether the imputed interpopulation differences in survival 
can generate population-level consequences. Each Leslie matrix 
model was parameterised using a full colony-specific time series 
of survival rates. We then projected the population dynamics for 
each colony over the duration of the survival data. To standardise 

(3)logit
(
�c,t

)
= �c + �cWt + � t + ��,c,t

(4)�� = 1 −
�2
�
(res)

�2
�
(total)

(5)�� = 1 −
�2
�,�

(res)

�2
�,�

(total)
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the Leslie matrix models, we assigned an identical constant rate 
of fecundity (f = 0.64, Wood et al.,  2021) and breeding propen-
sity (b = 0.87, Wood et al.,  2021) to both colonies. These values 
reflect the demographic profile of Manx shearwaters breeding on 
Skomer Island that exhibit elevated rates of fecundity and breed-
ing propensity (Wood et al.,  2021). Like many seabirds, Manx 
shearwaters are largely unobservable during the first years of life 
and estimates of juvenile survival (i.e., during the first year post 
fledging �j,t) are lacking (Horswill & Robinson, 2015). Juvenile sur-
vival of seabirds is typically lower than that of adults (Horswill & 
Robinson, 2015) and additive across age classes (Cam et al., 2005; 
Horswill et al., 2014). Therefore, to estimate juvenile survival for 
each year and colony, we applied a theoretical 50% scalar to the 
imputed time series of adult survival.

The Leslie matrix models followed a pre-breeding census, pre-
dicting colony size (N) in year t + 1 as a function of colony size in 
year t (Equation 6). Following published estimates, we assumed that 
individuals start breeding at age 5 years (Perrins et al.,  1973). We 
also assumed a 1:1 sex ratio in the colony and halved fecundity to 
model female numbers only. In all models, female birds survived 
from egg laying to chick fledging with probability f

2
 and from fledging 

to age 1 year with probability �j,t. Therefore, the juvenile age class 
(0–1 years) was assigned the following combined survival probabil-
ity: f

2
�j,t. Birds then survived the immature age classes (1–2 years) 

with a probability equivalent to that of breeding adults (�a,t). Once 
in the breeding age class, individuals reproduced annually with a 
breeding propensity of b.

To account for parameter uncertainty in survival estimates, 
we ran each Leslie matrix model for 1000 iterations and randomly 

assigned complete time series of survival to each iteration from 
the joint posterior distribution of the CJS model. We initiated each 
model run with 4000 breeding pairs and estimated the initial stable 
age distribution for each colony using the dominant eigenvector of 
the Leslie matrix based on mean vital rates (Caswell, 2001). We also 
incorporated demographic stochasticity using binomial distributions 
on survival events.

To compare the resulting population trajectories, we used the 
finite rate of annual population growth, estimated using the dom-
inant eigenvalue of the annual Leslie matrices (Caswell, 2001). We 
also used the annual counterfactual of population size, calculated 
as the ratio of annual population sizes (Jitlal et al., 2017). We con-
structed and ran all population modelling in program R (v. 4.0.2, R 
Core Team, 2020).

3  |  RESULTS

3.1  |  Synchrony in rates of adult survival

The median posterior values of the intercept terms in the survival 
function (i.e., geometric means) of the CJS model, indicated that 
survival was slightly higher at Copeland, compared to Skomer Is-
land, albeit with overlapping 95% credible intervals (Table  1). We 

(6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

N2

N3

N4

N5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t+1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 b
f

2
�j,t

�a,t 0 0 0 0

0 �a,t 0 0 0

0 0 �a,t 0 0

0 0 0 �a,t �a,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

N2

N3

N4

N5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

TA B L E  1 Posterior median values (with 95% credible intervals) 
for the parameters of the CJS model including summer wind 
speeds.

Parameter Copeland Skomer Island

α 0.96 (0.94 to 0.97) 0.94 (0.91 to 0.96)

δ1 0.25 (0.21 to 0.28) 0.69 (0.65 to 0.73)

δ2 0.16 (0.14 to 0.19) 0.23 (0.19 to 0.27)

β −0.19 (−0.61 to 0.22) −0.23 (−0.61 to 0.16)

Note: Intercept values (geometric mean values) of survival (α) 
and recapture probabilities for individuals recaptured (δ1) and not 
recaptured (δ2) the year before, as well as the coefficient of the linear 
term with summer wind speeds (β).

F I G U R E  3 Summer wind speeds did 
not have a strong influence on Manx 
shearwater rates of adult survival at 
Copeland (grey square) or Skomer Island 
(black triangle) (Table 1). However, a 
piece-wise regression analysis (dashed 
black line) indicates that a negative effect 
of wind may occur above wind speeds of 
3.04 m/s (95% CI: 2.86, 3.35; breakpoint 
estimate with horizontal 95% CI shown at 
top of graph). The survival estimates were 
obtained from the CJS model including 
summer wind speed as a covariate, 
vertical error bars represent the 95% 
credible intervals.
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also found that a high proportion of annual variation in survival was 
synchronous between the colonies (ICC = 0.87, 95% CRI: 0.53–0.98; 
Figure 2a), and that total temporal variation was slightly lower on 
Copeland (SD = 0.03), compared to Skomer Island (SD = 0.04; Fig-
ure  2b,c). At both colonies, the mean recapture probability was 
higher if an individual was seen the year before (Table 1), however, 
recapture probabilities were consistently lower on Copeland than on 
Skomer Island (Table 1).

3.2  |  Contribution of wind to synchrony and 
asynchrony in rates of survival

Based on the posterior credible intervals of the slope coefficients, 
summer wind speeds demonstrated a similar effect on Manx shear-
water survival at both colonies (Table  1, Figure  3). In both cases, 
the 95% credible intervals included zero, however, the full posterior 
distributions were highly negatively skewed with 82.6% and 88.1% 
of the MCMC draws below zero for Copeland and Skomer Island, 
respectively (Figure S10).

Comparing the median posterior values of the synchronous vari-
ance terms for CJS models with and without wind included, indicated 
that summer wind speed accounted for 3% of synchronous variation 
in survival (Table 2). However, given the highly similar 95% credible 
intervals of the synchronous variance terms, we conclude that the 
imputed difference in the median values reflects model stochastic-
ity. Likewise, the 95% credible intervals of the two asynchronous 
variance terms were highly similar, such that the summed median 
global and local random variance for models with and without wind 
speed were identical (1.18, Table 2). Consequently, it appears that 
neither synchronous, nor asynchronous, variation in Manx shear-
water survival can be strongly attributed to fluctuations in summer 
wind speed (Table 2).

The piece-wise regression analysis indicated a potential non-linear 
relationship between summer wind speed and survival, whereby sur-
vival decreases (slope coefficient = −0.22, SE = 0.16, t = −1.35) at wind 
speeds above 3.04 m/s (95% CI: 2.86, 3.35; Figure 3).

3.3  |  Population projection modelling

We ran colony-specific Leslie matrix models to quantify the theo-
retical population response to the imputed interpopulation differ-
ences in rates of survival. This analysis demonstrated that despite 

a seemingly small difference in the colony-specific mean values 
(Table  1), the time series of survival rates imputed for Copeland 
generates predominantly faster annual rates of population growth, 
compared to Skomer Island (Figure  4a). The projected absolute 
population size for Copeland was approximately 2.60 times (95% CI: 
2.24, 3.09) larger than Skomer Island after 40 years (Figure 4b).

4  |  DISCUSSION

In this study, we examined interpopulation differences and syn-
chrony in rates of adult survival for two colonies of a pelagic sea-
bird, the Manx shearwater. These colonies exhibit strong spatial 
overlap throughout the annual cycle, yet they diverge in terms of 
population size and maximum foraging distances (Figure 1; Dean 
et al., 2015; Kirk, 2017). In agreement with results from previous 
studies investigating synchrony in rates of survival for migratory 
birds that spatially overlap (e.g. Reiertsen et al.,  2021; Reynolds 
et al., 2011; Schaub et al., 2005), we found a high degree of syn-
chrony between the two colonies. However, we also show that 
Manx shearwaters breeding on Skomer Island, which travel fur-
ther during the breeding season (Dean et al., 2015), have slightly 
lower and more variable rates of adult survival. We also found evi-
dence that Manx shearwater rates of survival are negatively influ-
enced during years with elevated summer wind speeds. However, 
we did not identify that wind speed acts to strengthen or disrupt 
temporal synchrony in rates of survival, although this may reflect 
the limited number of years driving the non-linear relationship be-
tween survival and wind.

Extended foraging distances during the breeding season have 
previously been associated with lower rates of fecundity and declin-
ing population trends in a diving seabird, the Atlantic puffin (Fra-
tercula arctica, Fayet et al.,  2021). Population growth in long-lived 
species, such as seabirds, is considerably more sensitive to changes 
in adult survival, compared to fecundity (Horswill et al.,  2021; 
Sæther & Bakke, 2000; Stearns, 1992). A link between extended for-
aging trips during the breeding season and lower subsequent rates 
of adult survival, thus presents an additional mechanism that could 
mediate interpopulation differences in both seabird demography 
and population dynamics. In our study, we propose that individuals 
from colonies that conduct on average longer foraging trips experi-
ence greater reproductive costs and carry-over effects leading to 
lower subsequent rates of adult survival, particularly during years 
with adverse conditions.

TA B L E  2 Imputed residual variance of the random effects from the CJS models excluding (total) and including (residual) wind speed (W).

Model Variances
Synchronous variance 
(�2

�
)

Asynchronous variance 
(�2

�
)

Interclass 
correlation (ICC)

�
(
�c + � t + ��,c,t

)
p
(
�c,k + �p,c,t

)
Total 1.05 (0.47, 2.18) 0.13 (0.03, 0.49) 0.89 (0.55, 0.98)

�
(
�c + �cWt + � t + ��,c,t

)
p
(
�c,k + �p,c,t

)
Residual 1.02 (0.44, 2.14) 0.16 (0.03, 0.54) 0.87 (0.53, 0.98)

Note: The amount of synchronous variation in rates of adult survival for Manx shearwaters breeding on Copeland and Skomer Island (i.e., the intra-
class correlation, ICC) is also shown.
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Despite identifying a small difference in mean rates of adult sur-
vival between Copeland and Skomer Island (1%), we show that the 
slightly higher and less variable time series of survival imputed for 
Manx shearwaters breeding on Copeland generates considerably 
faster rates of population growth. This finding agrees with previ-
ous studies demonstrating that small differences in seabird rates of 
adult survival can lead to quantitative population-level effects (Hor-
swill et al., 2021). A demographic difference of 1% is used by the EU 
ORNIS committee (EU Birds Directive 79/409/EEC) as a threshold 
for acceptable additional mortality that results in negligible popula-
tion effects. However, this is not a consensus view (Horswill, Miller 
et al., 2022; Schippers et al., 2020), and, in agreement, we show that 
a difference of 1% in mean rates of adult survival can dramatically 
alter long-term population trajectories.

We demonstrate that the imputed times series of adult survival 
can generate rapid population growth. This analysis does not reflect 
true population change on Copeland or Skomer Island. This is be-
cause we do not account for individual heterogeneity in survival, fe-
cundity or breeding propensity, and juvenile survival is modelled as a 
function of adult survival. Furthermore, to standardise the analysis, 
we apply a constant rate of fecundity and breeding propensity to 
both colonies. Typically, fecundity is highly temporally (Horswill & 
Robinson, 2015) and spatially (Horswill et al., 2021) variable in sea-
birds. Environmental stochasticity can also increase the demographic 
impact of demographic rates that typically have a low influence on 
population growth, such as fecundity in long-lived species (Gaillard 
et al., 1998). Incorporating temporal variation and directional trends 
in fecundity could therefore increase predictive accuracy in these 
analyses (e.g. Horswill, Miller et al., 2022).

Previous analysis based on a shorter time series than considered 
in our study (1993–2019, Wood et al.,  2021), proposes that Manx 
shearwater survival declines with increasing summer wind speeds 
in the breeding season foraging area. By contrast, we identified that 
a negative relationship with summer wind speed only occurs above 
wind speeds of approximately 3.04 m/s. The detection of reproduc-
tive costs only during elevated environmental conditions is reported 

in terrestrial mammals and birds (Festa-Bianchet & Jorgenson, 1998; 
Laaksonen et al., 2002; Mysterud, Stenseth, et al., 2001; Mysterud, 
Yoccoz, et al., 2001; Tavecchia et al., 2005). However, to date, stud-
ies showing this relationship in marine species are limited.

Previous studies examining the flight behaviour of foraging 
Manx shearwaters from nearby breeding colonies (Bardsey and 
Lundy) suggest that individuals can achieve flight at very low duty 
cycles in perpendicular crosswinds (Spivey et al.,  2014) and high 
wind speeds (~8 m/s, Gibb et al., 2017). This suggests that if individ-
uals choose a bearing that ensures flight at 90° to the wind, on both 
the outward and return leg of a foraging trip, then interpopulation 
energetic differences associated with maximum foraging distances 
during the breeding season could be negligible. Consequently, physi-
ological comparisons of individually tracked birds, with demographic 
monitoring and more nuanced climate data, such as the number of 
days with head winds above a critical wind speed value (e.g., 3 m/s), 
may further clarify interpopulation differences in energy expendi-
ture and reproductive effort.

The level of interpopulation synchrony in rates of adult sur-
vival reported in our study (ICC = 0.87) is at the top end of values 
previously published for other species of seabird. For example, the 
mean intra-class correlation (ICC) between populations of Atlantic 
puffin with strong spatial overlap during the non-breeding season 
range from 0.79 to 0.87 (Reiertsen et al., 2021). By contrast, pop-
ulations of Atlantic puffin that are more spatially distinct have ICC 
scores between 0.32 and 0.67 (Grosbois et al.,  2009; Reiertsen 
et al., 2021). In these other studies, annual variation in survival was 
linked to the North Atlantic Oscillation (NAO), as well as mean wind 
speeds and sea surface temperatures (Grosbois et al., 2009; Reiert-
sen et al., 2021). Large-scale climate indices, such as NAO, are com-
monly identified as indirect and direct drivers of seabird survival. 
For example, studies on other seabird species that spend the non-
breeding period in the south-west Atlantic Ocean, similar to Manx 
shearwaters, have previously documented relationships between 
survival and the El Niño/Southern Oscillation (ENSO) phenomenon, 
the Southern Annular Mode and the Southern Oscillation Index 

F I G U R E  4 (a) Theoretical annual 
population growth rates based on the 
colony-specific time series of survival 
were predominantly faster for Copeland 
(solid line), compared to Skomer Island 
(dashed line). (b) This resulted in a final 
mean population size on Copeland that 
was approximately 2.6 times larger than 
on Skomer Island. Annual counterfactuals 
of population size based on the colony-
specific mean projected population 
sizes (black line) shown with the annual 
counterfactuals of population size 
based on the 95% quantile in projected 
population sizes (grey polygon).
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(SOI) (e.g., Horswill et al., 2014; Pardo et al., 2017). Previous studies 
of survival in Manx shearwaters did not identify an influential ef-
fect from winter sea surface temperature, winter wind speed or SOI 
(Wood et al., 2021). However, ENSO variability generates anomalies 
in sea-surface temperature that are advected over several years to 
the South Atlantic (Meredith et al., 2008). Consequently, it may be 
useful to consider whether ENSO and SOI under summed physical 
and biological process lags can describe some of the residual varia-
tion in Manx shearwater rates of survival.

The maximum foraging distances exhibited by colonial seabirds 
during the breeding season can vary interannually. For example, 
during years with adverse prey or climatic conditions, individuals 
may forage farther from the colony and extend trip durations (Burke 
& Montevecchi,  2009; Horswill et al.,  2017). Our study consid-
ers two colonies where interpopulation differences in maximum 
foraging distances are reported based on 3 years of data (Dean 
et al., 2015). These data were collected in concurrent years where 
colony-specific habitat utilisation did not vary interannually (Dean 
et al., 2015). Therefore, if Manx shearwaters extend their foraging 
trip distances and durations during years with low prey availability 
or adverse climatic conditions, similar to other species of seabird 
(Burke & Montevecchi, 2009; Horswill et al., 2017), additional track-
ing and energy budget analysis (e.g. Dunn et al.,  2022), alongside 
the existing mark-recapture monitoring, may further elucidate our 
proposed interpopulation differences in carry-over effects.

The imputed mean rates of adult survival for Manx shearwa-
ters breeding on Copeland and Skomer Island agree with previously 
published values for this species. For example, studies conducted in 
the 1960s estimate rates of adult survival for Manx shearwaters at 
another nearby colony (Skokholm Island) to be 0.95 (SD = 0.02; Har-
ris, 1966). Similarly, previous multi-state analysis of Manx shearwa-
ter survival on Skomer Island estimates a highly similar mean value 
for successful breeders (0.94, 95% CI 0.92–0.95, Wood et al., 2021). 
However, Wood et al. (2021) also identify that populations of Manx 
shearwaters are comprised of individuals with different demo-
graphic profiles, whereby successful reproduction is associated with 
elevated survival and breeding propensity. That we identify highly 
synchronised rates of survival between Copeland and Skomer Is-
land could imply that the proportion of birds with each demographic 
profile is similar across colonies, although future work could benefit 
from examining this further.

In this study, we identify interpopulation differences in rates of 
adult survival between two colonies of Manx shearwater that differ 
in population size and maximum foraging distances. Rates of survival 
were slightly lower in the larger colony that exhibits longer foraging 
trips during the breeding season. We hypothesise that carry-over 
effects associated with colony-specific foraging distances impact 
subsequent rates of adult survival. We also demonstrate that the 
interpopulation differences in rates of adult survival could lead to 
interpopulation differences in population dynamics. Additionally, 
we found that temporal fluctuations in rates of adult survival were 
highly synchronous between the study colonies, and that summer 
wind speed only impacts rates of survival at elevated values. Our 

study highlights that processes occurring during the breeding sea-
son can be important for understanding interpopulation differences 
in the demography and population dynamics of long-lived species, 
such as seabirds.
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share these data publicly without restriction due to potential com-
mercial interests from energy developments in the seas around 
both colonies. Data requests for commercial use will be consid-
ered. Code to replicate the analysis is available in the Supporting 
Information.
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