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Abstract

The 2.5 quintillion bytes of data created each day brings new opportunities, but also new
stimulating challenges for the discrete choice community. Opportunities because more and more
new and larger data sets will undoubtedly become available in the future. Challenging because
insights can only be discovered if models can be estimated, which is not simple on these large
datasets.

In this paper, inspired by the good practices and the intensive use of stochastic gradient methods
in the ML field, we introduce the algorithm called Window Moving Average - Adaptive Batch
Size (WMA-ABS) which is used to improve the efficiency of stochastic second-order methods.
We present preliminary results that indicate that our algorithms outperform the standard second-
order methods, especially for large datasets. It constitutes a first step to show that stochastic
algorithms can finally find their place in the optimization of Discrete Choice Models.
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Keywords; Optimization, Discrete Choice Models, Stochastic Algorithms, Adaptive Batch Size





             

1 Introduction

The 2.5 quintillion bytes of data created each day brings new opportunities, but also new
stimulating challenges for the discrete choice community. Opportunities because more and more
new and larger data sets will undoubtedly become available in the future. In addition, these new
data set comes the possibility to uncover new insights into customersâ behaviors. Challenging
because insights can only be discovered if models can be estimated, which is not simple on
these large data sets. State-of-the-art algorithms, but also standard practices regarding model
specification might no longer be adapted to these large data sets. Indeed, three state-of-the-art
discrete choice softwares (Pandas Biogeme (Bierlaire, 2018), PyLogit (Brathwaite et al., 2017),
and Larch (Newman et al., 2018)) are using the standard optimization algorithm available in the
Python package scipy, i.e. the BFGS algorithm and some variants.

In contrast, extracting useful information from big data sets is at the core of Machine Learning
(ML). Primarily interested in achieving high prediction accuracy, ML algorithms (and especially
Neural Networks) have proved to be successful on models involving a huge number of parameters.
Thus, large-scale machine learning models often involve both large volumes of parameters and
large data sets. As such, first-order stochastic methods are a natural choice for large-scale
machine learning optimization. Due to the high cost of computing the full-Hessian, the second-
order methods have been much less explored. And yet, algorithms exploiting second-order
information can provide faster convergence.

For the sake of interpretability, discrete choice models usually have a more restricted set of
parameters than models typically investigated in the ML community. We, therefore, argue that
it is possible to use second-order information to estimate these models. In this paper, inspired
by the good practices and the intensive use of stochastic gradient methods in the ML field, we
introduce the algorithm called Window Moving Average - Adaptive Batch Size (WMA-ABS)
which is used to improve the efficiency of stochastic Iterative Optimization Algorithms (IOAs).
The objective of this paper is to investigate the convergence of our algorithms by benchmarking
it against standard IOAs using primarily Discrete Choice Models (DCMs) on different data
sets. We also show that the WMA-ABS improves different IOAs, ranging from first-order to
complex second-order, in terms of optimization speed. We conclude with a parameters study on
the WMA-ABS.





             

2 Related Work

While the principle of optimization is pretty easy to understand, i.e. finding a maximum or a
minimum value that can be subject to some constraints, there are many ways to achieve the
optimum. Some of the major subfields are Convex Programming, Integer Programming, Combi-
natorial Optimization, and Stochastic Optimization. For this thesis, we are interested in Iterative
Optimization Algorithms (IOA) with the addition of stochasticity. Thus, we will not discuss
other types of optimization. We recommend the reader to read the book named "Optimization:
Principles and Algorithms" of Bierlaire (2015) for a good mathematical introduction on the
principle of optimization and some algorithms.

The common ancestor of all IOA has to be the Gradient Descent (Cauchy, 1847). Its prin-
ciple is straightforward. We define a function f (x) : Rn → R such that it is defined and derivable
in a neighborhood of a point a. We know that f will decrease the fast along its negative gradient.
Thus, if

xn+1 = xn − γ∇ f (xn) (1)

with γ the step size small enough, then f (xn) ≥ f (xn+1). From this very principle, many
algorithms have been created. One of the branches deriving from this algorithm is the Stochastic
Algorithms. One of the first algorithm to appear is Stochastic Gradient Descent1 (SGD). The
principle is almost the same as in Equation 5. Let us define a function F such that it is a finite
sum of other functions.

F(x) =
1
n

n∑
=1

fi(x) (2)

Each function fi is generally associated with the i-th observation in the dataset. Then, we
can simply replace f (xn) in Equation 5 by f j(xn) where j is a random index. This definition
corresponds to the SGD. This algorithm inspired many researchers. Instead of providing you
with a list of algorithms arising from SGD, we give you a schematic representation of the
inspiration for many first-order stochastic algorithms in Figure 1. If you want more information
about the algorithms in Figure 1, we recommend the reader to have a look at the paper of Ruder
(2016).

1We do not have a precise date for its emergence. Many sources are dating its origin back to the 1940’s.





             

Adagrad
(Duchi et al., 2011)

RMSProp
(Tieleman and Hinton, 2012)

NAG
(Nesterov, 1983)

Momentum
(Polyak, 1964)

Adadelta
(Zeiler, 2012)

Adam
(Kingma and Ba, 2014)

Nadam
(Dozat, 2016)

AMSGrad
(Reddi et al., 2018)

AdaMax
(Kingma and Ba, 2014)

Averaging
(Polyak and Juditsky, 1992)

SAG
(Schmidt et al., 2013)

SAGA
(Defazio et al., 2014)

Figure 1: Historical development of the first-order iterative methods. Each algorithm with a
bold border have the Stochastic Gradient Descent (SGD) as their common ancestor.

All the algorithms given in Figure 1 do not represent every first-order stochastic method ever
created. However, it gives a good overview of the work that has already been done. The
reason behind all of these needed algorithms is Machine Learning. Indeed, this field has been
trending for the last twenty to thirty years with the quick development of computer technolo-
gies. People were able to process more data since they had more and more power on their
computers. In the last fifteen years, researchers have been working a lot on Neural Networks.
We recommend the reader to have a look at the book "An Introduction to Neural Networks"
from Gurney (2014) for more information about these models. Apart from being very complex
biologically-inspired models, Neural Networks are good at working with huge datasets and an
important number of features. Thus, if we want to optimize such a model, it may be difficult, or
even impossible, to compute the Hessian of this model due to the number of features. Thus, re-
searchers have mainly focused on developing first-order methods to solve this particular problem.

However, researchers have not neglected second-order and quasi-Newton methods. They
have been developing these techniques for a specific purpose. For example, Gower et al. (2018)
improved the BFGS algorithm specifically for solving Matrix Inversion problems. They are
using a stochastic version of the BFGS algorithm in their case. Since our computers are much
more powerful nowadays, researchers have started to work with second-order methods. However,
they try to avoid to compute the Hessian since it is quite a heavy work. Martens (2010), for





             

example, developed a Hessian-free optimization technique specifically for Deep Learning. Other
researchers have worked on Hessian-free optimization such as Kiros (2013), and Wang et al.

(2014). Some researchers have been working on modifying the BFGS algorithms in a stochastic
way which corresponds to Hessian-free optimization. We can cite the articles of Mokhtari and
Ribeiro (2014), Keskar and Berahas (2016), and Bordes et al. (2009, 2010). The literature on
second-order stochastic methods is sparser compared to first-order and quasi-Newton methods.
Nevertheless, we can cite the article of Byrd et al. (2011) who are trying to get some information
from the Hessian to improve the optimization process. More recently, Agarwal et al. (2016)
developed a second-order stochastic method specifically for Machine Learning, i.e. using the
finite-sum objective function.

In our case, we are interested in techniques that can be helpful for any kind of IOAs, first-
order or second-order. For example, all algorithms in Figure 1 have one characteristic in
common: they all use static batch size. For a long time, researchers have been only trying to find
better learning rates such as the algorithm Adagrad. However, in recent years, thanks to the avail-
ability of more advanced neural networks architecture and more power, researchers have been
interested in Adaptive Batch Size (ABS). We can cite the article of Balles et al. (2016) who are
coupling the adaptive batch size with the learning rate. They show the mathematical motivation
to couple both of these parameters. However, they do not explore the performance improvement.
Devarakonda et al. (2017), on the other hand, demonstrate that they can achieve a speedup of
up to 1.5 times in terms of optimization speed for different neural networks. Following these
articles, multiple researchers have been working on different versions of ABS. Bollapragada
et al. (2018) have developed an ABS for L-BFGS specifically for Machine Learning. They
even propose a convergence analysis of their algorithm. Shallue et al. (2018) makes use of new
hardware technologies for parallelizing the optimization process. In their article, they study
the relationship between batch size and the number of training steps, which is related to the
optimization speed. They do not present a new ABS method but they show that the theory
behind this method works and is worth exploring in more details.

3 Window Moving Average - Adaptive Batch Size

We present in this section the algorithm named Window Moving Average - Adaptive Batch
Size (WMA-ABS). This algorithm has been developed with the idea in mind that if a stochastic
algorithm is struggling to improve, it can be fixed by updating the batch size. However, due to
the high fluctuation of the loss function, it is difficult to distinguish, at the early sign of lack of
improvement, if this behavior is due to the stochasticity of the algorithm or the prior. We thus





             

need a way to smooth the loss function and the improvement. We used the Window Moving
Average algorithm often used in Economics and Computer Vision to smooth our functions.

We start by defining the improvement of the loss function as follows:

∆i =
Li−1 − Li

Li−1
(3)

Where i is the current iteration, and Li is the value of the log likelihood at iteration i. We can
now define the Window Moving Average (WMA) for an arbitrary function f . For a window of n

values at the current iteration M, the WMA at M is defined by:

WMAM,n =
n fM + (n − 1) fM−1 + · · · + 2 fM−n+2 + fM−n+1

n + (n − 1) + · · · + 2 + 1
(4)

Where fi corresponds to the value of the function f at iteration i. Using the smoothed value of
the objective function, it becomes easier to interpret the improvement. Indeed, if the window
is large enough, we will not see any spikes in the improvement due to the stochasticity of the
optimization algorithm.

The WMA-ABS is an algorithm that has been designed such that it can be used with any standard
Stochastic Iterative Optimization Algorithm (SIOA). Algorithm 1 shows the pseudo code for the
standard IOA. Line 4 is the most important line where much can change between algorithms.
Indeed, to compute the direction of descent, we can either use the gradient where pk is defined
as:

pk = −∇ f (xk) (5)

In this case, we only use the gradient of the function f . If we compute the direction using the
Newton step, we also use the Hessian of the function f . To find the search direction, we need to
solve the following equation:

∇2 f (xk) · pk = −∇ f (xk) (6)

For stochastic IOA, the only difference is the rule with which we will compute the direction.
Indeed, most of them require to draw a sample of n observations and compute the gradient or
the Hessian on these observations only. The rest of these algorithms does not change much from
the pseudocode in Algorithm 1.

As stated earlier, the WMA-ABS is a method that can be plugged to any type of SIOA. The idea
is to simply have a look at the improvement of the loss function at the end of the iteration and





             

Algorithm 1 Pseudocode for standard IOA
Input: function ( f ), initial parameters (x0), the maximum number of iterations (Imax), and the

stopping criterion (ε∗)
Output: optimal parameters (x∗)

1: function optimize
2: Define the current parameters xk = x0, Number of iteration k = 0, Stopping criterion
ε = ∞

3: while k < Imax && ε < ε∗ do
4: Compute the search direction pk in function of f (xk), ∇ f (xk), and ∇2 f (xk)
5: Compute the step size α using a line search algorithm
6: Update the parameters: xk+1 = xk + αpk

7: Update the other variables: k = k + 1 and ε = ||∇ f (xk+1)||
return x∗ = x, the optimal parameters

decide if the algorithm is improving enough or not. To decide if the improvement was good
enough, we need to use the value of the objective function for the previous iterations. We can
store the WMA of the objective function in an array and look at its improvement between the
current iteration and the previous one. Then, we can simply argue that if the current improvement
is lower than a given threshold, the algorithm is not improving enough. If we want to be more
conservative, we can ask the method to wait until a certain number of iteration with a low
improvement has been reached before updating the batch size. To update the batch size, we can
define a factor by which the batch size will be increased. We thus define the four parameters
used in the method WMA-ABS:

• W corresponds to the size of the window. It is the same as n in the explanation of the
WMA, see Equation 4.
• ∆ corresponds to the threshold under which the batch size will be increased.
• C corresponds to the maximum number of times the improvement can be under the

threshold ∆. If the number of time is bigger than C, the batch size will be increased.
• τ corresponds to the factor multiplying the current batch size. For example, if m corre-

sponds to the current batch size, the next one will be equal to τ · m.

We can now present the pseudocode of the WMA-ABS. It is given in Algorithm 2. As you can
see, we start the current function value in a global array named F . We then compute the WMA
and store it in another arrayA. Then, we check that it is not the first iteration to avoid an issue
with the computation of the improvement. If it is not the case, we can compute it using Equation
3. Then, we check if the current batch size is smaller than the full size. If it is the case, it means
that we can increase it. We then check if the current improvement is smaller than the threshold
∆. If it is the case, we update the counter c. If the counter achieves the defined value of C, we





             

decide to increase the batch size. We simply multiply the current batch size by the update factor
τ and return it.

Algorithm 2 Window Moving Average - Adaptive Batch Size (WMA-ABS)
Input: Current iteration index (M), function value at iteration M ( fM), batch size (n), and full

size (N)
Output: New batch size (n′)

1: function WMA-ABS
2: Store fM in a list F
3: Compute WMAM,W using F and store it in a listA
4: if M > 0 then . We need at least two values to compute the improvement.
5: Compute ∆ the improvement as in Equation 3 using the listA and store it in a list I
6: if n < N then
7: if IM < ∆ then . Improvement under the threshold
8: c = c + 1
9: else

10: c = 0 . We restart the counter

11: if c == C then . We will update the batch size
12: c = 0 . We restart the counter
13: n′ = τ · n

14: if n′ >= N then . The batch size is too big now
15: n′ = N

16: else
17: n′ = n

return n′

As shown above, the WMA-ABS method uses four different parameters. While it is possible to
optimize these hyperparameters, it would be counterproductive since we want to speed up the
optimization process of SIOA. We thus suggest some set of parameters given in Table 1.

Table 1: Suggested parameters for the WMA-ABS algorithm

Simple Complex

W 10 10

∆ 1% 1%

C 1 2

τ 2 2

The window has a value of 10 to allow some smoothing. We argue that this parameter does





             

not have a huge influence on the speed of the optimization and we show it in the results. The
threshold is set low enough such that we do not update the batch size while the algorithm can
still show some significant improvements. The multiplication factor is set such that it gives a
significant boost in terms of batch size but keep it small at the beginning of the optimization
process. The only parameter that changes is the count before updating the batch size. We give
two different values for two types of models: simple and complex. While the differentiation
between these two types of model is difficult to do, the reason why we change this parameter is
easier to understand. Indeed, for a simple model, the objective function is generally less complex.
Thus, any IOA should be able to optimize it faster and without issue. Therefore, we can be
confident about the computation of the improvement of our algorithm while using WMA-ABS.
For the complex, on the contrary, we need to make sure that the algorithm is struggling to
improve itself. We thus prefer to wait and make sure that the algorithm is not able to improve
after two consecutive steps before updating the batch size.

4 Case study

As a case study, we decided to use multiple IOA and create their stochastic counterparts. We also
define multiple discrete choice models on multiple data sets. Discrete Choice Models (DCMs)
are a fascinating case study for the study of optimization. Indeed, DCMs are built such that they
keep their interpretability. We thus cannot make models with thousands of parameters as seen in
Deep Learning. In addition, we can use second order optimization algorithms such as Newton
Method since the computation of the Hessian is analytically possible. All the models have been
created using Pandas Biogeme (Bierlaire, 2018). The algorithms have been written in Python
to work with Pandas Biogeme. In this section, we will first present the algorithms and their
stochastic counterparts. We will then present the different models and their data set.

4.1 Algorithms

We selected four different standard IOA. The IOAs are defined in Algorithm 1. In this section,
we present the similarities and differences between the selected IOAs. The first algorithm we
selected is Gradient Descent (Cauchy, 1847). If we define the function f being the objective
function we are trying to optimize, then the search direction pk is given by Equation 5, i.e.

pk = d. There are much more advanced stochastic first-order optimization algorithms. However,
the effect of the WMA-ABS algorithm may be less important due to the improvements already
made. However, in this specific case study, we work with DCMs. Thus, we can use algorithms





             

at a higher order. We thus decided to select the algorithm BFGS (Fletcher, 1987). To find the
search direction, we need to solve the following Newton equation:

Bk pk = −∇ f (xk) (7)

where Bk is an approximation of the Hessian matrix at iteration k. The quasi-Newton condition
used to update Bk is given by:

Bk+1(xk+1 − xk) = ∇ f (xk+1) − ∇ f (xk) (8)

From this condition, we can derive the update Bk+1 using different substitutions. We recommend
the reader to have a look at the literature for more details on the BFGS algorithm. The final two
algorithms that were chosen are the Newton method and the Trust-Region algorithm. The search
direction for the Newton method is given in Equation 6. The Trust-Region algorithm does not
have a search direction defined in only one equation. Indeed, the idea of this algorithm is to
define a subproblem around the current iteration. This subproblem is written as such:

min mk(p) = f (xk) + ∇ f (xk)T p +
1
2

pT∇2 f (xk)p

s.t. ||p|| ≤ ∆k

(9)

Where ∆k corresponds to the radius of the current subproblem. Then, we have to check the
model validity using the following formula:

ρk =
f (xk) − f (xk + pk)
mk(0) − mk(pk)

(10)

Where pk is the optimal solution in Equation 9. Then, depending on the value of ρk, we will
decide if the radius ∆k has to change and if the current iteration xk can be updated using pk as the
search direction. The most complex part of this method is to solve the Trust-Region subproblem.
In our case, we used the Conjugated Gradient Steihaugâs Method (Steihaug, 1983). We refer the
reader to this article for more details about this algorithm.

4.2 Models

In this section, we present the different models that are used for the case study. Most of the
models presented are DCMs and were built with Pandas Biogeme. The rest was created using the
Python package scikit-learn Pedregosa et al. (2011). We choose a different type of models,
more or less complex, and with different data set size. Table 2 give a summary of all the model
presented in this article. More details on the different models are given below.





             

Table 2: Summary of the models used for the case study

Name Type #Parameters Data set #Observations

MNL-SM MNL 4 Swissmetro 6’768

Nested-SM Nested 5 Swissmetro 6’768

LogReg-BS Logistic Regression 12 Bike Sharing 16’637

small MNL-CLT MNL 100 London Passenger Mode Choice 27’478

MNL-CLT MNL 100 London Passenger Mode Choice 54’766

MNL-SM is a simple Multinomial Logit Model using the Swissmetro data set (Bierlaire et al.,

2001). The Swissmetro data set contains 10’728 observations. This model has four
different parameters, two for the constants and one for both time and cost. This model can
be found on Biogeme website2 under the name logit01.py. A few observations were
removed due to not having the choice displayed or other factors. In the end, this model
uses 6’768 observations.

Nested-SM is a simple Nested Logit Model using the Swissmetro data set. It has exactly the
same parameters as the model MNL-SM with the addition of the parameter for the nest.
This model can also be found on Biogeme website1 under the name 09nested.py. The
same observations were removed for a total of 6’768 observations used.

LogReg-BS is a Logistic Regression using the Bike Sharing data set3. This regression is using
the 12 parameters available which correspond to all parameters except the parameter cnt.
Indeed, this model is trying to predict the number of bikes that have been rented every
hour. The data set has 16’637 observations. We use the first two years as a training set
and the remaining third year as a test set.

small MNL-CLT is a Multinomial Logit Model using the London Passenger Mode Choice data
set4 Hillel et al. (2018). The model has 100 parameters and is available in Hillel (2019).
The data set spans over three years, from 2012 to 2014. For this specific model, we only
used the year 2012 for a total of 27’478 observations.

MNL-CLT is exactly the same model as small MNL-CLT except that we used the years 2012-2013
to train the model for a total of 54’766 observations.

2http://biogeme.epfl.ch/examples_swissmetro.html
3It can be found on UCI: https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset.
4Contact tim.hillel@epfl.ch for more information about this data set.



http://biogeme.epfl.ch/examples_swissmetro.html
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset


             

5 Results

In this section, we present the results obtained with the proposed method WMA-ABS. We start
by showing that it effectively improve the optimization compared to stochastic IOAs. We then
show in details the results obtained with the different models and algorithms presented in the
case study. We conclude this section by showing a study on the suggested parameters and
explain them in more details.

5.1 Effect of WMA-ABS

If we want to study the effect of WMA-ABS on the optimization of DCMs, we need to start with
a baseline. We thus decided to use the simplest model, the MNL-SM, and optimize it with the four
algorithms presented in the case study. The results are given in Figure 2.
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Figure 2: Optimization of the model MNL-SM with the Gradient Descent, the Newton method,
the BFGS, and the Trust-Region algorithms. The number in parentheses in the legend
gives the number of epochs needed until convergence.

Based on the literature, the results obtained in Figure 2 are expected. Indeed, Gradient Descent
takes the most number of epochs to optimize the model, while Trust-Region took the least. We
can thus first conclude that this model can be globally optimized. The next step is to use a





             

stochastic IOA to optimize this model. Lederrey et al. (2018) developed the Stochastic Newton
Method (SNM) and we applied it to this model. The results are given in Figure 3.

0 5 10 15 20 25 30
Epochs

7000

6800

6600

6400

6200

6000

5800

5600

5400

Lo
g­

lik
el

ih
oo

d

Optimal value
batch = 50
batch = 100
batch = 500
batch = 1000
batch = 5000 0.0 0.5 1.0 1.5 2.0

Epochs

7000

6500

6000

5500

Lo
g­

lik
el

ih
oo

d

Figure 3: Optimization of the model MNL-SM with the Stochastic Newton Method. The lines
correspond to the average values over 10 runs.

From Figure 3, we can extract some useful information:

• The value of the objective function tends to be extremely noisy, especially with small
batch size.

• The SNM is not able to converge in a reasonable number of epochs no matter the batch
size. Indeed, we used a batch size of up to half the size of the data set and the algorithm
seems to be stuck close to the optimum. However, it is not able to fully converge.

• Using smaller batch size increase the speed of the optimization at the beginning of the
optimization process, thus comforting the idea of starting with small batch size and
updating it later on.

We can now address the first two issues. Indeed, the use of the WMA is justified by the fact
that we need to have a precise idea on the improvement of the objective function. Thus, its
smoothing will greatly help to interpret its change of value. Concerning the lack of convergence,
Lederrey et al. (2018) gives a detailed discussion. In our case, we can easily address this issue
by finishing the optimization process with a full batch, i.e. using all the available data. Finally,
by using the third point, it is almost certain that we can speed up the optimization process.





             

Now that we have all the information needed from the experiment with stochastic algorithms,
we can have a look at the behavior of the WMA-ABS algorithm. As a starting point, we used the
stochastic Newton method and added the WMA-ABS method using the parameters for simple
models provided in Table 1. We optimized the model MNL-SM for the comparison with a starting
batch size of 100.
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Figure 4: Improvement of the log likelihood and update of the batch size using the WMA-
ABS algorithm with the stochastic Newton method on the optimization of the model
MNL-SM.

In Figure 4, the 19 iterations corresponds to 9.45 epochs which is more than the 9 epochs that
NM needed to optimize the model MNL-SM. We cannot make the conclusion that the WMA-ABS
is not good enough yet5. Next section gives a more detailed comparison including this one. We
should, therefore, concentrate on the improvement curve. At first, we see that the algorithm
makes a few steps with the starting batch size. Once the improvement goes under 1%, the
batch size is updated and we can see that it spikes once outside of the threshold zone. So, the
WMA-ABS is able to make better improvement. Logically, the improvement becomes smaller
again. But due to multiple updates of the batch size, the algorithm is able to improve better than
the threshold once more. It finishes the optimization process by some iterations at the full batch
size.

The interesting facts about the WMA-ABS algorithm are that it is definitely able to create better
improvements on the objective function. As shown with this specific example, the WMA-ABS
method may not be able to always be faster than its standard counterpart. However, this kind

5If it was the case, this paper would not exist.





             

of behavior is expected on simple models with a small data set. We will thus continue the
investigation on the other models with the other algorithms.

5.2 Comparison between algorithms

Now that we know that the WMA-ABS method is working, we want to study in more depth its
efficiency. We start with the model MNL-SM. The goal is to optimize it using the WMA-ABS
algorithm in addition to the four stochastic IOAs presented in the case study. We use the
suggested parameters for a simple model and start with a batch size of 100. We optimized the
model 20 times and show the number of epochs required to optimize the model in Figure 5.
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Figure 5: Comparison of WMA-ABS on the four optimization methods for the model MNL-SM.
The red dotted lines correspond to the number of epoch required for the corresponding
IOA to optimize the model.

In Figure 5, the red dotted lines are equivalent to the values given in parentheses in Figure 2.
The goal of the WMA-ABS is to be under this value. We can see here that it is the case for all
algorithms except the Newton method. So, even for a simple model with few data, the WMA-
ABS algorithm is able to beat its standard counterpart. We can do now the same comparison
with the model Nested-SM. We do not change the set of parameters for WMA-ABS nor the
starting batch size. The results are given in Figure 6.
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Figure 6: Comparison of WMA-ABS on the four optimization methods for the model
Nested-SM. The red dotted lines correspond to the number of epoch required for
the corresponding IOA to optimize the model.

For this model, we can see that the number of epochs required to optimize the model with the
Gradient Descent increased greatly. For the other algorithms, the optimization process is only
a little bit longer compared to the model MNL-SM. However, it is interesting to note that this
time, the WMA-ABS algorithm was able to beat all of its counterparts. The difference is less
significant for the Gradient Descent. It is also interesting to see that BFGS and Newton Method
are close. This shows that the approximation of the Hessian is sometimes more than enough. In
the end, we obtain an improvement of up to 20.44% for BFGS, 15.38% for NM, and 19.40% for
Trust-Region. We can now do the same study for the most complex model with the most data in
our case study: the MNL-CLT. However, we will not show the results for the Gradient Descent
since it would surely skyrocket and take too much time to optimize. We also changed the set of
parameters to use the ones suggested for complex models. Finally, we started with a batch size
of 1’000 observations to avoid issues with batches that are too small. The results are given in
Figure 7
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Figure 7: Comparison of WMA-ABS on the four optimization methods for the model MNL-CLT.
The red dotted lines correspond to the number of epoch required for the corresponding
IOA to optimize the model.

The results show that WMA-ABS is able to optimize faster this model than its counterparts.
We also see that BFGS is struggling to optimize it. It is possible that it comes from the fact
that the Hessian has now a size of 100 × 100 which is quite big to simply approximate it. The
improvement over the standard IOAs is of 16.93% for BFGS, 19.70% for Newton Method, and
54.14% for Trust-Region. The last result is impressive and can be explained by the fact that
Trust-Region may be struggling at the beginning of the optimization with a full batch. Thus, it
helps a lot to only select part of the data and uses more and more data the closer we get to the
optimum solution.

We finally present two tables to summarize the results obtained thus far. Table 3 present
the number of epochs used to optimize the models MNL-SM, Nested-SM, and LogReg-BS for
the four algorithms presented in the case study. The line named IOA corresponds to the
values that the WMA-ABS has to beat. We used both suggested sets of parameters as well as
optimized parameters. These optimized parameters have been found using the Python package
hyperopt (Bergstra et al., 2015). The values for some of these parameters are given in Figure 5
and are discussed in the following section. The first conclusion we can draw from Table 3 is that,
except for the model MNL-SM with the Newton method, the WMA-ABS algorithm is always able
to beat its counterpart. For the Gradient Descent, the set of parameters does not seem to change
anything in the length of the optimization. However, the set of parameters for simple models is
better by quite a margin for the other algorithms. If we optimize the WMA-ABS parameters,





             

we only obtain a small improvement for the BFGS and Newton method. For Trust-Region,
improvement is more important.

Algorithms MNL-SM Nested-SM LogReg-BS

GD

IOA 70 302 /

Simple 63.74 ± 3.32 296.61 ± 8.53 /

Complex 63.15 ± 2.36 295.27 ± 7.02 /

optimized / / /

BFGS

IOA 12 15 23

Simple 9.81 ± 1.10 11.93 ± 1.53 20.10 ± 0.97

Complex 10.83 ± 1.12 12.50 ± 1.15 21.03 ± 0.80

optimized 9.25 ± 1.21 / 20.32 ± 1.17

Newton

IOA 7 14 27

Simple 9.97 ± 1.26 ∗ 11.85 ± 1.65 25.31 ± 2.39

Complex 11.70 ± 1.42 ∗ 12.74 ± 1.30 24.53 ± 2.14

optimized 9.55 ± 0.96 ∗ / 24.89 ± 2.11

Trust-Region

IOA 6 7 7

Simple 5.06 ± 0.39 5.64 ± 0.97 4.86 ± 0.10

Complex 6.52 ± 0.48 ∗ 6.76 ± 0.31 6.35 ± 0.11

optimized 3.55 ± 0.22 / 3.95 ± 0.51

Table 3: Number of epochs required to optimize the first three models. The numbers corresponds
to the average value and the standard deviation over 20 optimization process. The bold
values indicates the best set of parameters. Values with an asterisk correspond to the
WMA-ABS method being worse than its counterpart.

Table 4 present the number of epochs used to optimize the models small MNL-CLT and MNL-CLT
for three of the algorithms presented in the case study. For these two models, the best set of
parameters is the one suggested for complex models. The difference is especially important
for the Trust-Region algorithm. We achieve here improvements between 15% and 54% with
the right set of parameters. It is interesting to note that the size of the data set does not play
an important role in the optimization of this model. Indeed, we see that the number of epochs
required to optimize the models to convergence is quite similar between the algorithms. The
fact that Trust-Region is faster to optimize the model MNL-CLT rather than the model small
MNL-CLT is difficult to explain. It is possible that it is due to the fact that there is more correlation





             

in the year 2013 of the data. This needs to be investigated in the future.

Algorithms small MNL-CLT MNL-CLT

BFGS

IOA 118 127

Simple 106.77 ± 3.91 107.55 ± 3.17

Complex 101.11 ± 2.94 105.50 ± 2.96

Newton

IOA 40 38

Simple 30.40 ± 1.39 30.64 ± 1.47

Complex 30.17 ± 1.10 30.51 ± 1.62

Trust-Region

IOA 20 20

Simple 11.65 ± 1.92 10.38 ± 2.31

Complex 10.35 ± 0.95 9.17 ± 1.41

Table 4: Number of epochs required to optimize the last two models. The numbers corresponds
to the average value and the standard deviation over 20 optimization process. The bold
values indicates the best set of parameters.

5.3 Parameters study

Now that we have shown that the WMA-ABS algorithm works well and is able to optimize
faster than its counterpart, we need to have a look at the parameters. Indeed, it would be
counterproductive to spend a lot of time finding the right set of parameters to optimize the model
20% faster. We would thus prefer to use generic parameters that would allow us to optimize
the model faster, even if it is slower than with optimized parameters. As shown in Table 3, the
models MNL-SM and LogReg-BS have been compared with optimal set of parameters. These
optimal values are given in Figure 5. At first, we can see that these optimum parameters are
quite different from the suggested one except for C. W is the parameter with the most deviation.
However, it seems that if it takes a value close or bigger than 10 is optimal. Interestingly, the
threshold ∆ takes values a bit higher than the one suggested, same for the factor τ. Since these
models are simple with a global optimum, there is no need to spend a lot of time in the small
batch size. Indeed, if we can quickly get closer to the solution and then go to the full batch, it
will be faster. In addition, it seems that the algorithm is confident that the improvement of the
objective function is less highly correlated to the noise of the stochasticity, thus the high value
for the threshold.





             

Model Algorithm W ∆ [%] C τ

MNL-SM

BFGS 29 3.0 1 1.8

NM 18 4.4 1 6.2

Trust-Region 9 3.9 1 5.1

LogReg-BS

BFGS 9 5.1 2 5.5

NM 19 2.4 4 5.6

Trust-Region 30 7.9 1 4.6

Table 5: Optimized parameters found using the package hyperopt for the models MNL-SM and
LogReg-BS optimized by Newton method, BFGS, and Trust-Region.

By analyzing the values in Table 5, we could think that the suggested parameters are not good
enough. However, as shown in Table 3, the improvement with the optimized parameters is quite
low compared to the set of parameters for simple models, except for the algorithm Trust-Region.
Nonetheless, it is important to understand the effect of the parameters on the speed of the
optimization of these models. As explained earlier, we do not want to find and use the optimal
parameters. We thus decided to start with the suggested parameters and explore from this starting
set. The idea is to vary each parameter while the others are fixed to identify which parameters
are the most important. We started with the model MNL-SM and the Newton method. The results
are similar for the other algorithms. Results are given in Figure 8.

The first interesting parameter is the Window. Indeed, we see in Figure 7(a) that this parameter
does not influence the number of epochs required. Thus, we can use any value for this parameter.
We recommended here to use the value 10 which is big enough to smooth the objective function.
The threshold, on the other hand, cannot be too small, see Figure 7(b). This is expected since
we are waiting too long that the algorithm is close to convergence. The primary goal of the
algorithm is to advance quickly at the beginning. It is thus required to get closer to the optimum
but quickly switch to higher batch size. The count has an interesting linear relationship in
Figure 7(c). For such a simple model, the lack of improvement is mostly coming from the
algorithm struggling to optimize. Thus, we can confidently update the batch size when the
improvement is low enough. Thus, the best value is definitely 1. For the last parameter, we
can see that the factor has to be bigger or equal to 2, see Figure 7(d). While it is obvious that
a factor too small will slow the optimization process, it is quite interesting to see that using a
value bigger than 2 for the factor is not significantly improving the speed of the optimization.
We did the same study with the model LogReg-BS and the BFGS algorithms. The results are
given in Figure 9. For this model, we also used the suggested set of parameters for a simple
model since it is quite small.
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Figure 8: Evaluation of different parameters values for the model MNL-SM and the Newton
method. The other parameters were set to the values suggested for simple models.
Each set of parameters was used to optimize the model 20 times. The red dotted line
corresponds to the optimization with the non-stochastic version of the algorithm. The
gray area corresponds to the 95% interval trained with the suggested parameters.

By comparing Figures 8 and 9, we see that the curves have not changed for the parameters
W and ∆. Indeed, the window seems that it does not have any influence on the speed of the
optimization. However, it is possible that it has more importance for bigger models such as the
model MNL-CLT. Nevertheless, using a value of 10 does not harm the speed of the optimization
and it will surely help quite a lot when the objective function becomes noisier. For the threshold,
the results simply indicate that we need to use a value that is not too small. Higher values
do not show any significant improvement in the speed of the optimization process. Thus, 1%
seems to be a reasonable choice in this case. For the factor, shown in Figure 8(d), the results are
different from the model MNL-SM. Indeed, it seems that using a bigger factor tends to make the
optimization slower. This is surely due to the fact that the algorithm is not exploiting the gain of
speed due to the use of small batch size. It is thus better to use a slightly smaller value for the
factor. Looking at the results, a value of around 1.5-2 would be the best, thus supporting the
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Figure 9: Evaluation of different parameters values for the model LogReg-BS and the BFGS
algorithm. The other parameters were set to the values suggested for simple models.
Each set of parameters was used to optimize the model 20 times. The red dotted line
corresponds to the optimization with the non-stochastic version of the algorithm. The
gray area corresponds to the 95% interval trained with the suggested parameters.

suggested value. Finally, for the parameter count, we see that the linear relationship is slowly
fading for the small values as shown in Figure 8(c). Indeed, for higher values of the count,
we keep the same linear relationship between the value of this parameter and the speed of the
optimization. However, for lower values, the curve is slightly flattened. It thus suggests us
that a higher value for this parameter is required for a more complex model as suggested when
presenting the parameters.





             

6 Conclusion & Future Work

In this paper, we have presented an adaptive batch size algorithm called WMA-ABS. The central
idea is to look at the improvement and increase the batch size when the improvement is too low
using some smoothing technique to be more accurate. We show that it works well with different
second-order IOAs and quasi-Newton method. We have confirmed that the use of stochastic
algorithms is more interesting for models having a larger data set and more parameters. While
the WMA-ABS algorithm has some parameters that can be optimized, it can also be used with
the recommended sets of parameters given in Table 1 and show satisfying results. This algorithm
has shown up to 50% of speed up in the optimization process with the standard parameters. It
also shows that the more complex a model, the most improvement it can bring.

For future research, we can perform more tests on many different models and data sets. The
adaptive batch size could also be used in addition to other improvements found in the literature.
Secondly, we would like to update the WMA-ABS method such that it has more control over
the size of the batch. Currently, it can only update it by the factor τ predefined in the parameters.
However, it would be interesting to define heuristics able to automatically choose the next batch
size, being either bigger or smaller.
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