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Abstract 

This paper proposes an approach called block scaling quality (BSQ) for estimating the prediction accuracy of 

a deep network model. The basic operation perturbs the input spectrogram by multiplying all values within a block 

by �, where � is equal to 0 in the experiments. The ratio of perturbed spectrograms that have different prediction 

labels than the original spectrogram to the total number of perturbed spectrograms indicates how much of the 

spectrogram is crucial for the prediction. Thus, this ratio is inversely correlated with the accuracy of the dataset. The 

BSQ approach demonstrates satisfactory estimation accuracy in experiments when compared with various other 

approaches. When using only the Jamendo and FMA datasets, the estimation accuracy experiences an average error 

of 4.9% and 1.8%, respectively. Moreover, the BSQ approach holds advantages over some of the comparison 

counterparts. Overall, it presents a promising approach for estimating the accuracy of a deep network model. 

 

Keywords: prediction accuracy estimation, unlabeled dataset, machine learning, convolutional neural network, 

vocal detection 

 

1. Introduction 

One of the major machine learning areas is supervised learning, which can be used to predict the labels (also known as 

classes) of unknown samples in real life. In this kind of application, it is vital to know the performance of the model. Such 

performance is typically measured based on accuracy. However, alternative metrics like the F1 measure are also widely used. 

In a typical experimental setting, the samples in the available (labeled) training dataset are split into training, validation, and 

testing sets. A model is trained with the training dataset, and its hyperparameters are tuned based on the validation results. 

Finally, the testing set is used to evaluate the model performance, such as accuracy, when encountered with new samples. It is 

a common practice to assume that the real, unknown samples have a similar distribution as the training dataset. With this 

assumption, the testing accuracy of the model obtained during model training is used to estimate the actual accuracy in real 

applications. In the following, true accuracy is defined as the ratio of correctly classified samples to the total number of samples, 

and estimation accuracy is defined as the accuracy inferred by other methods. 

The concept of in-distribution and out-of-distribution is depicted in Fig. 1, where two sets of cats are presented. In Fig. 

1(a), the cats consist solely of white cats, while in Fig. 1(b), cats of various colors are shown. Therefore, a white cat is an “in-

distribution” sample in Fig. 1(a), but a gray cat is an “out-distribution” sample. Conversely, both white and gray cats are in-

distribution samples in Fig. 1(b). From a machine-learning perspective, if a model is trained with only white cats, the model 
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may have difficulties identifying a gray cat as another instance of a cat. Unfortunately, in reality, it is usually unknown whether 

a test sample is similar to the training samples or not. Therefore, the accuracy obtained based on the dataset of Fig. 1(a) may 

not reflect the actual accuracy when predicting cats in Fig. 1(b). 

  

(a) A set of white cats (b) A set of various colors of cats 

Fig. 1 Illustration of in-distribution and out-of-distribution 

In reality, it is difficult to infer whether two datasets have a similar distribution or not. To support this argument, previous 

studies [1-2] from the authors are presented. Two datasets were used in the studies, the Jamendo dataset [3] and the free music 

archive (FMA) dataset source from the FMA website [4]. Both datasets collect soundtracks of Western pop music. If a deep 

network model is trained with the Jamendo audio clips, the model reaches an accuracy of 94.1% when predicting the Jamendo 

test set. However, when predicting the FMA test dataset, the accuracy drops to only 82.7%. On the contrary, if the model is 

trained with the FMA audio clips, the accuracy is 92.5% for predicting the FMA test set, and 89.8% for predicting the Jamendo 

test set [2]. From the accuracy discrepancy, it is concluded that the FMA dataset consists of out-of-distribution samples of the 

Jamendo dataset. However, the Jamendo samples are within the distribution of the FMA dataset. Therefore, even though both 

datasets contain Western popular music, it is still difficult to answer whether the two datasets are “in-distribution” or “out-of-

distribution”. Consequently, it is questionable whether the test accuracy is a good indicator for unlabelled datasets or not. 

It is practically useful if one can estimate the accuracy of a model when datasets with unknown distribution are presented, 

such as deciding whether to use the existing model or not. If the expected accuracy is sufficiently high (based on prior 

knowledge), the existing model can be continuously used. Otherwise, training a new model would be necessary by labeling 

some samples from the new dataset. In the vocal detection problem mentioned previously, the acceptable accuracy is around 

90% as most vocal detection methods developed lately achieve an accuracy of 90% or higher [5]. Therefore, if the existing 

model is unable to reach such accuracy for a dataset, training a new model should be seriously considered. 

Estimating the prediction accuracy of a model is a practical and important problem, but it seems to be overlooked by the 

research community. Bhaskaruni et al. [6] stated that they did not find any paper directly addressing this topic in 2018. In 

contrast to estimating the prediction accuracy of a model, many researchers focus on the problem of evaluating prediction 

uncertainty when the incoming samples are actually “out-of-distribution,” and have developed several methods to evaluate 

whether the prediction of the model is trustworthy or not [7-9]. However, knowing the prediction uncertainty of a single sample 

is not sufficient to infer the prediction accuracy of the entire dataset as accuracy is calculated based on all samples instead of 

a single sample. At least, a conversion procedure is necessary (to be discussed in Section 4.3) [10].  

In this paper, the singing voice (vocal) detection problem is used to carry out the concept of the block scaling quality 

(BSQ) approach. Singing voice detection is a crucial pre-processing step for many applications. For example, to remove the 

vocal sound from a singing soundtrack for karaoke singers, the audio segments with singing voices need to be located [11]. 

To summarize a Western popular song or extract its melody, the verse part that usually contains singing performance needs to 

be identified [12-13]. To recognize the singing performer in a music work, the singing segments need to be isolated before 

applying recognition techniques [14]. To convert lyrics to melody, the singing segments need to be known as well [15]. These 

examples show the importance of singing voice detection for various tasks. 
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The main contributions of this paper are: 

(1) A new method called BSQ is introduced to estimate the accuracy of an unlabeled dataset. BSQ only needs one model and 

has advantages over the previous method proposed by You et al. [10], which will be discussed in Section 4.6. 

(2) The paper compares BSQ with the following methods: reversed testing qualities (RTQ), multiple classifier qualities 

(MCQ), ensemble average qualities (EAQ), dropout qualities (DOQ), and last-layer Bayesian qualities (LBQ), some of 

which are originally developed for estimating the uncertainty of a sample instead of accuracy estimation. This paper also 

briefly explains how these methods are adapted to the problem of accuracy estimation in Section 4.3. 

2. Related Work 

Bhaskaruni et al. [6] initially studied the problem of estimating the prediction qualities, including classification error, F1-

score, conditional prediction disparities, and area under curve (AUC) for datasets without ground truth in 2018. Following the 

idea of the reverse testing framework [16], their approach initially trains a model, called Model I, using a labeled dataset 

denoted as P. Next, Model I is used to predict (classify) samples of an unlabeled dataset Q. The predicted labels of samples 

from Q are treated as ground truth to train another model, called Model II. By using Model II to predict dataset P again, the 

measures, such as accuracy, can be estimated as dataset P has labels. Bhaskaruni et al. [6] called the obtained measures RTQ, 

and used RTQ to estimate the accuracy of Model I when predicting dataset Q. Although the RTQ approach is intuitively easy 

to understand, its performance seems not comparable to other approaches [10]. Nevertheless, this approach is chosen as a 

comparison counterpart in the experiments. 

Previously, You et al. [10] proposed an approach, called MCQ to estimate the prediction accuracy by using multiple 

identical convolutional neural network (CNN) models with voting. By computing the ratio of majority votes to all votes on a 

given sample, one can compute the confidence value of the given sample. The average of the confidence values over the entire 

dataset is then used, with additional steps, to estimate the prediction accuracy of the model. This approach will be compared 

in the experiments in Sections 4.4 and 4.5. 

Similar to the MCQ approach, Lakshminarayanan et al. [7] also used multiple identical neural networks in their approach, 

called deep ensembles. In contrast to the MCQ approach, however, their goal is to estimate the confidence level of a sample. 

As this approach also uses multiple identical models, it will be used as a comparison counterpart after a conversion procedure. 

To estimate the confidence level of an unlabeled sample, Gal and Ghahramani [8] applied the Monte-Carlo dropout with 

rate p to a trained model. The dropout mechanism randomly removes some processing units and associated weights from the 

model. Therefore, multiple models can be generated if the dropout process is applied multiple times. Although this approach 

was not proposed for estimating the prediction accuracy, one can use the same conversion procedure to estimate the accuracy 

based on the generated multiple models. 

The Bayesian network [9] differs from a conventional neural network. In the former, each of the connection weights is a 

probability distribution, whereas in the latter, it is a trainable but deterministic value. Since the weights in a Bayesian network 

are probability distributions, the prediction results vary when predicting a sample multiple times. This, in a sense, is equivalent 

to having multiple models. In the experiments, a variant of the Bayesian network, which contains only the Bayesian network 

on the last-layer (last-layer Bayesian) [17], will be used as a comparison counterpart. 

Ovadia et al. [17] studied the relative performance of several approaches, including deep ensembles, Bayesian networks, 

vanilla, etc., when presenting out-of-distribution samples. They concluded that deep ensembles (described previously) seem 

to perform the best for various metrics with dataset shifts. In addition, they found that the deep ensemble approach may just 

need five models. 
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The prediction problem to be studied in the experiments is a vocal detection problem. In the present case, an audio clip 

of 2 seconds is presented to the model, and the model determines whether the vocal sound is present in the audio clip. Based 

on previous studies [1-2] conducted by the authors, it was found that separating the feature extraction step from the deep 

network model had better prediction accuracy. Overall, it is concluded that the “spectrogram plus CNN” model was better. 

Thus, this model will also be used in the experiments. 

3. The BSQ Approach and the CNN Model Used in the Experiments 

This section describes the BSQ approach. The first subsection describes the chosen CNN model. This model was hand-

crafted to optimize the prediction accuracy [2]. The second subsection covers the proposed BSQ model, starting from the 

conceptual description, and then the algorithm of the BSQ approach. 

3.1.   SCNN model 

 

 

 

 

Fig. 2 The SCNN model used in the experiments 
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The experimental model employed is a CNN model. CNN models are a special type of neural network widely used in 

many image-related problems, such as for brain tumor detection [18] and tea image verification [19]. It is noteworthy that 

conventional approaches have also demonstrated a high AUC in breast cancer detection [20]. In the present study, the incoming 

audio clip is sent to a non-trainable network performing the time-to-frequency conversion. The output from this network is a 

spectrogram, used as the input to the CNN model. In the following, this model is denoted as a Spectrogram + CNN (SCNN) 

model. It is hand-crafted and optimized for the studied vocal detection problem [2]. In the experiments, all of the approaches 

employed are implemented based on this model, with possible modifications. If a particular approach needs more than one 

model, models with different initial weights are employed. 

The experimental model is shown in Fig. 2 [2]. The input to the SCNN model is a 2-second audio clip, sampled at a rate 

of 16 ks/s. The audio samples are multiplied with 63 Hamming windows, each consisting of 512 coefficients, with a hop length 

of 512 samples. A pre-processing network performing the fast Fourier transformation (FFT) operation is utilized to convert 

these windowed samples to spectral coefficients. The resulting spectrogram is constructed on a time-frequency grid, where 

each cell is the energy of a spectral coefficient in the one-time instance. The dimension of the spectrogram is 63 × 1024, where 

“63” represents the number of time instances and “1024” represents the frequency bins (spectral values).  

The FFT network is not explicitly given in Fig. 2, but only a mark of short-time spectral analysis (STSA). Therefore, the 

first box with numbers 63 × 1024 × 1 is the computed spectrogram. The spectrogram is processed by the next box labeled as 

“21 × 512 × 64”, meaning that this layer accepts input feature maps of sizes of 21 × 512 and there are 64 kernels in this layer. 

In the figure, a box with a blue background includes the combination of a max-pooling layer, a convolutional layer, and a batch 

normalization layer, whereas a box with an orange background does not have the max-pooling layer. To be complete, Table 1 

lists the used hyperparameters of this model. The nodes in all layers, except the output layer, use rectified linear unit (ReLU) 

as the activation function, and nodes in the output layer use softmax. The SCNN model used in this paper is designed for vocal 

sound detection on 2-second audio clips. This is a different task from detecting all vocal segments in a full-length soundtrack 

[5], which can also be done with the proposed SCNN model and some visualization tools [21]. However, this is beyond the 

scope of this paper and will not be discussed further. 

Table 1 Hyperparameters of the model 

Layer No. of kernels Kernel size Padding Max pooling Stride 

1 64 (3,2) No No (3,2) 

2 64 (1,2) Yes No (1,1) 

3 64 (1,2) Yes No (1,1) 

4 64 (1,2) Yes (1,2) (1,1) 

5 64 (1,2) Yes (1,2) (1,1) 

6 64 (1,2) Yes No (1,1) 

7 64 (1,2) Yes (1,2) (1,1) 

8 128 (1,2) Yes No (1,1) 

9 128 (1,2) Yes No (1,1) 

10 128 (1,2) Yes (1,2) (1,1) 

11 128 (1,2) Yes (1,2) (1,1) 

12 128 (1,2) Yes No (1,1) 

13 128 (1,2) Yes (1,2) (1,1) 

14 256 (1,2) Yes (1,2) (1,1) 

15 256 (1,2) Yes (1,2) (1,1) 

16 256 (1,2) Yes No (1,1) 

17 256 (3,2) Yes (3,2) (1,1) 

18 256 (1,1) Yes No (1,1) 

3.2.   BSQ approach 

The proposed block scaling approach is inspired by the concept of “local interpretable model-agnostic explanations” 

(LIME) [22]. The LIME approach has been successfully applied to applications such as chronic heart disease detection [23]. 
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While the LIME is used to know which parts of the input image are essential in prediction, the BSQ approach uses this concept 

to measure the “relative robustness” of a model when the input image is altered. Specifically, the BSQ approach applies a 

window to the input image (in the experiments, the spectrogram), where the covered pixels are multiplied by a constant, such 

as 0 or 2, and the altered spectrogram is predicted again. By sliding the window from left to right and up to down, one can 

obtain many altered images with their corresponding prediction results. The number of prediction alternations over the total 

number of the block-scaled images is an indicator, called BSQ, measuring the robustness of the model in predicting incoming 

images. 

If a sample has a low BSQ, it means that the prediction is mainly based on only a few spots in the image. This situation 

usually occurs when the model catches the essential parts of the image and uses them for prediction. On the other hand, if the 

model has a high BSQ for a sample, the model is very sensitive to any alternation of the image. Usually, it is an indication that 

the model does not capture the important portion of the sample. Therefore, the BSQ approach is intuitively understandable.  

The idea of essential and nonessential parts of a spectrogram is illustrated by a vocal segment in Fig. 3(a), where the red 

and black colors highlight the essential part. This is the region that determines the label of the segment. In Fig. 3(b), the 

nonessential part is covered with a white block (equivalent to setting spectrogram coefficients to zeros), and the label prediction 

remains unchanged. However, in Fig. 3(c), the essential part is covered with a zero block, and the label prediction is likely to 

change. Thus, the number of changes reflects the size of the essential part. A small essential part implies a high confidence in 

the prediction, as shown in Fig. 3(a). A large essential part indicates a low confidence in the prediction, as shown in Fig. 3(d). 

Therefore, by counting the number of changes, the confidence level of each sample can be estimated and the average 

confidence can be used to measure the accuracy of the dataset. Based on this idea, other types of signals (such as obtained 

from machine vibration) or even general images could also use the approach mentioned in this paper. 

  

(a) Vocal spectrogram highlighted with the essential part (b) Patching a block of zeros in the nonessential part. 

  

(c) Patching a block of zeros in the essential part. (d) A large size of the essential part in a vocal segment. 

Fig. 3 Spectrograms to illustrate the BSQ approach. 
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In summary, the BSQ approach is outlined below. It is presented in a format similar to an algorithm, but with more words 

to explain the steps. 

(1) Train a SCNN model using the training dataset. 

(2) Pick a sample from the unlabeled dataset S, denoted as ����, and predict its label with the trained model. 

(3) Set  � � 0 and  
 � 0. Set the scaling factor of the window as α. In the experiments, � � 0. Set change-counter  � � 0 

and iteration counter  �� � 0. 

(4) Set the window location to ��, 
�. Multiply the spectrogram coefficients covered by the window α.  

(5) Use the trained model in step 1 to predict the label of the spectrogram in step 4 and record the result. If the new prediction 

result is different from the result in step 2, increase c. 

(6) Hop the window according to hop lengths in the x-direction and y-direction. 

(7) Increase �� repeat steps 4 to 6 until the window slides through the entire spectrogram. 

(8) Compute ���� � � ��⁄ .  

(9) Repeat steps 2 to 8 for all samples in S. 

(10) Compute the average change rate 

( )
1==


T

k
r k

R
T  

(1) 

where T is the number of samples in S. 

(11) Use R to build a linear model (given below), and use the linear model to predict the accuracy of the dataset. 

In step 8, ���� is the ratio of altered spectrograms (from step 4) that have different prediction labels than the original 

spectrogram to the total number of altered spectrograms. This ratio reflects how much of the spectrogram is “essential” for the 

prediction. A large ���� means that the spectrogram of sample k is sensitive to random perturbation, and thus the prediction 

result is less reliable. Therefore, the average ���� is inversely related to the accuracy of the dataset. 

In actual applications, a linear equation can be used to compute the estimated accuracy �� from R, i.e.,  

�
0 0

α= +A R b
 

(2) 

where �� is the slope of the line and �� is the intercept of the Y-axis.  

In case several labeled datasets are available, a linear regression algorithm [24] can be employed. Based on the calculated 

R and accuracy ��, it is easy to obtain the values of �� and ��. If, unfortunately, there is only one labeled dataset, the  and �� 

from the training and testing sets can be used to compute �� and ��.  

Before conducting the experiments, the authors perform a preliminary experiment to find a suitable window size and a 

hop length based on the fitness errors of the regression line (see Fig. 4). According to the preliminary experiment, it is observed 

that the proposed BSQ is not sensitive to the window size and the hop length. However, the estimation accuracy is highly 

sensitive to the chosen scaling factor α. The optimal values are 0 or 2. With the preliminary results, the following parameters 

are used in the experiments: Window size is� � 
, with � � 30 and 
 � 40, the hop length is 5 in the x direction and is 40 in 

the y direction, and the scaling factor � � 0. Recall that the spectrogram has a size of 63 × 1024. The optimal parameters, such 

as window size, hop length, and α, may vary depending on the size of the spectrogram and need to be determined 
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experimentally. To have a visual observation of the effectiveness of the BSQ approach, a simple regression over ten datasets 

is depicted in Fig. 4. The vertical direction in the figure is R and the horizontal direction is the actual accuracy. It shows that a 

linear model fits the data points ��, �� well. 

 
Fig. 4 Linear regression of the BSQ approach over ten datasets. The value R is from (1) 

4. Experiments and Results 

This section contains experimental datasets, settings, procedures, and results. The first subsection is the experimental 

datasets. It is followed by a description of experimental settings in the second subsection. The third subsection describes the 

comparison counterparts. The next two subsections present experimental results in two cases: (a) Using multiple labeled 

datasets to obtain the values of �� and ��, as well as leaving only one dataset for validation, and (b) Using only one dataset to 

obtain the values of �� and ��. The final subsection is the discussion and future work. 

4.1.   Experimental datasets 

Table 2 Experimental datasets with descriptions 

Dataset Vocal clips 
Non-vocal 

clips 

Jamendo Train 

Accuracy 
Comments / Descriptions 

Jamendo train 6,981 6,376 - Including training and validation soundtracks 

Jamendo test 1,487 1,499 94.03% Including only Jamendo test soundtracks 

FMA-C-1 train 5,007 7,247 83.88% From the FMA website, without genre balance 

FMA-C-1 test 1,669 2,416 82.56% - 

FMA-C-2 train 5,277 8,475 87.33% From the FMA website, with genre balance 

FMA-C-2 test 1,759 2,824 85.79% - 

Test hard 4,746 3,545 66.02% 
Collections of samples misclassified by a simple 

CNN model [18] 

A-Cappella 7,922 0 94.77% Pure vocal sound, no instruments 

Instrumental 0 7,516 80.20% Pure instruments, no vocal sound 

KTV train 6,370 164 95.42% Popular Karaoke songs from in-house video 

KTV test 1,332 35 94.03% - 

MIR-1K 2,817 2,817 86.96% From the MIR-1K dataset [19] 

Chinese-CD train 3,060 2,163 90.70% Popular Mandarin songs from CD soundtracks 

Chinese-CD test 1,280 943 91.05% - 

Taiwanese-CD train 760 489 90.15% Popular Taiwanese songs from CD soundtracks 

Taiwanese-CD test 314 213 88.98% - 

Taiwanese-stream train 2,753 1,396 83.78% 
Popular Taiwanese songs from Internet streaming 

(lossy compressed format) 

Taiwanese-stream test 1,188 586 82.60% - 

Classical train 2,007 3,726 83.27% 
Vocal segments from operas and non-vocal 

segments from orchestra 

Classical test 847 1,597 82.06% - 
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The datasets utilized are the ones employed in the previously published paper [9]. Datasets and source codes are available 

to the public (at https://github.com/NTUT-LabASPL). To be self-contained, a list of the datasets is given in Table 2 along with 

some descriptions. Among the datasets, the chosen training datasets are from Jamendo and FMA-C-1 with the suffix “train”. 

The rest datasets are used for evaluating the estimation performance.  

The following briefly describes the listed datasets. Jamendo train and Jamendo test datasets are excerpted from the 

Jamendo dataset [3]. FMA-C-1 and FMA-C-2 are obtained from the FMA dataset [5], but FMA-C-2 has a balanced number 

of samples for each broad music genre. Test-hard is an artificial dataset that consists of samples that a simple 4-layer CNN 

classifier [25] misclassified. A-Cappella is a collection of vocal-only works from the Internet, while Instrumental is a collection 

of audio segments with only instrumental sounds.  

Karaoke TV (KTV) is a dataset extracted from Karaoke videos, and music information retrieval 1k (MIR-1K) is a dataset 

originally used for the MIR contest (available at https://sites.google.com/site/unvoicedsoundseparation/mir-1k). The 

experimental dataset contains audio segments from this dataset. Chinese-CD and Taiwanese-CD are datasets of segments from 

various Chinese or Taiwanese CD titles, mostly popular music. Taiwanese-stream is a dataset of segments of Taiwanese songs 

from the Internet. Classical is a dataset of classical music only, with non-vocal samples from orchestra works and vocal samples 

from solo or chorus in opera performances. In the experiments, only the Jamendo or FMA datasets are used for training, but 

the trained models are applied to many music genres to simulate the actual applications.  

4.2.   Experimental settings 

The experimental platform is developed based on the Tensorflow framework (available at https://www.tensorflow.org/) 

and the Keras library (available at https://keras.io/). The dropout mechanism is used during training with a rate of 0.5. The 

chosen optimizer is the ADADELTA [26]. The number of training epochs is 200. The experiments are carried out using three 

computers, where each has three NVIDIA graphic cards. The used software versions and computer hardware are listed in 

Tables 3 and 4. 

Table 3 Experimental software and versions 

Software Version 

CUDA 11.2 

Tensorflow 2.3.0 

Python 3.6.9 

Table 4 Computers used in the experiments 

- Processor Memory Graphic card OS 

Computer 1 Intel Core i7-6850K 32 GB GeForce GTX 1080ti × 3 Ubuntu 20.04 

Computer 2 Intel Core i9-7900X 40 GB GeForce GTX 1080ti × 3 Ubuntu 20.04 

Computer 3 Intel Core i7-6850K 32 GB GeForce RTX 2070 × 3 Ubuntu 18.04 

4.3.   Comparison targets 

To evaluate the performance of the BSQ approach, the following approaches are selected as the comparison targets: RTQ, 

MCQ, EAQ, DOQ, and LBQ. As the RTQ and the MCQ approaches have been described in Section 2, their implementation 

details are omitted here. The EAQ value is derived from the deep ensembles approach, the DOQ is from the Monte Carlo 

dropout approach, and the LBQ is from the last-layer Bayesian network approach. The deep ensemble approach uses multiple 

models. In the Monte Carlo dropout approach, one can generate multiple models by applying the dropout on the model. In the 

last-layer Bayesian network approach, one can predict the same sample multiple times to receive multiple prediction results, 

similar to the presence of multiple models. 
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As the EAQ, DOQ, and LBQ approaches are originally designed to measure prediction uncertainty, a procedure is 

necessary to calculate estimated accuracy from prediction uncertainty. To this end, You et al. [9] follow the procedure 

mentioned in the previous work. Let T denote the number of samples in the dataset, M the number of models, ��,� the softmax 

output of the vocal class for model i and sample j. The estimated quality is calculated as 

( )
1

1
,  ,   max ,1

=
= −

T

j jj
EAQ DOQ or LBQ p p

T  
(3) 

where 

,1

1
=

= 
M

j i ji
p p

M  
(4) 

In the experiments, the value of � � 5 used as 5 models might be sufficient for the deep ensembles [12]. 

4.4.   Experiment results for leave-one-out cross-validation 

As stated at the beginning of Section 4, there are two cases in the experiments. This subsection presents the results for 

case (a): using multiple labeled datasets to obtain the values of �� and ��. In this case, one dataset is left out to compute the 

estimation accuracy, which is called leave-one-out cross-validation (CV) in the following. 

The next subsection reports the results for case (b), i.e., using one dataset (either Jamendo or FMA-C-1) to determine �� 

and ��. The remaining datasets are used to compute the estimation accuracy. Case (b) is referred to as the “one dataset” in the 

following. The experiment in this subsection shows the best performance of the BSQ approach for the tested datasets, whereas 

the experiment in the next subsection demonstrates a more realistic scenario. 

In the following, the estimation error for dataset S is calculated as  

�= − SS S
e A A

 
(5) 

where �� is the true accuracy (or averaged true accuracy for MCQ and EAQ) and the ��� is the estimated accuracy from Eq. (2). 

Fig. 5 shows the estimation errors of leave-one-out CV for the models trained on Jamendo and FMA datasets. As the 

RTQ has very large estimation errors, this approach is not shown in the figure. Fig. 5 reveals that the Jamendo-trained model 

performs well on most datasets for the BSQ approach with errors of up to 5%. Only the MIR-1K dataset has an estimation 

error of 8%. However, most of the other approaches do not perform well on this dataset either. 

 

(a) Results for Jamendo leave-one-out CV experiment  

Fig. 5 Estimation errors of leave-one-out CV for various approaches  
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(b) Results for FMA-C-1 leave-one-out CV experiment 

Fig. 5 Estimation errors of leave-one-out CV for various approaches (continued) 

The BSQ approach performs even better with the FMA-trained model than with the Jamendo-trained model. The test-

hard dataset has the worst performance, but the error around 4% is still acceptable. For all other datasets, the estimation errors 

of the BSQ approach are less than 2%. 

Table 5 shows the average estimation errors of the datasets for different approaches. The BSQ approach has small 

estimation errors, less than 2.8% for the Jamendo-trained model and 1.3% for the FMA-trained model. The MCQ approach is 

the only one that performs better than the BSQ approach for both types of trained models. However, the MCQ approach 

requires multiple models, and the errors are based on the average accuracy. A discussion regarding the relative merits of the 

approaches will be given in Subsection 4.6. 

Table 5 Average estimation errors in various approaches for leave-one-out CV 

Approach Jamendo train FMA-C-1 train 

RTQ 7.02% 4.52% 

MCQ 1.85% 1.27% 

EAQ 2.64% 2.51% 

DOQ 2.95% 2.53% 

LBQ 4.52% 2.84% 

Proposed 2.79% 1.31% 

4.5.   Experimental results for using one dataset 

Fig. 6 shows the results of using only one dataset to fit the line in Eq. (2). The estimation errors are relatively larger with 

this method. The BSQ approach has estimation errors higher than 6% for some datasets with Jamendo-trained models. Only 

the MCQ and LBQ approaches have lower estimation errors in this training dataset. However, the BSQ approach performs 

much better with FMA-trained models. This time, the MCQ approach is the only one that outperforms the BSQ approach. 

Table 6 shows the average estimation errors of the compared approaches. Notably, the BSQ approach has only 1.75% of 

the average estimation error for FMA-trained models. This level of estimation error is practically useful. Although the average 

estimation error in the Jamendo-trained models is higher, the error is mainly due to the test-hard dataset, as shown in Fig. 6(a). 

Recall that the test-hard dataset has a true accuracy of 66% (given in Table 2), which is far away from the typical accuracy 

level of 80% to 90%. The accuracy of this dataset is certainly more difficult to estimate. Overall, the performance of the BSQ 

approach is slightly worse than the MCQ approach. Other than the MCQ approach, the BSQ approach is better than others in 

the FMA training set and is only slightly worse than the LBQ approach in the Jamendo training set. 
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(a) Results for Jamendo one-dataset experiment 

 

(b) Results for FMA-C-1 one-dataset experiment 

Fig. 6 Estimation errors of using one dataset for various approaches 

Table 6 Average estimation errors in various approaches for using only one dataset 

Approach Jamendo train FMA-C-1 train 

RTQ 12.60% 21.7% 

MCQ 2.51% 1.55% 

EAQ 6.34% 2.94% 

DOQ 5.32% 2.06% 

LBQ 3.78% 2.10% 

Proposed 4.85% 1.75% 

4.6.   Discussion and future work 

It is clear from Subsections 4.4 and 4.5 that the BSQ approach is slightly worse than the MCQ approach but better than 

other approaches in terms of average estimation errors. However, there are some shortcomings in the MCQ (and also EAQ) 

approach. Firstly, the MCQ requires 21 trained models, therefore the training time is much longer. Secondly, as 21 models are 

used in the estimation process, the predicted value is the average accuracy of the 21 used models. In other words, it is not 

possible to predict the accuracy of a specific model by using the MCQ approach.  
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The average accuracy used in the calculation of estimation errors introduces some uncertainty for each model, and the 

performance (accuracy) differences among the 21 models should not be overlooked. When examining the actual accuracy of 

the MCQ models in the experiments, one finds that the accuracy ranges from 91.3% to 94.8%, with a standard deviation of 

0.71%, for Jamendo-trained models to predict the Jamendo test set. With this observation, the advantage of lower average 

estimation error from the MCQ approach may not hold if only one model is in use. In contrast, the BSQ approach estimates 

the accuracy based solely on the model of interest. Note that the BSQ approach is better than these other approaches requiring 

only one model, such as RTQ, DOQ, and LBQ. Overall, the BSQ approach is a good tool for accuracy estimation in the 

presented case. 

The results in Table 5 and Table 6 show that using more than one dataset to calculate the regression line has lower 

estimation errors. To further improve the estimation performance with only one dataset, it is beneficial to artificially generate 

multiple datasets based on the only available dataset. Using the data augmentation technique is an approach to achieve this 

goal. This technique is widely used in conventional images as well as in medical images [27]. By performing random cropping 

or color distortion, additional training images can be obtained, and thus the trained model can achieve better accuracy. 

Following the idea of data augmentation, the authors plan to artificially generate multiple datasets with a linear-scale change, 

a pitch-scale change, or a signal-to-noise ratio (SNR) change. Hopefully, with the augmented datasets, the estimation errors 

can be further reduced. 

5. Conclusions 

This paper presents the BSQ approach to estimate the prediction accuracy of a deep network-based model. The approach 

computes the confidence level of each sample based on altered spectrograms and then uses the average confidence level as a 

parameter to estimate the accuracy of the dataset. Several experiments are conducted to compare the performance of the BSQ 

approach with others. Experimental results show that the BSQ approach is the second best among the evaluated approaches. 

Although the MCQ approach has smaller estimation errors than the BSQ, it only estimates the average accuracy of 21 models. 

Therefore, the MCQ approach is inappropriate for situations where only a specific model is of interest. Conversely, the BSQ 

approach has lower estimation errors than other approaches that use only one model. The experimental results demonstrate 

that the BSQ approach has low average prediction errors. Specifically, the errors are under 2.8% for the Jamendo-trained model 

and 1.3% for the FMA-trained model in the CV experiments. Furthermore, in the one-dataset experiments, the corresponding 

errors are 4.9% and 1.8%, respectively. Thus, it is a practical and effective approach.  

In future work, the application of data augmentation methods is required to further enhance the estimation accuracy of 

the BSQ approach with only one labeled dataset. Although the BSQ approach is validated on audio segments, it might also be 

applied to image problems. Extending the BSQ approach to images is a future work. 
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