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ABSTRACT 

 
The problem of detecting pollutants in wastewater is of fundamental importance for 

public health and security. In a fast-developing paradigm, such as the one represented 

by the Smart City, mapping wastewater systems by detecting pollution sources is a 

required task that if properly treated helps protect ecosystems and may allow for 

recovering energy, recoverable material, and nutrients. Generally, this is made by 

involving the usage of laboratory-based analyses performed by expert professionals 

that ends to result in high costs and time spending approach which does not allow for 

timely prevention of environmental disasters. In this regard, to allow an effective 

prevention activity, a large number of distributed measurement systems are required. 

In this Ph.D. thesis are presented two possible solutions based on Machine Learning 

(ML) techniques using the same sensing part. The proposed measurement systems are 

based on the so-called Smart Cable Water (SCW) sensor, a multi-sensor based on 

SENSIPLUS technology developed by Sensichips s.r.l. More in detail, one solution is 

aimed at the development of an end-to-end IoT-ready system for the recognition of a 

set of substances able to reduce the false positive samples by distinguishing the outlier 

from the interest ones. In this regard, the system is composed of three functional 

blocks: a Finite State Machine (FSM) to correctly detect the substance’s passage, an 

anomaly detection classifier to reject all the outlier samples, and a multiclass classifier 

to correctly recognize the given substance. It is important to note that the capability to 

distinguish between outlier (not of interest) and inlier (of interest) substances 

drastically improves the classification performance, especially in terms of false 

positive rates. An extensive experimental campaign on different contaminants has 

been carried out to train machine learning algorithms suitable for low-cost and low-

power Micro Controlled Unit (MCU). The obtained results demonstrate an excellent 

classification ability, achieving an accuracy of more than 95% on average, and are a 

reliable “proof of concept” of a pervasive IoT system for distributed monitoring. The 

other solution is aimed at the development of an edge computing classifier to be 

implemented abord the SCW sensor. In this regard has been used the Principal 

Component Analysis (PCA) decomposition to project the acquired data from a 10-

dimensional space to a 3-dimensional one. Next, has been developed an ad-hoc 

classifier capable to distinguish contaminants in the projected 3-dimensional space. To 

learn the best classifier’s parameters has been used an evolutionary algorithm. The 

proposed system achieved the best accuracy of 83%, outperforming the other state-of-

art systems compared. The novelty of the proposed system lies in the usage of an 

evolutionary algorithm for the optimization of the parameters of a novel PCA-based 

classification algorithm capable to detect and recognize a set of wastewater pollutants. 
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INTRODUCTION 

Water quality is a crucial factor regarding human life; nowadays, about 23% of global 

diseases can be related to pollutants in air and water environments [1]. For those 

reasons, many researchers worldwide focus on developing tools for automatic 

contaminant detection in water and air. Water pollution [2], in this main research 

context, represents a worldwide concern, also regarding drinkable tap water [3] as 

confirmed by the World Health Organization (WHO), which has estimated that this 

problem plagues about two billion people. For that reason, water quality monitoring is 

increasingly involving researchers from different fields of interest, from artificial 

intelligence [4] [5] to sensors [6] and data processing [7]. This concern also includes 

wastewater which represents the main focus of this Ph.D. thesis.  

In fact, in a fast-developing paradigm, such as the one represented by the Smart City, 

mapping wastewater systems by detecting possible pollution sources is a required task 

that if properly treated helps protect ecosystems and may allow recovering energy, 

recoverable material, and nutrients. Usually, water quality monitoring is generally 

made by laboratory-based analyses performed by expert professionals. Because of the 

cost and the time required by those kinds of analyses, this approach does not allow for 

the timely prevention of environmental disasters. In this regard, to allow an effective 

prevention activity, a large number of distributed measurement systems are required. 

Although on the one hand, these measurement systems are available today and 

guarantee excellent measurement accuracy and great reliability in detecting polluting 

substances. On the other hand, their usage is limited by a high cost. In this context, the 

usage of low-cost and low-power microsensor systems becomes fundamental.  

Moreover, in the context of wastewater monitoring, where the environmental 

conditions are pretty complex due to the high-water turbidity, sensor degradation, and 

so on, it’s crucial to combine low costs with good measurement accuracy, as well as 

good reliability. Typically, systems with these kinds of features are suitable for the 

paradigms of the Internet of Things (IoT) [8] [9] [10] [11] as well as those of edge and 

fog computing [12] [13] to perform early analysis and detection in the actual scenario. 

Both IoT and edge computing benefit from the application of Artificial Intelligence 

(AI) and Machine Learning (ML) techniques to effectively analyze and exploit the 
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information contained in the generated data [14] [15] [16]. At this point, it is clear that 

the problem of detecting pollutants in water with non-invasive and low-cost sensors is 

an open question.  

This Ph.D. thesis will present two possible solutions based on the same measurement 

system. In particular, the proposed systems are based on a proprietary embedded IoT-

ready Micro-Analytical Sensing Platform (MASP) of 1.5mW power absorption and 

1.5 x 1.5 mm of the size called Smart Cable Water (SCW) and based on the 

SENSIPLUS microchip. The SCW is a smart sensor endowed with six interdigitated 

electrodes (IDEs) covered by specific sensing materials to allow the differentiation 

between different pollutants.  Both SCW and SENSIPLUS microchips have been 

developed and designed by Sensichips s.r.l. company (see Chapter 1 for more details). 

More in detail, one solution is aimed at the development of an end-to-end IoT-ready 

system for the recognition of a set of substances of interest. From the literature emerges 

that in the water analysis field, one of the open issues is related to the lack of an 

anomaly detection system. Thus in a real context, a classification system that ignores 

the anomalies makes the system itself unusable due to the number of false positives. 

Thus, the developed system (deeply described in Chapter 2) is capable of detection 

and recognition of a set of substances (considered dangerous and indicative of an 

anomalous use of the wastewater) by rejecting all the outlier samples. In particular, the 

system is composed of three functional blocks: 

• a Finite State Machine (FSM) meant to correctly detect a substance’s passage; 

• an anomaly detection classifier trained in order to be able to reject all the outlier 

samples; 

• a multiclass classifier to correctly recognize the given substance. 

It is important to note that the capability to distinguish between outlier (not of interest) 

and inlier (of interest) substances drastically improves the classification performance, 

by reducing the number of false positive samples and making the system suitable to be 

used in a real scenario. The results show an average accuracy greater than 95%, 

demonstrating an excellent classification capability. Moreover, the promising results 

can be considered a reliable “proof of concept” of a pervasive IoT system for 

distributed monitoring. 

The other solution, presented in Chapter 3, is aimed at the development of a system 

for detecting and recognizing wastewater pollutants based on an ad-hoc lightweight 

algorithm suitable for the IoT and edge-computing paradigms. To make the system as 

edge computing suitable as possible, the 10-dimensional features space has been 
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compressed to a 3-dimensional space by using well-known decomposition techniques 

like for example the principal component analysis (PCA), linear discriminant analysis 

(LDA), etc. Regarding the classification system, a straightforward, geometrical-based 

model that can be implemented using very few hardware resources has been 

developed. As for the best model parameters, on the other hand, they were learned 

through the use of evolutionary algorithms. It’s important to note that in the Ph.D. 

work, the developed model has been constantly improved by achieving the best 

accuracy of 83%. Finally, in order to validate the goodness of the obtained results, the 

ad-hoc system has been compared with the other state-of-art ones showing that the 

developed system outperforms the state-of-the-art ones. 

Furthermore throughout the Ph.D., to validate and improve the effectiveness of the 

system  depicted in Chapter 2, have been performed many tests on the real field. In 

particular, two main scenarios have been considered: 

• the wastewater treatment plant of Acqualatina in Borgo Piave (Latina, Italy);  

• a series of manholes situated in Via Castelbottaccio (East Rome, Italy). 

Chapter 4 contains a detailed description of all the tests performed on the real field. It 

is crucial to highlight the importance of having had the opportunity to perform real 

field tests allowing us to be able to develop an end-to-end reliable and robust system 

able to correctly recognize a given set of substances. 
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CHAPTER 1.  SENSICHIPS SYSTEM 

Sensichips is a little firm involved in the learning microsensors fields, located in 

Anzio Italy. It was founded in 2011 by experienced entrepreneurs from the 

Semiconductors industry and Arescosmo SpA, a company active in Aerospace and 

Defence. With its technology, Sensichips wants to set new performance standards and 

enable new applications in all that fields that involve sensors such as robotics, 

electrification, wearable, healthcare automation internet of everything. The team is 

formed by engineers and researchers in the field of microelectronics, firmware, 

artificial intelligence, material science, and electrochemistry. It is located in the Design 

Centers of Pisa and Cassino, while at the headquarters of Anzio, there is the Chemical 

Laboratory, Application Development, Administration, and Management. 

 

1.1 SENSIPLUS chip 

One of the leading technologies designed and developed by Sensichips is the 

SENSIPLUS. The SENSIPLUS is a microelectronics platform for multiple 

heterogeneous sensors integrated into a single chip or miniature Multi-Sensor 

Microsystems (MSM) and represents the core business of Sensichips. The objective is 

to combine heterogeneous functional materials with CMOS microelectronics into a 

single-chip sensor. 

SENSIPLUS is a versatile System on a Chip (SoC) for sensor interfacing, designed 

and fabricated in a 0.18m CMOS process. A simplified block diagram of the 

SENSIPLUS chip is shown in Figure 1. The SENSIPLUS is designed to accomplish 

the widest range of measurements that can be performed on physical and chemical 

systems. At the core of the chip, there is a highly precise and versatile analytical 

microchip that includes a Wideband Electrical Impedance Spectrometer (EIS) based 

on a frequency programmable Lock-In Amplifier (LIA) and a Potentiostat in a 

miniature 3x3 mm chip with 2mW power consumption when all functions are active. 
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1.2 SENSIPLUS Applications 

In this section, I would like to give an overview of all the applications based on the 

SENSIPLUS technologies developed by Senschips s.r.l. It is worth specifying that 

during my Ph.D. I mainly worked with the Smart Cable Water (SCW) sensor platform, 

but as a Sensichips employee, I worked with the other applications as well. 

1.2.1 Smart Cable Water 

 

 

Figure 2 Smart Cable Water 

Figure 1 SENSIPLUS simplified block diagram. 
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Sensichips have developed Smart Cable Water (SCW) to create a multi-sensor 

microsystem (MSM) to monitor for the presence of toxic chemicals (TICs), pollutants, 

hydrocarbons, and organics in water. The measurement principle is mainly based on 

impedance spectroscopy measurements over six different coated interdigitated 

electrodes (IDEs): five small IDEs on the front face coated with Gold, Copper, Silver, 

Nickel, Palladium (dimensions 3 mm by 7 mm each) and one Platinum IDE 

(dimensions 12 mm by 8 mm) on the backside (see Figure 2). A CMOS bandgap 

temperature sensor, a light emitter, and a light photo-diode sensor are also available 

on the board.  

At the core of SCW, there is the SENSIPLUS, the Sensichips microsensor platform 

that can interrogate on-chip and off-chip sensors with its versatile and accurate 

Electrical Impedance Spectrometer (EIS) and Potentiostat. Analytics performed with 

EIS allow for the exploitation of RedOx dynamics of catalytic noble metals to aid 

chemical discrimination plus measurement of conductivity and permittivity spectra.  

The on-chip Potentiostat can be used for a number of different Voltammetric or 

Amperometric measurements and real-time discrimination of pollutants. Table 1 

shows the main specifications related to the SCW. 

 

ELECTRICAL 

Supply Voltage 1.5 – 3.6V 

Max Current 0.4mA continuous when reading on-chip sensors 

with EIS 

Size  12x15mm, 3mm thickness 

Interface I2C or SENSIBUS, single data wire multidrop 

sensor array cable interface, 1.5-3.6V 

Unique Identifier OTP 48bits Unique Device Identifier, 16bits 

User Defined 

ELECTRICAL IMPEDANCE SPECTROSCOPY 

Frequency 3.1mHz to 1.2MHz 

Vpp output sinewave 156mV to 2.8Vpp 

Coherent demodulation 1st, 2nd, or 3rd harmonic 

Output Reciprocal of real or imagery component 

Wide Measurement Range From ohms to 100MΩ 

Table 1 Smart Cable Water Specifications 
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1.2.2 Smart Cable Air 

 

 

Figure 3 Smart Cable Air 

Other than the SCW, Sensichips has developed Smart Cable Air (SCA) to create a 

compact size, about 8x9 mm, and a low-power solution to monitor air quality (see 

Figure 3). The SCA is a multi-sensor microsystem (MSM) mainly used to monitor for 

the presence of toxic chemicals (TICs), pollutants, volatile organic compounds 

(VOCs), and flammable gases in the air. At the core of the board can be found a 

SENSIPLUS and, as for SCW, the measurements are mainly based on the Electrical 

Impedance Spectrometer (EIS).  

This measurement technique allows the exploitation of chemisorption or ReDox 

dynamics of the sensitive film to aid gas discrimination. Furthermore, the EIS allows 

the derivation of an R/C equivalent circuit of the sensor to decouple components that 

drift from the ones that represent the response to the gas. 

Several SCAs can be installed on the same cable for the continuous monitoring of a 

large area, which in union with the versatile analytical instruments of the onboard 

IDEs, makes the SCA an excellent experimental board. Table 2 shows the main 

specifications related to the SCA. 
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ELECTRICAL 

Supply Voltage 1.5 – 3.6V 

Max Current 0.4mA continuous when reading on-chip sensors 

with EIS 

Size  8.6×7.8mm 

Interface I3C or SENSIBUS, single data wire multidrop 

sensor array cable interface, 1.5-3.6V 

Unique Identifier OTP 48bits Unique Device Identifier, 16bits 

User Defined 

ELECTRICAL IMPEDANCE SPECTROSCOPY 

Frequency 3.1mHz to 1.2MHz 

Vpp output sinewave 156mV to 2.8Vpp 

Coherent demodulation 1st, 2nd, or 3rd harmonic 

Output Reciprocal of real or imagery component 

Wide Measurement Range From ohms to 100MΩ 

Table 2 Smart Cable Air Specifications 

 

1.2.3 Battery Cell Management Unit 

 

 

Figure 4 Battery Cell Management Unit 

The Battery Cell Management Unit (CMU) has been designed by Sensichips for 

battery engineers and researchers (see Figure 4). The CMU allows multiple 

measurements of supercapacitors and battery cells while in operation. The CMU is 
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based on SENSIPLUS that allows measuring 1st, 2nd, and 3rd harmonics of a 

Potentiostat/Galvanostat along with on-chip sensors for Temperature, Relative 

Humidity, and Gassing. 

The CMU board includes the Anode and Cathode electrodes that allow a 4 contacts 

measurement of the cell’s internal impedance and tab temperature. Furthermore, the 

CMU is chemistry independent and can be used with Li-ION and Li-Fe-PO4 battery 

packs and with 3b generation of LNMO cells, Supercapacitors, and Fuel Cell 

combinations. Table 3 shows the main specifications related to the CMU. 

 

 ELECTRICAL  

Supply Voltage 1.5-4.5V directly powered by the battery cell 

Max Current 20mA when reading EIS at best accuracy 

Size  20×8.5mm, 2.3mm thickness 

Interface Isolated (UL1577 rating) I3C or SENSIBUS, 

single data wire bus 

Unique Identifier OTP 48bits Unique Device/Cell Identifier, 16bits 

User Defined 

ELECTRICAL IMPEDANCE SPECTROSCOPY 

EIS Four contacts EIS measurement of internal Cell 

Impedance 

Frequency 40Hz to 100KHz 

Ipp output sinewave 0 to 20mApp 

Coherent demodulation 1st, 2nd, or 3rd harmonic 

Output Reciprocal of real or imagery component 

Measurement Resolution 1mΩ with 200μΩ accuracy at 1KHz 

Table 3 Battery Cell Management Unit Specifications 
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1.2.4 Microanalytical Tool 

 

 

Figure 5 Microanalytical Tool 

The Microanalytical Tool (MAT), shown in Figure 5, is a multifunctional 

measurement instrument that can be used in the laboratory or on the field for 

continuous online monitoring. The Standalone version can be powered by USB or 

Battery, and data connectivity includes WiFi, Bluetooth, or USB. The MAT is based 

on the SENSIPLUS chip and, thanks to the 2mm banana connectors, allows: 

• Precision LCR Meter 

• Electrochemical Impedance Spectrometer 

• Potentiostat and Galvanostat 

The main specifications of the MAT can be found in Table 4. One of the main 

applications of the MAT is represented by the IoTMAT (see Figure 6) which can be 

used for: precision laboratory instruments, in-field or on-line data logger, networked 

and remote operation, etc. 

 

Figure 6 IoTMAT 
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 ELECTRICAL  

Supply Voltage Single Cell Li-Ion Battery or USB cable 

Max Power MAT Standalone:  500mW with WiFi 

communication MAT Tethered:      3.5mW for 

EIS measurement 

Size  MAT Standalone:  63x34x10mm MAT Tethered:      

42x32x7mm 

Interface MAT Standalone:  USB, WiFi, Bluetooth MAT 

Tethered:      SENSIBUS 

LCR METER 

Frequency 3.1mHz to 1.2MHz 

Vpp output sinewave 156mV to 2.8Vpp 

Calibration Open/Short/Load compensation support 

Output Reciprocal of real or imagery component 

Wide Measurement Range From ohms to 100MΩ 

ELECTRICAL IMPEDANCE SPECTROSCOPY 

Frequency 3.1mHz to 1.2MHz 

Vpp output sinewave 156mV to 2.8Vpp 

Coherent demodulation  1st, 2nd, or 3rd harmonic 

Output Reciprocal of real or imagery component 

Wide Measurement Range From ohms to 100MΩ 

Table 4 Microanalytical Tool Specifications 

1.3 Software API 

All the software APIs, which concern the SENSIPLUS ecosystem, have been 

designed and developed in collaboration with the University of Cassino and Southern 

Latium. The API library is structured in three main architectures levels: 

• API Level 0: provides methods for communication between the host and 

the SENSIPLUS chip. 

• API Level 1: provides methods for decoding high-level calls into bytes that 

will be sent directly to the chip. 

• API Level 2: provides all the methods available for different types of 

analytical measurements. 
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For a more detailed description of the API architecture see Figure 7. Obviously, during 

this Ph.D. period, I have personally contributed to the design and development of new 

API features either form a researcher's point of view by implementing artificial 

intelligence algorithms or data processing procedures, that as a Sensichips employee 

by implementing new features or improving the already existing ones. 

 

 

Figure 7 Software API Architecture 

 

1.3.1 API Level 0 

API Level 0 takes care of managing the interface driver between the host and the 

SENSIPLUS. This architectural level allows to send and receive information to and 

from the chip, thanks to the abstraction of the specific hardware interface (I2C, SPI, or 

SENSIBUS). 

The primary method of this API level is the sendData() that allows to send and receive 

bytes to/from the SENSIPLUS chip. 
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1.3.2 API Level 1 

API Level 1 takes care to decode high-level instructions, which come from API 

Level 2, into structured bytes that will be sent to the chip through API Level 0. This 

level also implements a communication abstraction with the chip directly or through 

an intermediate bridge device. If the chip directly interfaces with the Host, this 

abstraction is not implemented. 

 

1.3.3 API Level 2 

API Level 2 provides all the methods necessary to perform all the available 

analytical measurements. For each type of measurement, there are two different 

methods: setMeasureType and getMeasureType. Where the setMeasureType is needed 

to set the initial chip state and internal parameter that will be used to perform a given 

measure type, while the getMeasureType request to the chip one or more measures 

returning to the caller the corresponding numeric values. 

 

1.4 Developed Application 

In this section, I want to describe the Winux application developed by Sensichips 

s.r.l. with the collaboration of the University of Cassino and the Southern Latium in 

order to perform the desired measurements with the previously depicted SENSIPLUS 

devices (SCW, SCA, CMU, IoTMAT). 

During my Ph.D. work, to implement and improve the developed end-to-end system, 

I personally worked on the Winux application either by implementing completely new 

features (like, for example, all the classification systems), that by improving the 

already existing ones.  
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1.4.1 Winux 

The Winux application has been developed in order to be as much as possible 

versatile either from the measurement experiments settings point of view, that from 

the SENSIPLUS interaction. In this regard, the application is mainly divided into two 

tabs: 

• Debug 

• Batch 

 

Debug Tab 

 

Figure 8 Debug tab view. 

The main Debug features are meant to allow the user to direct communicate with the 

SENSIPLUS chip, by sending/receiving single instructions. Furthermore, allow the 

user to connect with the given device in order to start a measurement experiment (see 

Figure 9). Finally, it is capable to take a trace of all the instructions sent to the 

SENSIPLUS chip during an experiment (see Figure 10).  
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Figure 9 Modify Configuration dialog view. 

As can be seen from Figure 9 from the Modify Configuration dialog it’s possible to 

select the given device (from the Configuration’s combo box) and sets all the given 

parameters to allow the connections. 

 

 

Figure 10 Log view. 
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Figure 11 Connected chips list massage after a connection establishment. 

Once the connection with the device is established, the application will show an output 

message with the list of all the connected chips (see Figure 11). 

 

Batch Tab 

 

Figure 12 Batch tab view. 

The Batch tab is meant to allow the user to set the desired measurement experiment 

configurations, furthermore, is capable to show the classification system results, all the 
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physical quantities measured plots, and information. In particular, from this view, it’s 

possible to load an XML file containing all the information needed from the 

application to execute a given measurement experiment autonomously.  
 

 

Figure 13 Batch tab with an XML configuration file loaded. 

Figure 13, for example, shows an XML file containing two measurement 

configurations: 

1. Sensor: ONCHIP_TEMPERATURE (the green one) 

2. EIS measurement (the orange one) 

A possible example of an XML file is shown in Figure 14. 
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Figure 14 XML file containing a possible EIS measurements configuration. 

For more details about the XML file tags refer to Appendix A. 
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Figure 15 Batch tab view a detailed description. 

Regarding all other settings contained in the Batch tab view refer to Figure 15.  

Figure 16 and Figure 17 represent a possible output from an EIS measurement (Figure 

16) and a POT one (Figure 17). As can be seen there are different information that can 

be retrieved as statistical ones, graphical representation, and a text area with all the 

acquired samples. 

 

 

Figure 16 EIS measurements information. 
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Figure 17 POT staircase measurements information. 

Lastly, from the Batch view, it is possible to show the results of the classification 

system. Obviously, all the measurements and classifications system information is 

contained in the given XML loaded file. From Figure 18 can be seen all the 

Classification system information, in particular, the three highlighted columns 

(Concentration, Confidence, and Reliability) show the output class information.  

It is important to note that the Concentration column is still a “work in progress” 

feature and so at the time I’m writing it has not been implemented yet. Regarding 

Confidence, the column reports the probability that the given output class is the current 

flowing one. The Reliability column, instead, is meant to give an idea of the possible 

truthfulness of the obtained result, showing the reliability (in terms of accuracy) 

obtained during the learning phase. For more details about the others classification 

system information refer to Section 2.5. 
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Figure 18 Classification Systems results information. 

 

1.5  Embedded API 

Among the main objectives of the Sensichips system, particularly of the 

SENSIPLUS project, there is the capability to elaborate the measured data by 

exploiting the methodologies and techniques of artificial intelligence combined with 

the necessity to keep low consumption. For that reason, during this Ph.D., I’ve started 

to work on implementing the Software API on the ESP-32 MCU to exploit all the edge 

computing advantages, such as the speed up given by the capability to process the data 

on the MCU itself. For that reason, the first step that has been made is porting the 

software API described in Section  1.3 into the C language in order to be executed by 

the MCU itself. During the entire porting work, the main goal has been to make the 

whole API’s modules as efficient and lightweight as possible.  
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At the same time as the porting, tests were started on various artificial intelligence 

algorithms to understand which algorithm would give the best performance in terms 

of energy consumption and computational impact.
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CHAPTER 2. CONTAMINANTS 

DETECTIONS AND RECOGNITIONS 

USING MACHINE LEARNING 

TECHNIQUES 

 

In this chapter, I will present the development of an end-to-end identification 

system (from sensing to classification) capable of detecting a predefined set of 

substances considered dangerous and indicative of an anomalous use of wastewater. 

The developed system follows the paradigms of the Internet of Things (IoT) benefiting 

from the application of Artificial Intelligence (AI) and Machine Learning (ML) 

techniques to exploit, as much as possible, the information from all the acquired data.  

The proposed measurement system is based on a proprietary embedded IoT-ready 

Micro-Analytical Sensing Platform (MASP) of 1.5 mW power absorption and 1.5 x 

1.5 mm of the size called Smart Cable Water (SCW) and based on the SENSIPLUS 

microchip (see Chapter 1 for more details). The SCW and SENSIPLUS microchips 

have been developed and designed by Sensichips s.r.l. company. 

 

2. State of the Art 

In the scientific research field, many activities have been carried out related to 

sensing technology, developing a sensor able to respond to the presence of a given 

contaminant selectively, and data analysis with the purpose of achieving detection and 

classification. Given the complexity of the applications and given the difficulties in 

using laboratory instruments to perform reliable water quality monitoring the main 

target of several works, [17] [18] is represented by those systems that are reliable, 

compact, low cost, and low power. The desired capability of a sensor to respond 

differently to different substances is quite rare both in commercial and ad-hoc sensors. 
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A commonly adopted solution is the usage of a sensor array. Sensing technologies for 

water pollution monitoring have been widely studied in the scientific literature, e.g., 

see the extensive reviews in [19] [20] [21].  

The proposed methods rely on applying electrodes of different metals [22] or being 

covered by sensing films [23]. Measurements from sensors are usually based on a 

frequency domain technique, known as Electrochemical Impedance Spectroscopy 

(EIS) [24] [25] [26], which evaluates the response of an electrochemical cell to a low 

amplitude sinusoidal perturbation. 

Given the large amount of data acquired, data analysis for contaminants classification 

is typically based on Artificial Intelligence (AI) approaches. For example, in [27], 

Artificial Neural Network (ANN) and Principal Component Regression are used to 

estimate nitrate concentration in groundwater, while in [22] partial least square 

discriminant analysis is applied to detect explosive precursors in wastewater.  

In [28] the authors describe an AI approach for water quality monitoring. Another 

example can be found in [29], where the authors combine an AI algorithm with 

fractional derivative methods and the main algorithm adopted for machine learning is 

the Support Vector Regression Model (SVR). 

Also, deep learning solutions have been proposed. In [30], for example, Long Short 

Term Memory (LSTM) and Convolutional Neural Networks (CNN) were adopted for 

the detection and classification of chemical substances in sea water. 

 

2.1 Scientific Contribution 

From the review of the state of the art related to the application of machine learning 

to water analysis, it emerges that the problem of anomaly detection has not been 

addressed. In a classification system, ignoring the anomalies means making it unusable 

in a real context, as the system would not be able to react correctly to substances not 

taken into consideration during the training phase, potentially generating false 

positives. In a wastewater analysis scenario, the open issues are mainly related to the 

complex and expensive equipment often required, unsuitable for the IoT and pervasive 

paradigm, and the lack of an anomaly detection step. This work proposes a possible 

solution to both of these issues.  

In terms of IoT readiness, is proposed the adoption of the SENSIPLUS chip, a 

proprietary device developed by the Italian company Sensichips s.r.l., which has been 

proven to be effective in reliable measurements for pollutant detection in air and water 

[31] [32] [33] [34] [35]. The SENSIPLUS chip, together with a commercial Micro 
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Control Unit (MCU), becomes a low-power, low-cost, and IoT-ready miniaturized 

sensing platform.  

The second issue is tackled with a double-stage classification system: an anomaly 

detector and a multiclass classifier, starting from the idea that only a closed set of 

substances are interesting while others are simply interferants and do not need to be 

classified. The anomaly detection allows stating if the analyzed substance can be one 

of interest or something else (for simplicity, unknown). Whenever such a module 

declares that the substance is not an anomaly, the multiclass classifier module is 

activated, and its computational burden is included in the system load. The 

combination of both modules permits having a substantial false positive reduction 

while keeping a very high accuracy value for the substances of interest. The 

combination of the developed platform and the new concept of supervised double-

stage classification represents the main contribution of this work to the state of the art. 

 

2.2 Measurement SetUp 

 

Figure 19 Measurement SetUp. 

 

Figure 19 shows the overall measurement system, composed of a measurement chain, 

a magnetic stirrer, and a 300 ml beaker. The measurement chain is based on a 

proprietary IoT-ready ecosystem of Sensichips s.r.l. composed of a sensor layer named 

Smart Cable Water (SCW) which basically is a tiny analytical sensing platform of 

1.5mW power absorption. The SCW is directly connected to an MCU (that in our case 

is an ESP32/ESP8266) which connects the sensor layer with the host PC. At the core 

of the SCW, there is the SENSIPLUS, the Sensichips micro-chip capable to interrogate 

on-chip and off-chip sensors with its versatile and accurate Electrical Impedance 

Spectrometer (EIS). In this way, it is possible to perform measurements working with 
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multiple sensors, and in particular, the SCW system has been endowed with 6 

Interdigitated Electrodes (IDEs). The magnetic stirrer equipped with a 25 mm anchor 

simulates the water flow. It is worth noting that all measurements have been performed 

under the same water-stirring conditions. More in detail, the anchor rotation has been 

set to 50 rpm. It is important to say that the anchor rotation speed has been chosen to 

avoid air bubbles in 100 ml of water trying to minimize measurement noise. Finally, 

in order to have any measure independent from the others, the beaker has been cleaned 

with soap and fresh water. 

The physical principle adopted to achieve the goal of detecting and recognizing a given 

set of substances of interest is to exploit the RedOx dynamics of catalytic noble metals. 

The electrical equivalent circuit of two electrodes flooded in a water solution is named 

Randles and it is represented in Figure 20. As can be seen from the electrical circuit, 

each electrode is mainly represented by a double layer capacitance Cd and a faradic 

resistance Rf that take into account the interface between the water solution (called 

bulk) and the electrode itself, for that reason, it depends on the electrode composition, 

geometry, bulk composition, etc. The equivalent resistance of the bulk, named Re, 

mainly depends on the bulk composition and the electrode area.  

 

 

Figure 20 Randles equivalent circuit. 
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For that reason, it was decided to functionalize the six IDEs of the SCW by coating 

them with different metals: 

• Gold 

• Copper 

• Silver 

• Nickel 

• Palladium 

• Platinum 

Of which the first five (from Gold to Palladium) IDEs are 3 x 7 mm each, while the 

last one (Platinum) is 12 x 8 mm (see Figure 21). 

 

Figure 21 Smart Cable Water IDEs. 

 

2.3 Features Selection 

One of the main problems related to Machine Learning is related to feature 

selection. Feature selection is primarily focused on removing noninformative or 

redundant predictors from the model and for that reason, according to the electrical 

equivalent circuit described in the previous section, we choose to collect the following 

features: 

• Resistance at 78KHz frequencies, for the Gold and Platinum IDEs. 

• Resistance and Capacitance at 200Hz frequencies, regarding the Gold, 

Platinum, Silver, and Nickel. 
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Regards the Palladium and Copper IDEs, they have not been used. It is worth 

specifying that regards the palladium there were problems related to the coating which 

made the IDE unusable. As far as copper is concerned, instead, based on a preliminary 

qualitative campaign it has emerged that the Copper IDE’s measurement has resulted 

to have less sensitive to the contaminants under test, and, therefore, Resistance and 

Capacitance values have been accordingly discarded. 

The main idea behind the chosen features regards the different behavior that the 

equivalent circuit has at low and high frequencies. 

 

 

Figure 22 Randles at low frequency 

 In particular, at the low frequencies, the two capacitance Cd have a high impedance 

and can be represented as an open circuit (see Figure 22) and so the measurements 

depend both on the faradic resistance that on the bulk resistance (Re).  It is important 

to note that, as depicted in the previous section (Section 2.2), the faradic resistance 

mainly depends on the electrode composition, area, and geometry. For that reason, to 

get a contribution from all the compositions and geometry, all the available IDEs 

(except the Copper and Palladium ones) have been used.  
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Figure 23 Randles at high frequency 

 

At the high frequencies, otherwise, according to the Randles circuit the two Cd present 

a low impedance and for that reason can be seen as a short circuit (see Figure 23) and 

so the measurements depend mainly on the bulk resistance. In this case, unlike what 

was said on low frequencies, the measurement mainly depends on the electrode's 

surface area. For that reason, have been used only two IDEs: Platinum which is the 

one with the greatest surface area, and one (Gold) from the three remaining IDEs that 

share the same surface area. 

 

2.4 Data Collection 

The main goal of the proposed system is to be able to detect and recognize a given 

set of substances that flows in the wastewater. Ideally, the first step to do in order to 

achieve the expected result is to build a training set by acquiring all the data set 

measurements directly in a controlled drain of a sewage network. However, this is not 

a viable solution mainly from two points of view: 

• Measurements point of view: all measurements should be taken from the 

same and reliable conditions however due to the instability typical of the 

sewage background environmental composition, it is impossible to reach an 

acceptable level of reliability conditions. 

• Health point of view: due to the presence of viruses, bacteria, and other 

dangers, operating directly in the sewage network would represent 

biological hazards. 
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To solve the listed problems, we decide to use synthetic wastewater (SWW) with the 

purpose of simulating the sewage composition. The adopted recipe to produce the 

SWW is inspired by a simplified version of the one created in [36]. Moreover, in order 

to better reproduce a real wastewater scenario, the pH of every batch of the SWW has 

been corrected accordingly to [37] measurements of the real wastewater. For a more 

detailed chemical composition of the Synthetic Waste Water refer to Table 5. 

Given the complexity of the real scenario, where every day there are plenty of different 

substances that flow through the water, in order to build a robust system capable to 

face all those kinds of problems, the collected dataset has been divided into two main 

groups: the substances of interest (group 1) and a set of interferent ones (group 2). 

 

Table 5 Synthetic Waste Water Composition 

Compounds (mg/l) 

Fertilizer  91.74 

Ammonium Chloride  12.75 

Sodium Acetate Trihydrate  131.64 

Magnesium Hydrogen Phosphate Trihydrate  29.02 

Monopotassium Phosphate  23.4 

Iron (II) Sulfate Heptahydrate  5.80 

Starch  122.00 

Milk Powder  116.19 

Yeast  52.24 

Soy Oil  29.02 

 

The following list contains the substances of Group 1: 

• Acetic Acid  

• Acetone  

• Ethanol  

• Ammonia  

• Formic Acid  

• Sulphuric Acid  

• Hydrogen Peroxide  

• Synthetic Waste Water  
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While regards the Group 2 substances there are: 

• Sodium Hypochlorite  

• Sodium Chloride  

• Dish Wash Detergent  

• Wash Machine Detergent  

• Nelsen  

We have chosen this type of substance as interferences since they are most likely 

among the ones that can be found most frequently in wastewater since they come 

mainly from domestic activities.  

Regarding the data collection, it is mainly divided into two phases: 

• Warm-Up phase: in this phase, in order to let all sensors stabilize, the first 600 

samples are acquired in only SWW. 

• Measurement phase: after the warm-up phase, the substance of interest is 

spilled in the SWW and, to record the entire sensor's evolution after the 

injection, another 1000 samples are acquired. 

Regarding the measurement procedure, as depicted in Section 2.2, all the acquisitions 

start with 100 ml of Synthetic Wastewater inside a 300 ml beaker with an anchor used 

to simulate water flow, with a constant rotation speed of 50 rpm. After the first 600 

samples (Warm-Up phase) the given substance is injected into the beaker using a 

siring. It is important to note that the measurement quantities have been chosen 

according to the discriminant capabilities of the sensors. 

 

2.4.1 Data Set 

For each substance, ten acquisitions of 1600 samples obtained through the 

measurement procedure as mentioned above have been collected, obtaining 16000 

samples overall.  

For evaluation purposes, the k-Fold Cross-Validation procedure has been adopted. 

Cross-validation is primarily used in applied machine learning to estimate the skill of 

a machine learning model on unseen data. Its application generally results in a less 

biased or less optimistic estimate of the model efficiency than other methods, such as 

a simple train/test split. Usually, the first step in k-fold Cross-Validation is the random 

shuffle of the collected data.  
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Figure 24 Data Set Structure, Exp0, 1, …, 9 means respectively acquisition 0, 1, …, 9 of all 

substances. 

In our case, taking into account that measures belonging to the same experiment are 

strongly correlated, has been preferred to assume as a unit for k-fold an entire 

acquisition (1600 samples) of all the substances.  

In order to find the best anomaly detection and multiclass classifiers model to use for 

the entire system, the entire Data set has been organized in ten Fold (Fold 0, Fold 1, 

..., Fold 9). Each Fold contains nine additional Split (Split 0, Split 1, ..., Split 9) and 

one final evaluation test. The given Split is organized like the following: 

• Training data: used to train both anomaly detection and multiclass classifier 

model. 

• Test data: used to find the best model’s hyperparameters of both anomaly 

detection and multiclass classifier. 

For the final evaluation concern, it is composed of whose samples are not contained 

either in the Training data or in the Test data of all the Splits related to the given Fold. 

In order to keep things clear, has been used a fixed nomenclature: the number inside 

the given Fold’s name indicates the experiment (data acquisition) used to perform the 

final evaluation, while the number inside the given Split indicates the experiment used 

for the related Test data. For the Training data concern, it is composed of all the 

experiments except the one used for the related Test Set and the one used for the final 

evaluation that, as said before, contains data that is unseen from both the Training and 

Test data of the related Fold.  

For example, Fold 0 contains the Split from 1 to 9, excluding Split 0 since experiment 

0 of all the substances is used to build the final evaluation test. The Test data of the 
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Split 1 is made of experiment 1 of all substances while the Training data is made of all 

the remaining experiments (excluding experiment 1 used for the Test and experiment 

0 used for the final evaluation).  

In this way, the Test data of the Split 2 is made by experiment 2, while the related 

Training data will exclude experiments 2 and 0, and so on. Regards the final evaluation 

of Fold 0, is made by experiment 0 of all substances.  

See Figure 6 for a graphical representation of how the Data Set has been organized, 

starting from the structure of the Folds to the single Splits. It is worth specifying that 

in Figure 6 Exp 0, Exp 1, ..., Exp 9 means respectively acquisition 0, 1, ..., 9 of all 

substances. 

Finally, it is worth specifying that regards the multiclass classifier and anomaly 

detection models the training, test, and final evaluation set ratio during the learning 

phase was respectively: 80%, 10%, and 10% with respect to the samples belonging to 

the Group 1 substances. Furthermore, to properly validate and test the learned anomaly 

detection models, the split’s test set and the final evaluation data have been polluted 

with outlier points taken from the substances belonging to Group 2. 

 

2.5 Classification System 

In this section, the entire developed classification system is presented. 

The proposed system can be schematized in two main phases: 

• Data Processing 

• Classification System 

As can be seen in Figure 25, the data processing phase is composed of a Finite State 

Machine (FSM) that takes care to normalize the input data (that comes directly from 

the sensors) and detect if a substance has been spilled, and give it as input to the 

classification system that takes care to recognize the given substance. 

 

 

Figure 25 Classification System 

It is important to notice that the developed system, as already said before, needs to be 

capable to work in a real wastewater scenario. In this kind of complex environment, 

there are many problems to be faced. Firstly, the system needs to be robust with respect 
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to all measurement degradations resulting from interaction with such an aggressive 

environment, for example, sensor drift, noise, etc.  

Secondly, another problem that must be faced, is the number of different substances 

that everyday flows in a sewage network. For that reason, developing a system capable 

to recognize a given set of substances is not enough. Most likely, this kind of system 

will end up confusing one of the countless substances that flow into the wastewater 

with one of the sets of interest, generating a wrong classification, and consequently, a 

false alarm. 

To solve these problems depicted so far has been decided to interpose a finite state 

machine and an anomaly detection system before the multiclass classification system, 

with the aim to reject all the unknown substances (outliers) and all those signals 

deriving from the interaction with the environment. 

 

2.5.1 Data Processing 

The Data Processing phase is formed by a Finite State Machine, which aims to build 

a robust baseline signal to normalize the raw data coming directly from the sensors' 

measurements and then pass the normalized sample to the detection phase. 

The baseline signal is generated by the union of the FSM with the application of an 

Exponential Moving Average (EMA) according to the following equation: 

 

𝒃𝑡 = {

𝒔𝑡, 𝑡 = 0
𝒃𝑡−1, 𝑡 > 0, 𝑆 ∈ {𝐵𝑆, 𝐵𝑆𝑃}

𝛼𝒔𝑡 + (1 − 𝛼) ∙ 𝒔𝑡−1, 𝑡 > 0, 𝑆 ∈ {𝑊𝑇, 𝐵𝐴, 𝐵𝑇}
 

Equation 1 

Where WT, BA, BT, BSP, and BS are the states of the FSM that are, respectively: 

Wait (WT), Baseline Acquisition (BA), Baseline Tracking (BT), Baseline Suspended 

(BSP), and Baseline Stopped (BS). 

Regarding the EMA, the 𝛼 parameter is given by 
1

𝐸𝑀𝐴𝑐
, while 𝑠𝑡 is a vector filled by 

the sensors' data that comes directly from the measurements. 𝐸𝑀𝐴𝑐  is the EMA 

coefficient that, in our case, has been empirically set to 25. Regarding the 

normalization value, it is given by the following formula: 
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𝒇𝑡 = 
𝒔𝑡

𝒃𝑡
 

Equation 2 

Where the 𝒇𝑡 is the normalized features vector, while 𝑠𝑡 is the sensors data vector and 

the 𝒃𝑡 is the baseline signal computed as described by Equation 1. 

Figure 26 shows the entire FSM system. In particular, 𝑡 is the current time sample, 

while 𝜏 is a threshold that, in our case, has been empirically set equal to 0.05. Regards 

the 𝑑𝑡 parameters, it represents the Euclidean distance between the normalized features 

vector 𝒇𝑡 and the unit vector 𝒖 (a vector of ones) in a 10-dimensional space that is the 

size of the vector 𝒔𝑡 (see Equation 3). 

 

𝒅𝑡 = ‖𝒇𝑡 − 𝒖‖ 

Equation 3 

The reason behind the choice to compute the distance with respect to the unit vector is 

given by Equation 2, indeed it is clear that the vector 𝒇𝑡 when 𝒃𝑡 is equal to 𝒔𝑡 is the 

unit vector. For that reason, the Euclidean distance has been computed so that when 

𝒃𝑡 is perfectly tracking the signal 𝒔𝑡, the distance 𝒅𝑡 results to be equal to zero. 

As shown in Figure 27, the state of the FSM can change according to a given rule. The 

main idea behind the defined rules is the purpose of building a robust baseline capable 

of coping with the main problems related to data processing, for example, the 

variability between sensors/chips, sensor drift, environmental noise, interferences, etc. 

In this sense, the first two states (WT and BA) guarantee that the baseline is not 

affected by noise and/or interferences.  

Once we are in the BT state, we first must grant that single measurements spike is not 

confused as a substance passage, and this is done with the rules between the BT, BSP, 

and BS states then, once we are in the BS state, we can pass the normalized features 

vector to the classification system. 
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Figure 26 Finite State Machine 

The entire system depicted so far is shown in Figure 27. 

 

 

 

Figure 27 Finite State Machine Flow Chart 
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Where S indicates the state of the FSM, 𝐶𝑡 is the classification of the sample at the 

time 𝑡 and BKG is the background substance. 

It is important to show why it was necessary to design a finite state machine in order 

to be able to build a robust baseline. Indeed, before the FSM, the baseline was 

computed through a simple Exponential Moving Average (EMA) according to the 

following equation: 

 

𝒃𝑡 = {
𝒔𝑡 , 𝑡 = 0

𝛼𝒔𝑡 + (1 − 𝛼) ∙ 𝒔𝑡−1, 𝑡 > 0
 

 

The main problems with this type of baseline are that: 

• Is unable to adequately track the sensor drift. 

• Is unable to represent a good reference value when there is the presence of a 

substance. 

• It works in counter-phase during the wash-out (when the substance goes away). 

 

 

 

Figure 28 Behavior of the old baseline tracking system. 
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Figure 29 Behavior of the new baseline tracking system. 

Figure 28 and Figure 29 represent the behaviors of the old baseline and the new 

baseline. In particular, four sectors can be identified: 

• [𝑡0, 𝑡1]: when the acquisition starts and there is only the background substance 

(SWW in our case). 

• [𝑡1, 𝑡2]: when a given substance is injected and the sensors start to react. 

• [𝑡2, 𝑡3]: when the substance is going away. 

• [𝑡3, 𝑡∞) : when the substance “disappears”. 

As can be seen from Figure 28, in the first sector the baseline is a bit distant from the 

sensor signal. The distance increases during the first part of the second sector (that is 

good for classification purpose) but, at some point, start to vanish because the baseline 

keeps updating by trying to track the sensor signal (that is bad). Finally, in the last two 

sectors, it generates an anti-phase behavior. The described behaviors are not good from 

the classification point of view because all the oscillations of the features vector 𝒇𝑡 

(see Equation 2) worsen the performance of the classification system. 

As can be seen from Figure 29, most of the problems related to the EMA baseline have 

been solved by the usage of an FSM. In this regard during the Ph.D. studies a 

comparison between the two, previously described, baseline tracking methods have 

been made [38].  

In particular, the comparison study has been made by using a Multi-Layer Perceptron 

(MLP) network. The used dataset is described in Table 6, the results obtained with the 

old system are reported in Table 7, and the ones obtained with the newly are shown in 

Table 8. To notice that Table 7 and Table 8 have reported the Size of the Hidden Layer 
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(SHL), Mean global accuracy (M), Standard Deviation over the global accuracy (SD), 

and Synthetic Wastewater accuracy (SWW). 

 

Table 6 DataSet Samples for different classes 

Substances Class Samples 

Total Training Validation Test 

Ethanol (1) 9371 5183 3174 1014 

Sodium Hypochlorite (2) 9122 5059 3073 990 

Sulphuric Acid (3) 9162 5079 3071 1012 

Dish Wash Detergent (4) 9172 5078 3081 1013 

Sodium Chloride (5) 9162 5078 3071 1013 

Synthetic Wastewater (6) 9165 5079 3072 1014 

Total  55154 30556 18542 6056 

 

Has can be seeing the best results obtained with the old baseline tracking system have 

been achieved by an MLP with 16 hidden neurons. The best mean accuracy was 

82.64% with a 1.0541% of standard deviation and an accuracy of 98.40% for the 

SWW. Regards the new solution, the best results have been obtained by an MLP with 

16 hidden neurons. In this case, the best mean accuracy is significantly improved, by 

reaching 97.20% with a 0.443% of standard deviation. Finally, the SWW achieved a 

99.99% of accuracy.  

 

Table 7 Global results for an MLP using the old baseline tracking method. 

SHL M SD SWW 

16 0.8264 0.10541 0.9840 

32 0.7795 0.10832 0.9362 

64 0.8226 0.11651 0.9512 

 

Table 8 Global results for an MLP using the new baseline tracking method. 

SHL M SD SWW 

16 0.9720 0.0443 0.9999 

32 0.9720 0.0443 0.9981 

64 0.9719 0.0443 0.9989 
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The obtained results show that the new baseline tracking method improves the 

performance of the classification both in terms of global accuracy that in terms of a 

false positive reduction filter by not confusing the sensor's noise and or drift caused by 

the SWW with any of the trained substances.  

 

2.5.2 Classification System 

Obviously, in a real scenario where plenty of substances flow in the sewerage 

network, it is crucial to be able to distinguish between the substances of interest and 

the other ones. 

In this sense, the main goal of this phase is to determine if the given detected substance 

is one of interest, and then to be able to correctly predict the name of the substance. 

The classification phase is basically divided into two main parts: 

• Anomaly Detection 

• Multiclass Classification 

Let’s see more in detail. 

 

Anomaly Detection 

Regards the anomaly detection algorithms, we can mainly distinguish them in two 

approaches: 

• Outlier Detection 

• Novelty Detection 

In the outlier detection algorithms, the training data contains a small portion of the 

outlier’s samples. In this case, the estimators try to fit the regions where the training 

data is the most concentrated, ignoring the deviant observations. 

In the novelty detection algorithms, the training data are not polluted with outlier 

samples. In this context, we want to determine whether a new observation is an outlier 

or an inlier. In this sense, an outlier is also called a novelty. 

Our case is best represented by the novelty detection approaches according to our data 

set and the application field. This is because, in our application field, we want to 

discard all those substances that are usually present in the sewage system, and we want 

to recognize only the substances of interest that represent a minimum part of the 
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substances that can be found in the wastewater. To have as complete a point of view 

as possible, we trained and tested anomaly detection models built with both novelty 

and outlier approaches: 

• Novelty Detection: One-class SVM, Local Outlier Factor (LOF) and KNN 

• Outlier Detection: Elliptic Envelope and Isolation Forest 

All the algorithms have been taken from the sci-kit learn library [39] except for the 

KNN, which has been taken from the Python Outlier Detection (PyOD) library [40]. 

As described in Section 2.4.1 we have organized the entire data set into ten Folds, each 

of which contains nine Training phases made by training and a validation set. For the 

outlier detection data set concern, it is the same as depicted in Section 2.4.1 with the 

addition of some outlier samples in the training set (about 10%). 

 

Multiclass Classification 

Regards the multiclass classification, instead, we have trained and optimized the 

accuracy of a KNN on the described data set. It's important to notice that, unlike 

anomaly detection, the training and validation sets are formed with only the samples 

of the substances of interest. 

In both cases, anomaly detection and multiclass classification, the grid search 

approaches have been chosen to optimize the models' hyperparameters. All the 

model’s parameters are detailed in Table 9 and Table 10.  

Finally, the entire system, composed of the data processing and the classification 

system, is shown in Figure 30. Eventually, to find out the best anomaly and multiclass 

classifier model, the ten Folds of the data set (see Section 2.4.1 for more details) has 

been used. Once the best model of each classifier has been found, the entire system 

has been tested over the test data. 

Now, that the entire system has been depicted, it is important to point out that the 

proposed classification system does not relay over any pattern nor trajectory 

recognition, time series, or, in other words, it is time-independent. This feature allows 

us to build an IoT-ready system capable of detecting and recognizing, the given spilled 

substance based only on the current sample, as shown in Figure 30.  

In this sense, we can refer to our system as an IoT-ready platform for real-time 

pollutant spilling detection. 
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Figure 30 Entire System Flow Chart 

 

Table 9 Anomaly Detection Models Parameters 

Classifier Parameters 

KNN 
Contamination [0.01, 0.05, 0.1, …, 0.5] 

N neighbors [10, 100, 200, …, 500] 
 

 

SVM 

𝜈 [0.01, 0.05, 0.1, …, 0.5] 

Kernel Radial basis function 

𝛾 [auto, scale, 0.01, 0.05, 0.15, …, 1.0] 
 

Local Outlier Factor Contamination [0.01, 0.05, 0.1, …, 0.5] 

N neighbors [10, 100, 200, …, 500] 
 

Elliptic Envelope Contamination [0.01, 0.05, 0.1, …, 0.5] 
 

Isolation Forest 
Contamination [auto, 0.01, 0.05, 0.1, …, 0.5] 

N estimators [50, 100, 150, …, 500] 
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Table 10 Multiclass Classification Model Parameters 

Classifier Parameters 

 

KNN 

Algorithm Ball tree 

N neighbors [10, 100, 150, …, 500] 

Weights [uniform, distance] 
 

 

2.5.3 Learning Procedure 

Regards the training and test phase, Algorithm 1 and Algorithm 2 show the pseudo-

code of the Training and Test procedure. Regards the training procedure, as already 

described in the previous sections, it is the same for both anomaly detection and 

multiclass classifiers. For the test procedure concern, instead, it has been built in order 

to be able to test either the entire system (anomaly detection and multiclass classifier) 

rather than only the multiclass classifier one. For that reason, the Test procedure takes 

as input extra parameters “doAnomaly” which serves to decide if the test must be 

performed over only the multiclass model (case doAnomaly = FALSE) or on both 

anomaly detection and multiclass models (case doAnomaly = TRUE). In the latter 

case, the online classification procedure (Algorithm 3) is called. It is worth specifying 

that Algorithm 3 represents the procedure implemented on the end-to-end system in 

order to perform online tests of the entire system.  

 

Algorithm 1 Training Procedure 
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Algorithm 2 Test Procedure 

 

Algorithm 3 Online Classification Procedure 
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2.6  Experimental Results 

Regarding the experimental results, to test the entire system over the test set for 

each case (anomaly and multiclass classifier) has been chosen the best model. The 

following sections are reported the obtained results. 

 

2.6.1 Anomaly Detection Results 

Regards the anomaly detection models, the best results have been obtained in the 

Fold 0 case. As described in Section 2.4.1, in the case of Fold 0, all the experiments 

between 1 and 9 have been used as training and validation sets. In contrast, experiment 

0 of all substances was used for the final evaluation test.  

The best results are reported in Table 11, while the mean plus the standard deviation 

(STD) of the best algorithms, obtained over all the Splits of the Fold 0 data set are 

reported in Table 12. As can be noticed from the result tables, the reported algorithms 

can achieve almost the same results, both in the best cases rather than all the Splits of 

Fold 0. For that reason, it is not possible to easily declare a winner. Thus, since the 

application field of the proposed system best fits the novelty detection approaches, to 

test the entire system has been used the One-class SVM classifier. Finally, to 

statistically validate the obtained results, the Wilcoxon rank-sum test (𝛼 = 0.05) has 

been performed. Table 12, indeed, also shows the p–value of the Wilcoxon test. From 

the table, it is possible to see that the performance differences between the three 

algorithms that best perform (One-Class SVM, Elliptic Envelope, and Isolation Forest) 

are not statically significant (p-value > 0.05). Regarding the Local Outlier Factor 

(LOF) and the KNN algorithm, it is possible to notice that the p-value is < 0.05, 

highlighting a statistical difference in the obtained results. Finally, it is worth noticing 

that the Wilcoxon test has been performed by evaluating all chosen figures of merit 

(Accuracy, F1 Score and MCC). 
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Table 11 Best Results Anomaly Detection 

Approach Algorithm Accuracy F1 Score MCC Parameters Split 

 

 

 

Novelty 

 

One-Class 

SVM 

 

95.46 

 

0.8868 

 

0.8675 

𝜈 0.01  

6 Kernel rbf 

𝛾 0.45 

 

KNN 

 

59.82 

 

0.0938 

 

-0.2485 
contamination 0.45  

1 
N neighbors 10 

 

LOF 
 

86.24 

 

0.7639 

 

0.7123 
contamination 0.01  

7 
N neighbors 400 

 

Outlier 

Elliptic 

Envelope 
95.45 0.8864 0.8671 contamination 0.05 6 

Isolation 

Forest 
95.47 0.8872 0.8679 

contamination 0.1  

4 N estimators 350 

 

 

 

Table 12 Fold 0 Results 

Algorithm Accuracy F1 Score MCC p-value 

One-Class SVM 93.58 ± 1.71 0.8474 ± 0.0352 0.8115 ± 0.0497 - 

KNN 56.51 ± 2.26 0.0902 ± 0.0018 -0.2762 ± 0.0188 5.6e-6 

LOF 82.01 ± 3.46 0.7137 ± 0.0382 0.6519 ± 0.0463 5.6e-6 

Elliptic Envelope 93.25 ± 1.57 0.8448 ± 0.0311 0.8069 ± 0.0445 0.4860 

Isolation Forest 94.63 ± 1.30 0.8689 ± 0.0277 0.8423 ± 0.0391 0.7317 

 

 

The reported figures of merit, have been computed by the following formulas: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
    𝑤ℎ𝑒𝑟𝑒    {

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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𝑀𝐶𝐶 = 
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 +  𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 +  𝐹𝑁)
 

 

Where the True Positive (TP) is all the outlier samples classified as an outlier, True 

Negative (TN) are all the inliers classified as inlier, False Positive (FP) are all the inlier 

samples classified as an outlier, and False Negative (FN) are all the outlier classified 

as an inlier. 

 

2.6.2 Multiclass Classifier Results 

Regards the multiclass classifier model, the best result obtained in the Fold 0 has 

been achieved by the KNN algorithm, using a number of neighbors (N) equal to 10 

and adopting uniform weights. The obtained accuracy is equal to 99.37%. While in 

terms of mean accuracy and standard deviation over the nine folds contained in Fold 

0, the obtained result is (91.0 ± 5.7) %. 

 

2.6.3 Entire System Results 

Two main tests have been done to highlight the benefits obtained from anomaly 

detection followed by the multiclass classifier for the entire system concerns. 

Once with only the multiclass classifier and once with anomaly detection plus the 

multiclass classifier. The obtained results are shown in Figure 31 and Figure 32.  

As can be seen from the two confusion matrices, the outlier substances used are: 

• Dish Wash Detergent (DW_DETERGENT) 

• Nelsen (INT_NELSEN) 

• Washing Machine Detergent (WM_DETERGENT) 

• Sodium Chloride (SODIUM_CHLORIDE) 

• Sodium Hypochlorite (SODIUM_HYPOCHLORITE) 

In the case of the Multiclass classifier standalone, the outlier substances get 

erroneously confused, with one of the known ones generating many false positive 

alarms. To solve this problem, as described in the previous sections, before the 

multiclass classifier has been added, an anomaly detection system is capable of 

working as a false positive reduction filter (based on what is described in the Anomaly 

Detection section). As reported in Figure 32, with the addition of the anomaly 

detection system, most outlier samples get correctly labeled as "UNKNOWN".  
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More precisely, 79.4% of the outlier samples have been correctly labeled as 

"UNKNOWN", while the remaining 20.6%, which represents all the sodium 

hypochlorite samples, get mostly confused with the hydrogen peroxide (according to 

what is shown in Figure 31 ).  

Finally, since the obtained results (see Table 11 and Table 12) show almost the same 

performance across the used algorithms, and since the application field of the proposed 

system is best represented by the novelty detection approach, the reported result has 

been used by the One-class SVM classifier. 

 

 

Figure 31 Multiclass Classifier Results 
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Figure 32 Entire System Results 

 

2.7 Discussion 

From the Experimental Results section can be seen that given an outlier sample as 

input to a multiclass classifier, the output will for sure falls under one of the known 

classes. This behavior led to generating a number of false alarms equal to the number 

of outlier samples, making the system useless in a real scenario application.  

The results shown in Figure 31, clarify the drawbacks of using only the multiclass 

classifier system to recognize a given substance. In this case, indeed 100% of the 

outlier samples represented by the dish wash detergent, Nelsen, washing machine 

detergent, sodium chloride, and sodium hypochlorite has been mainly confused with 

the sulphuric acid and the hydrogen peroxide generating a great number of false 

alarms. For sure a multiclass classifier, used alone, cannot reject any of the outlier 

samples and for that reason, to solve this kind of behavior has been introduced an 

anomaly detection module as false alarms filter. Table 11 and Table 12 show the 

results obtained by the anomaly detection system. As can be seen, the performance 

obtained by the One-Class SVM, Elliptic Envelope, and Isolation Forest classifier are 

pretty similar, this means that the three algorithms can be equally used. Moreover, to 

statistically validate the obtained results, the Wilcoxon rank-sum test (𝛼 = 0.05) has 
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been performed, and the results, shown in Table 12, didn’t show any significant 

differences. Furthermore, the chosen figure of merit shows that the anomaly detection 

algorithms are able to correctly distinguish between the outlier samples and the normal 

ones.  

At this point putting the anomaly detection, and multiclass classifier systems together 

has been possible to reach the results shown in Figure 32. The results show as the 

anomaly detection system has been able to reject most of the outlier’s samples (around 

the 80%) by labeling it as “UNKNOWN”. As can be seen, all the sodium hypochlorite 

samples have been mainly confused with hydrogen peroxide. Even though this is a 

behavior that worsens the system’s performance, it can still be considered an 

acceptable behavior.  

Indeed, even if the two substances are chemically different (i.e., sodium hypochlorite 

is a polar substance while hydrogen peroxide is nonpolar) they have a similar oxidation 

potential: 1.6V for the sodium hypochlorite and 1.75V for the hydrogen peroxide [41]. 

Moreover, among all the substances of interest, hydrogen peroxide is the only 

compound that can be considered a strong oxidant (in a range that goes from +3V for 

the oxidants, to −3V for the reducers). This similarity is particularly evident with the 

measurements at 78kHz. For all those reasons, the confusion between sodium 

hypochlorite and hydrogen peroxide can be considered acceptable.  

For the substance of interest concern, instead, Figure 32 shows as the multiclass 

classifier results (see Figure 31) are substantially maintained. Indeed, the overall 

accuracy reached by the entire system over the substances of interest is around 98.44% 

with a 0.93% of accuracy loss with respect to the multiclass classifier system alone 

(99.37%). With the consideration made, we can say that the improvement made by 

putting an anomaly detection system before the multiclass classifier one, has been 

proven. The entire system indeed has been capable to reject around the 80% of outlier 

samples and correctly recognize around 98.44% of inlier samples.  

Finally, given a real scenario application, it is clear to understand how the presence of 

an anomaly detection module is of vital importance for the utility of the system itself.  

 

2.8  Conclusion and future developments 

In conclusion, the proposed work has been meant to develop a stable and robust 

detection system capable of working in an aggressive environment like the one 

represented by the sewage network. The complex environment implies that many 
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different substances can be present, even those whose danger level is not significant 

and therefore not to be detected by the proposed system.  

Nevertheless, adopting a classical supervised ML approach, whatever substance would 

be recognized as one of those belonging to the training set. The important novelty 

carried out and proven to be effective in this work is implementing a two-stage scheme 

to reduce false alarms by keeping the classification accuracy very high strongly.  

To do that, a Finite State Machine with the intent to filter, process, and normalize the 

measured sensors data, and a classification system was built. The classification system 

is divided into two main parts, one represented by an anomaly detection classifier (in 

our case, the One-class SVM), that rejects all the samples belonging to the unknown 

substances, and one represented by the KNN multiclass classifier to recognize the 

given substance belonging to those of interest. From the obtained results, shown in 

Section 2.6, it can be seen that the developed system works as supposed, drastically 

reducing the classification errors given by the outlier samples and keeping accuracy 

on the substances of interest higher than 0.93 in all considered cases. 

Regards future developments, sure, the system has to be optimized and improved to 

be as much as possible suitable for a real scenario application. For that reason, many 

tests must be performed in a real scenario (see Chapter 4 for more details) both to 

validate the promising results obtained in the laboratory activity and to enforce and 

improve the generalization property of the system itself.  

Furthermore, the sodium hypochlorite confusion shown in Figure 32, as discussed in 

Section 2.7, suggests to us that substances with some common chemical properties 

could be confused by the anomaly detection system. A possible way to reduce this 

phenomenon as much as possible would be to investigate an optimum set of orthogonal 

features that can exploit the chemical differences to maximize the overall system 

performance. 
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CHAPTER 3.  CONTAMINANTS 

DETECTIONS AND RECOGNITIONS 

USING AD-HOC ALGORITHMS 

 

This Chapter presents the development of a system for detecting and classifying 

pollutants based on a lightweight algorithm suitable for the IoT and edge-computing 

paradigms. The system is based on a classifier suitable to be implemented aboard the 

so-called Smart Cable Water (SCW) sensor, a multi-sensor based on SENSIPLUS 

technology developed by Sensichips s.r.l. 

The SCW endowed with six interdigitated electrodes (IDEs) is a smart sensor covered 

by specific sensing materials to allow the differentiation between different pollutants. 

To make the system as edge computing suitable as possible, has been used 

decomposition techniques (e.g., PCA, LDA, etc.) to compress the obtained data 

passing from a 10-dimensional space to a 3-dimensional space. Regarding the 

classification system, a straightforward model that can be implemented using very few 

hardware resources has been developed. As for the model parameters, on the other 

hand, they were learned through the use of evolutionary algorithms. 

The remainder sections are organized as follows: Section 3 discusses the state of the 

art; Sections 3.1, 3.2, and 3.3 describe the three proposed approaches based on the 

Evolutionary Algorithms developed during the Ph.D. work. 

 

3. State of the Art 

Environmental pollution monitoring has the attention of many researchers and 

technical communities. They are mainly proposing new emerging sensors able to 

reliably detect pollutants by minimizing the costs, energy consumption, and size by 

developing new network technologies, communication standards, and new methods 

for data analysis. Zhuiykov [19] proposes a review of the emerging technologies for 
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water quality parameter monitoring. In this regard, sensors based on electrodes made 

with different metals [22], electrodes covered by sensing films [23], and optical 

sensors [42] represent the solution mainly adopted by the scientific literature. In [26] 

electrochemical impedance spectroscopy (EIS) is exploited for detecting Escherichia 

coli in river water samples. For the data analysis concern, many researchers are 

exploiting the advantages offered by Artificial Intelligence and Machine Learning 

(ML) [34] [43] [22] [35].  

In particular, ML techniques are often preprocessed using Principal Component 

Analysis (PCA). It is important to notice that PCA is often used as a preprocessing 

step for dimensionality reduction before the classification. It is generally not used to 

develop an ad-hoc classifier as in this Ph.D. work. For example, [44] Lotfi and 

Keshavarz proposed a novel approach where PCA is used to reduce the number of 

features to detect tumors in gene expression microarray data.  

In [45], instead, a comparison between PCA and SVM in fault classification for 

complicated industrial processes is proposed. In this regard, the experimental results 

showed that the PCA offers a higher classification rate for this multi-class 

classification case with much less computational effort based on the results obtained 

from the Tennessee Eastman challenge process whereas SVM classification takes 

longer and gets less accurate classification results.  

Finally, similar approaches have been used for face recognition [46] and intrusion 

detection problems [47]. In most of the proposed approaches in the literature, PCA is 

used primarily to reduce the number of available features and has never been used to 

develop an ad-hoc classifier. 

Evolutionary computation (EC) based algorithms have proven to be effective in 

solving many real-world problems characterized by large and non-linear search spaces 

[48] [49] [50] [51]. They have also been used to improve the performance of the basic 

PCA algorithm. In [52] an approach for classifying hyperspectral images has been 

proposed. In particular, an approach in which feature selection and extraction were 

combined by using a Genetic Algorithm (GA) to select the features to give as input to 

the PCA. Eventually, the new transformed features were provided as input to the 

adopted classifier. 

In [53]  the GA is used to identify the optimal PCA components for the automated 

identification of different dementia syndromes from PET images data. Then the 

extracted feature was given in input to an SVM classifier. The proposed approach was 

based on eigenvector selection and weighting reaching a test accuracy of 90% on a 

dataset of 210 clinical cases. 
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Finally, in [54] a novel PCA and GA approach for human face recognition is proposed. 

In this case, the PCA was used for extracting features from images with the help of 

covariance analysis to generate eigen components of the images, whereas the GA was 

used for dimensionality reduction. The proposed approach was able to achieve an 

accuracy of 96% on the Japanese Female Facial Expression (JAFFE) dataset. 

Therefore, EC-based approaches have been widely used to improve the results of the 

PCA procedure by suitably selecting or modifying the principal components provided 

by the standard algorithm.  However, to the best of my knowledge, an EC-based 

algorithm has never been used to learn the parameters of a classification model in the 

feature space provided by the PCA. 

 

3.1 Cone Based Algorithms 

The proposed work represents the first step that has been made to build an EA-

based system capable of recognizing a given set of substances spilled in wastewater. 

It is worth specifying that the data collection and the data set structure are the same 

that have been already described in Sections 2.4 and 0, with the only exception regards 

the set of substances used: Acetic Acid, Ammonia, Phosphoric Acid, Sulphuric Acid, 

and Synthetic Waste Water (Sww). Regards the features selection techniques and the 

measurement setup, have been extensively detailed in Sections 2.3 and 2.2. 

 

3.1.1 System Architecture 

The developed system is divided into two main modules. The first uses a PCA 

procedure to transform the input normalized data, consisting of ten electrical measures, 

i.e., resistance and capacity values (see Section 2.3 for additional details), into 3-D 

space. The main goal of this module is to simplify the original data by identifying a 

few uncorrelated features that maximize the data variability. This data transformation 

allows for the building of a simple classification model that can be implemented on 

very low hardware resources. It is important to mention that the implemented PCA is 

based on the randomized truncated SVD method [55]. Regarding the data 

normalization, it was performed with respect to the baseline computed as the mean 

value over the first 600 samples (worm-up samples refer to Section 2.4 for more 

details).  In particular, the last 1000 samples of each acquisition used to build the 

dataset, have been normalized following Equation 4. 
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𝒏 =
𝒙𝑖

𝒃𝑖
− 1.0           ∀ 𝑖 ∈ [1,2, … ,10] 

Equation 4 

Where xi represents the set of the last 1000 samples of the ith acquisition, bi is the 

baseline of the given acquisition and n are the normalized data.  

Finally to centering the data into the origin of the references system, has been 

subtracted 1.0 from the obtained value. It is worth noting that since the first 600 

samples have been taken with the only presence of the background substance (SWW), 

the background normalized samples will lay around the origin. 

The output data of the first module represents the input of the second one, which 

consists of a C binary classifier, where C represents the number of substances to be 

distinguished. Each classifier, except for the background class (SWW), is based on a 

simple geometrical model consisting of a 3-D cone whose vertex coincides with the 

origin of the xyz references system. Regarding the SWW samples, given the 

normalization approach, they will stay all around the origin of the 3-D space, and for 

that reason have been choosing to use a sphere centered in the origin of the reference 

system. In this way, the sphere can be seen as a threshold on the distance of a given 

point P from the origin, so if a given point P falls inside the sphere, it is labeled as 

belonging to the SWW (see Figure 33).  

 

 

Figure 33 Background substance sphere. 
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This model uses the one-versus-all strategy and so given a cone Γ trained to detect the 

substance γ, the points internal to Γ are labeled as belonging to γ, whereas the external 

ones are labeled as non γ points, i.e. belonging to one of the other substances to be 

detected (see Figure 35). It is worth noting that the cone Γ is uniquely determined by 

four parameters (see Section 3.1.2 for more details) with the internal/external points 

providing positive/negative values for the equation. The architecture of the entire 

system is shown in Figure 34. 

The idea behind the proposed system is to build a very simple model capable to be 

implemented on sensors. Indeed, once the model parameters have been learned, new 

data can be classified by performing a few calculations, which do not require executing 

any software but can be implemented directly on the available sensor hardware. 

 

 

 

Figure 34 System Architecture 
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Figure 35 Representation of a cone with internal points. 

Indeed, the PCA algorithm, once learned, is basically represented by an 𝑁 × 3 matrix, 

where N is the number of features extracted that in our case is ten. For that reason, a 

new sample 𝒙 that has to be classified can be projected into the 3-Dimensional space 

at runtime by performing 𝑁 × 3 multiplications and sums.  

Looking at Figure 34, after the transformation into the 3-D space the three features are 

used to solve the C cone equations (for more detail see Section 3.1.2), one for each 

learned class (substance). Those equations need 𝐶 × 3 multiplications and sums, 

where C is the number of learned substances to be discriminated. At this point, three 

scenarios can be faced: 

1. Only an equation provides a positive value for the sample 𝒙; 

2. More than one equation provides a positive value for 𝒙; 

3. No equation provides a positive value 𝒙. 

In case 1, 𝒙 is assigned to the class related to the equation that provides the positive 

value. In case 2 the distance between 𝒙 and each of the bisectors of the Γ cones 

involved is computed, and 𝒙 is assigned to the class represented by the cone whose 

bisector is the nearest one. Finally, in case 3 𝒙 is still recognized by the system as data 

representing a pollution state, but the sample is labeled as “undefined”. 

Given a dataset Ɗ, the task of learning the cone Γ that best classifies the given 

substance γ, from the other ones can be seen as an optimization problem where the 

objective function to maximize is 𝐹𝑠(Ɗ, 𝑙,𝑚, 𝑛, 𝛼). In particular, the chosen objective 
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function is the F-score computed on the cone represented by the parameters 𝑙, 𝑚, 𝑛 and 

𝛼, achieved on Ɗ. Since the EAs have been proven effective in solving hard and non-

linear problems, they have been used as a tool to learn the devised classification model. 

Finally, it is important to note that the training set Ɗt used during the learning process, 

has been decimated (and so only 100 samples per substance have been used). 

 

3.1.2 Classification Model 

The classification model is based on a geometrical cone where each substance γ is 

represented by a cone Γ whose vertex coincides with the xyz reference system origin 

in the 3-D space obtained by the PCA, with the internal points classified as belonging 

to γ and the external ones belonging to the other substances. To check if a given 3-D 

point P falls inside a cone Γ, firstly, the angle θ between P and the axis of Γ is 

computed, then the value of the angle θ is checked, and if it is less than the opening 

angle 𝛼 of the cone Γ means that P falls inside it, otherwise it is outside. 

Starting from the equation that defines the axis of a generic cone: 

 

𝑟: {
𝑥 = 𝑥0 + 𝑙𝑡
𝑦 = 𝑦0 + 𝑚𝑡
𝑧 = 𝑧0 + 𝑛𝑡

   𝑤𝑖𝑡ℎ    𝑡 ∊ ℝ ⟹ 𝑣𝑟 = (𝑙,𝑚, 𝑛) 

Equation 5 

Where (𝑥0, 𝑦0, 𝑧0) are the coordinates of the point P0 representing the vertex of the 

cone, that in our case coincides with the origin of the reference system. At the same 

time (l, m, n) is the component with respect to the base {i, j, k} of a parallel vector to 

r. Moreover, the unit vector vs between P and P0 is: 

 

𝑣𝑠 = 𝑃0𝑃1
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  = 𝑃1 − 𝑃0 = (𝑥1 − 𝑥0, 𝑦1 − 𝑦0, 𝑧1 − 𝑧0) 

Equation 6 

Then given two unit vectors: 

 

𝑣𝑟 = 𝑙𝑖 + 𝑚𝑗 + 𝑛𝑘 

𝑣𝑠 = 𝑙′𝑖 + 𝑚′𝑗 + 𝑛′𝑘 

Equation 7 
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the cosine of the angle θ between vr and vs can be computed according to the following 

formula: 

cos(𝜃) =
𝑣𝑟 ∙ 𝑣𝑠

‖𝑣𝑟‖‖𝑣𝑠‖
=

𝑙𝑙′ + 𝑚𝑚′ + 𝑛𝑛′

√𝑙2 + 𝑚2 + 𝑛2√𝑙′2 + 𝑚′2 + 𝑛′2
 

Equation 8 

once the value of θ has been found, if 𝜃 ≤ 𝛼 then the data sample represented by P is 

assigned to the substance γ represented by the cone Γ. 

 

3.1.3 Evolutionary Algorithms 

In the last few decades, computer science researchers have widely studied the 

effectiveness of the natural mechanism. Indeed natural selection is, basically, the result 

of competition among different living beings for the resources available and needed to 

survive. Individuals with the features to survive better in their environment are more 

likely to pass their genes to the next generation. This simple but very interesting 

mechanism originated a new computation paradigm, Evolutionary Computation (EC). 

EC-based algorithms have proved their effectiveness by solving complex problems 

e.g., NP-hard ones, in which optimal solutions must be found in very huge search 

spaces. 

In this regard, since we can see the problem of finding the optimal parameters for a 

given substance’s cone in the 3-D space as an optimization problem where we want to 

maximize the objective function 𝐹𝑠(Ɗ, 𝑙,𝑚, 𝑛, 𝛼), the generational evolutionary 

algorithm has been used. In particular, the algorithm starts by generating a population 

of P individuals, each made of four real variables (the cone parameters to be learned). 

Within the individuals, the ith variable is initialized by randomly generating a number 

in the range [mi, Mi] by using the uniform distribution function, where mi and Mi are 

respectively the minima and maximum values of the ith variable. 

At this point, the fitness of the P individuals is computed, and a new population is 

generated. The e individuals are just copied into the new population; this strategy 

ensures that the best individuals found along the evolutionary process are not lost. 

Then the remaining (𝑃 − Ɗ) 2⁄  couples of individuals are selected by using the 

tournament method.  

Afterward, the uniform crossover is applied to each of the selected couples with the 

probability pc. Next, the mutation operator, with a probability of pm, is applied. The pm 

value has been computed to apply the modification of only one chromosome element, 
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corresponding to 0.251 𝑙𝑐⁄  where lc is the chromosome length. This value has been 

suggested in Ochoa [56] as the optimal mutation rate below the error threshold of 

replication. Finally, the newly generated individuals are added to the new population 

and the depicted process is repeated for Ng generations. The implemented evolutionary 

algorithm is shown in Algorithm 4. Further details about the evolutionary algorithms 

can be found in [57]. 

Regards the fitness function for the ith substance is defined by a dataset Ɗi suitably 

build, where the samples of the ith substance are labeled as belonging to class 1, and 

the remaining ones are labeled as 0. Then, given an individual I, its fitness is computed 

according to the formula: 

𝐹𝑠(Ɗ, 𝑙𝐼 , 𝑚𝐼 , 𝑛𝐼 , 𝛼𝐼) = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑡𝑝

𝑁𝑡𝑝 + 𝑁𝑓𝑝
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑡𝑝

𝑁𝑡𝑝 + 𝑁𝑓𝑛
 

Equation 9 

Where 𝑙𝐼 , 𝑚𝐼 , 𝑛𝐼  and 𝛼𝐼 are the cone parameters encoded by I, Ntp represents the number 

of samples belonging to the ith class correctly classified (i.e., true positive), Nfp is the 

number of samples erroneously classified as belonging to the ith class (i.e., false 

positive) and Nfn is the number of samples not correctly classified (i.e., false negative). 

Thus, Fs measure the accuracy of the cone represented by I on the training set Ɗi. 

 



CHAPTER 3  Contaminants Recognition using EA 

  

61 

 

Algorithm 4 Evolutionary algorithm. 

 

 

3.1.4 Results 

To test the developed system have been used four substances: acetic acid, ammonia, 

phosphoric acid, sulphuric acid, and sww represent our background substance. A 

balanced dataset who has been extensively detailed in the Section 0 has been used. 

Since the proposed approach needs to evolve a cone for each substance using a one-

vs-all strategy, each substance, has been built ad-hoc dataset, where all the samples of 

the given substance have been labeled as the target class, while the remaining ones as 

non-target. 

Furthermore, the entire dataset has been split into two statistically independent sets: 

the first is made of 90% of the available samples used to learn the best cone’s 

parameters; the second is made of the remaining 10% of the samples used to test the 

learned models. Totally, for each substance, to learn the best models, twenty runs have 

been made. For each run, the parameters of the best individuals have been stored as 
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the best solution provided by that run. It is worth specifying that all the reported results 

have been computed by averaging those of the twenty runs. 

Table 13 reports the obtained cone performance in terms of accuracy and F-score, 

while Table 14 reports the evolutionary algorithm parameters used for all the 

experiments. These parameters have been found after preliminary tests. 

 

Table 13                                                                                                                                              

Cone Performance in terms of accuracy, F-score, and true-positives (TP), true-negatives (TN), false-

positives (FP), and false-negatives (FN). 

Substance Accuracy F-Score TP TN FP FN 

Acetic Acid 0.84 0.54 4982 38484 6087 2447 

Ammonia 0.89 0.48 2677 43528 1043 4751 

Phosphoric Acid 0.88 0.47 2627 43353 1218 4802 

Sulphuric Acid 0.91 0.64 4312 42850 1722 3117 

Sww 0.88 0.43 2297 43650 922 5132 

 

 

Table 14                                                                                                                                                 

The values of the parameters used in the experiments 

Parameter Symbol value 

Population size p 100 

Crossover probability pc 0.6 

Tournament size T 5 

Elitism e 2 

Mutation probability pm 0.25 

Mutation range mr 0.1 

Number of Generations Ng 500 

 

To analyze the performance obtained by the cones found with the EA has been taken 

into account: accuracy, F-score (see Equation 9), true-positives (TP), true-negatives 

(TN), false-positives (FP), false-negatives (FN). From Table 13 can be seen that 

Sulphuric Acid has achieved the best accuracy. These results show that the proposed 

system is effective in distinguishing each substance. For the F-score values concern, 

these are far from optimal (1.0), meaning that the system can be improved by future 

updates (see Section Line Based Algorithms 3.2 and 3.3). To test the effectiveness of 
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the proposed system in distinguishing the various contaminants and the sww as well 

has been built the confusion matrix on the test samples (see Figure 36). 

 

 

Figure 36 Confusion matrix on test data. 

The results reported in Figure 36 show that the sww (as well as sulphuric acid) is 

correctly distinguished, and this means that no false alarms are provided by the system, 

in other words, the sww is never confused with a polluted state. It is also worth noting 

that substance samples are never confused. Finally, the overall accuracy of the system 

is 96.5%. 

To best tests, the effectiveness of the system, a comparison between the proposed 

approach and more traditional machine learning algorithms has been made. In 

particular, the cone-based system results have been compared with those achieved by: 

AdaBoost (AB-J48), bagging (BAG), convolutional neural network (CNN), Support 

Vector Machine (SVM), Multilayer Perceptron (MLP), random forest (RF), voting 

(vote) and xgboost. For these classifiers, except the CNN, the implementation provided 

by the WEKA open-source machine learning software [58] has been used.  

Regarding the parameters, the default ones provided by WEKA have been used. The 

CNN, instead, applies a single convolutional layer with 64 unidimensional kernels of 

size 3x1. After a batch normalization layer, two fully connected layers with 256 hidden 

neurons have been added, interleaved with a dropout fixed to 0.5. For the fully 

connected layers, relu and soft-max have been used as activation functions, 

respectively. The results shown in Table 15 show that the proposed system 

outperforms all the classifiers taken into account for the comparison. 
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Table 15 Comparison results. 

Classifier Accuracy 

AB-J48 85.04 

BAG 80.23 

CNN 83.59 

SVM 89.56 

MLP 86.42 

RF 85.51 

Vote 88.21 

Xgboost 82.12 

Our method 96.50 

 

 

3.1.5 Related Problems  

Additional investigation has been made regarding the behavior of the proposed 

system with respect to the undefined samples. To this aim, has been analyzed the 

composition of these test samples and calculated for each contaminant as well as the 

sww the percentage w.r.t. the total number of undefined samples (2600) and the total 

number of samples for the given contaminant (1300 for each contaminant). Table 16 

reports the obtained results. As can be seen, the acetic and phosphoric acid samples 

amount to about 80% of the test samples that are unclassified, i.e., they fall outside the 

related cone. Furthermore, these two substances are mostly unclassified, respectively 

89% and 71%. Regarding ammonia, about 30% of the test samples are undefined.  
Table 16 Percentages of substances 

Substance w.r.t. undefined w.r.t. substance 

Acetic Acid 44.5 89.0 

Ammonia 15.5 31.0 

Phosphoric Acid 34.5 71.0 

Sulphuric Acid 5.5 11.0 

Sww 0.0 0.0 
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These analyses suggest that the proposed cone-based system had some representation 

limits that need to be improved (see the following sections). However, the results of 

the sww confirm the potentiality of the proposed approach showing that the proposed 

system never provides false alarms.  

 

3.2 Line Based Algorithms 

As said in Section 3.1 the cone-base algorithm was the first step in the building of 

a lightweight EA-based classification system. After the results obtained with the cone-

based algorithm, the proposed approach, named the line-based (LB) algorithm, has 

improved the system’s performance by changing the classification model. In 

particular, each substance is now represented by a straight line passing through the 

origin of the transformed 3-D reference system, and each point is assigned to its nearest 

axis, according to the Euclidean distance. Unlike the cone-based (CB) system, a 

multiclass classifier has been implemented straightforwardly, avoiding all the 

problems belonging to the one-versus-all technique (e.g., N distinct and independent 

training set, labeling conflicts between cones, etc.).  

Furthermore, the proposed approach allowed us to simplify even further the 

classification model, indeed, in a 3-D space, a straight line passing through the origin 

is represented by only three parameters (four in the case of cones). It is important to 

specify that regards the implementations of the evolutionary algorithm, except for the 

fitness function, it is the same adopted with the cone-based system, so refer to Section 

3.1.3 for more details. For the fitness function concern, it is depicted in Algorithm 5. 

 

Algorithm 5 Line-based fitness function. 
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3.2.1 System architecture 

As proposed in the CB-based system, even the LB model is a classification system 

divided into two steps. Firstly, a PCA transformation is applied over the 10-

dimensional input data, to project them into a 3-D space. Secondly, the transformed 3-

D data are classified by a simple geometrical model: a straight line passing for the 

origin of the 3-D reference system. Figure 37 shows the entire LB system architecture. 

 

 

Figure 37 LB system architecture. 

 

3.2.2 Data Transformation 

The PCA data transformation aims to project the 10-dimensional input data into a 

3-D space. As discussed in Section 3.1.1, the main goal of the data transformation is 

to allow the design of a simple and lightweight classification model. As well as done 

in the cone-based algorithm, the PCA decomposition has been performed via the eigen 

decomposition of the covariance matrix. 
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3.2.3 Classification Model 

The multi-class classification system models the C class (one for each substance), 

except the background one (SWW in our case), with a straight line passing through the 

origin of the xyz reference system (see Figure 38). In particular, each line r is defined 

by three parameters (l, m, n) see Equation 5 for more details. In this way, a point in the 

3-D space is labeled as belonging to the class associated with the nearest line.  

As regards the classification of the SWW, as well as has been done in the cone-based 

system, has been used a sphere centered in the origin of the reference system, which 

basically is a threshold on the distance of a given point from the origin (see Figure 33). 

The reason behind the choice changing from the previous classification model based 

on C geometrical cones Γ to one based on C lines r is to reduce the system's 

computational complexity and to resolve the problems related to the CB system 

depicted in Section 3.1.5. Indeed, with the line-based model, a classification task 

consists of only 𝐶 × 3 multiplications and sums, removing all the operations related 

to the cone-based system in the case a point P falls within the volume of more than 

one cone (say n). In this case, indeed, additional 𝑛 × 3 multiplications and sums have 

to be computed. Furthermore, the line-based model resolves all the problems related 

to the so-called “undefined” points. The entire classification model can be seen in 

Figure 39. 

Regarding the classification model, more in detail, a point P in a 3-D space is assigned 

to belong to a given class according to a two-step procedure: 

i. The distance between P and each of the r lines is computed. 

ii. Point P is labeled with the class associated with the nearest line. 

The following equations are applied to find the distance between a point P and a line 

r. Starting from the parametric equation of a line in the 3-D space reported in Equation 

5, the plane 𝛼 orthogonal to r that passes through the point P can be computed starting 

from the Cartesian equation of a plane in the 3-D space: 

 

𝛼: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 

Equation 10 

At this point the orthogonal plane to the line r that pass-through P is defined by: 

 

𝑙𝑥 + 𝑚𝑥 + 𝑛𝑧 − (𝑙𝑥𝑝 + 𝑚𝑦𝑝 + 𝑛𝑧𝑝) = 0 

Equation 11 
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Figure 38 Line-based Model. 

 

Substituting (x, y, z) with (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟), Equation 11 can be resolved with respect to the 

parameter t (see Equation 5). Next, point 𝐻(𝑥𝐻 , 𝑦𝐻, 𝑧𝐻) given by the intersection 

between the plane 𝛼 and the line r can be computed as following: 

 

𝐻: {
𝑥𝐻 = 𝑥0 + 𝑙𝑡
𝑦𝐻 = 𝑦0 + 𝑚𝑡
𝑧𝐻 = 𝑧0 + 𝑛𝑡

 

Equation 12 

Finally, the Euclidean distance between P and r results to be: 

 

𝑑(𝑃, 𝑟) = 𝑑(𝑃,𝐻) = √(𝑥𝑃 − 𝑥𝐻)2 + (𝑦𝑃 − 𝑦𝐻)2 + (𝑧𝑃 − 𝑧𝐻)2 

Equation 13 
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Figure 39 Entire 3-D classification model. 

 

3.2.4 Results 

To evaluate the improvement given by the line-based model regarding the cone-

based one has been used the ten-fold cross-validation strategy. For this reason, the built 

dataset has been split into two sets: 

• Training set: containing 90% of the samples of all substances except the 

SWW. 

• Test set: containing the remaining samples and the SWW samples. 

In particular, the training set has been used to compute the individual’s fitness of the 

EA and, more in detail, for each fold, has been performed twenty runs and at the end 

of each run, the parameters encoded into the individual with the best fitness were 

stored. The used EA parameters are shown in Table 17. 

At this point, the results obtained on the test set have been compared with those 

obtained with the cone-based model. 
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Table 17 Evolutionary algorithm parameters. 

Parameter Symbol value 

Population size p 100 

Crossover probability pc 0.6 

Tournament size T 5 

Elitism e 2 

Mutation probability pm 0.08 

Mutation range mr 0.1 

Number of Generations Ng 500 

 

 

Figure 41 shows the confusion matrix obtained on the test data by the line-based (LB 

in the following) system, while Figure 40 reports the results of the cone-based (CB in 

the following) system.  

 

 

Figure 40 Confusion Matrix CB system. 
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Figure 41 Confusion Matrix LB system 

Looking at the reported confusion matrices, it seems that the obtained performances 

are similar. It is important to notice that the results related to the CB system (Figure 

40) have been computed by excluding all the undefined samples.  

For that reason, for the sake of simplicity,  

Table 16 is reported in the following contains all the information related to the 

undefined points. 

 

Substance w.r.t. undefined w.r.t. substance 

Acetic Acid 44.5 89.0 

Ammonia 15.5 31.0 

Phosphoric Acid 34.5 71.0 

Sulphuric Acid 5.5 11.0 

Sww 0.0 0.0 

 

Now, looking at the table above, it should be clear to see the improvements in the LB 

system. Indeed, the line-based algorithm correctly identifies most of the substances 

and, most importantly, does not present any undefined points. At this point considering 

that the CB system on one hand has been capable of achieving similar performance on 

the labeled substances, while on the other hand producing a large number of undefined 
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samples, it can be possible to say that the LB system brings a big improvement with 

respect to the CB one. 

Finally, Table 18 shows an updated version of the comparison results previously 

reported in Table 15. 

Table 18 Comparison results. 

Classifier Accuracy 

AB-J48 85.04 

BAG 80.23 

CNN 83.59 

SVM 89.56 

MLP 86.42 

RF 85.51 

Vote 88.21 

Xgboost 82.12 

CB system 96.50 

LB system 99.06 

 

 

3.2.5 Further Work 

Further work has been made on the LB system. In particular, has been made a study 

to evaluate the effectiveness of the usage of the polar coordinates rather than the 

cartesian one used by the LB model; another study concerns the usage of the Linear 

Discriminant Analysis (LDA) rather than the PCA and lastly has been evaluated a 

different initialization procedure for the initial population of the evolutionary 

algorithm named smart initialization. 

Firstly, regarding the dimensionality reduction technique, a comparison between the 

PCA and the Linear Discriminant Analysis (LDA) algorithms has been made and 

secondly, a further classification model simplification has been completed. 

 

3.2.6 Polar coordinates 

The main idea behind using the polar coordinates rather than the cartesian ones is 

to simplify the computational complexity of the training process by reducing the space 

solution in which the EA must find the best solution.  
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In particular, the idea is to represent each substance with a line r defined by the polar 

coordinates θ, ϕ, and ρ. However, since the ρ parameter specifies the distance from the 

origin that for classification purposes, is irrelevant, it can be taken as a constant value, 

and so only the θ and ϕ parameters must be evolved. In this way, the computational 

complexity of the LB model is decreased further. Indeed, while the Cartesian LB 

model has to evolve and store 𝐶 × 3 coefficients, in the polar LB (PB in the following) 

version, only 𝐶 × 2 parameters need to be evolved and stored.  

The main idea behind this simplification is to improve the performance of the 

classification system by reducing the solution space in which to search for the best 

parameters. Regards the classification model’s equations, they are the same as depicted 

in Section 3.2.3 with the only exception that the parameters (l, m, n) must be computed 

as: 

 

{

𝑙 = 𝜌 sin∅ cos 𝜃
𝑚 = 𝜌 sin ∅ sin 𝜃 
𝑛 = 𝜌 cos ∅           

      𝑤𝑖𝑡ℎ      
𝜌 ∈ [0, +∞]

𝜃 ∈ [0, 2𝜋)  
∅ ∈ [0, 𝜋]    

 

Equation 14 

Figure 42 shows a 3-D view of the entire model. The evolutionary algorithm and the 

fitness function refer respectively to the one depicted in Algorithm 4 and Algorithm 5; 

regarding the EA parameters they are the same reported in Table 17. 

 

 

Figure 42 Spherical LB model 3-D view. 
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3.2.7 Smart Initialization 

Smart initialization is a different initialization procedure for the initial population 

of the evolutionary algorithm. In particular, this procedure initializes a given fraction 

of the individuals in the initial population using the information provided by the 

training set. Thus, given an individual to be initialized, each couple of real values (the 

parameters θ and ϕ) representing an axis a is initialized by randomly choosing a sample 

s from the training set belonging to the class (substance) of a and setting the values in 

such a way that a passes through s, see Algorithm 6 for more details. 

Algorithm 6 Individual initialization. 

 

 

To obtain the parameters θ and ϕ that represents the axis a, starting from the sample s, 

since each sample is represented by the x, y, and z coordinates the parameters θ and ϕ 

can be computed according to the following formula: 

∅ = cos−1
z

𝜌
      with      (x, y, z) ≠ (0,0,0) 

 

𝜃 =

{
 
 
 
 
 

 
 
 
 
 
𝜋

2
                         if    x = 0, y > 0

3𝜋

2
                      if     x = 0, y < 0

not defined    if     x = 0, y = 0

tan−1
y

x
             if     x > 0, y ≥ 0

tan−1
y

x
+ 2π   if      x > 0, y < 0  or  if  x < 0, y > 0

tan−1
y

x
+ π     if      x < 0, y ≤ 0

 

Equation 15 
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3.2.8 Results 

To evaluate the proposed system's effectiveness, three sets of experiments have 

been performed using the substances listed previously. The results of the PB system 

with those achieved with the cartesian one have been compared in the first set of 

experiments. In the second set, the two decomposition techniques LDA and PCA have 

been tested and have evaluated the smart initialization. Lastly, in the third set has been 

compared the PB system’s obtained results with those of four well-known and widely 

used classification algorithms.  

The substances used during all the set of experiments are listed in the following: 

• Acetic Acid (AA) 

• Ammonia (AMM) 

• Phosphoric Acid (PA) 

• Hydrogen Peroxide (HP) 

• Formic Acid (FA) 

• Sulphuric Acid (SA) 

• Synthetic Waste Water (SWW) 

 

First experiment results 

To evaluate the improvement brought by using the polar coordinates has been 

compared the results obtained by the PB with those of the previously described LB 

system. In particular, the confusion matrices reported in Figure 43 and Figure 44 show 

the results obtained respectively with the PB and LB system. As can be seen, both 

approaches confused very few pollutants samples with the SWW, confirming the 

effectiveness of developing a system capable of detecting pollutants in water.  

Whereas in terms of overall accuracy, it is clear that the PB approach outperformed 

the LB one, indeed the PB's best overall accuracy achieved was 0.86, while the LB one 

was 0.42. The PB results (Figure 43) show confusion between phosphoric and acetic 

acid and between formic and acetic acid. In contrast, the LB one (Figure 44), in 

addition to the acid’s confusion, shows a confusion between the hydrogen peroxide 

and the formic acid.  

It is important to notice that, while acid-acid confusion can be considered “acceptable”, 

cause sensors tend to respond to the acids with similar patterns, peroxide-acid 

confusion is much less acceptable. Those results, together with the one related to the 
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overall achieved accuracy, confirm that the PB approach is more effective than the LB 

one in discriminating the pollutants analyzed in this experiment. 

 

 

Figure 43 Confusion matrix PB system. 

 

 

Figure 44 Confusion matrix LB system. 
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Second experiment results 

In the second set of experiments, the results obtained by using the LDA technique 

rather than the PCA have been compared, and has been evaluated the results obtained 

by using information from the training set to initialize the individuals in the initial 

population. 

 

PCA vs LDA 

The LDA algorithm is a dimensionality reduction technique that uses a supervised 

procedure to find a linear combination of the features in the original space that allow 

a better class separation. To evaluate the effectiveness of this transformation, the 

results obtained with both LDA and PCA approaches have been compared to reduce 

the feature space from 10 to 3D space. Figure 45 shows the results obtained using the 

LDA algorithm. Comparing the PCA results (see Figure 43) with that shown in Figure 

45 can be seen that PCA outperformed LDA, both in terms of overall accuracy (PCA: 

0.86, LDA: 0.71) that in terms of pollutants confusion with SWW (see last columns of 

confusion matrices).  

It is worth noting that the confusion between pollutants still allows the end-user to be 

warned about the presence of a dangerous substance, whereas confusing a pollutant 

with SWW does not allow any warning. PCA confused very few percentages of 

pollutants with SWW, whereas LDA confused 60% of phosphoric acid with SWW. 

As for the inter-pollutant confusion, we can observe that LDA achieved a peroxide-

acid confusion which is less acceptable than acid-acid confusion as discussed in the 

First experiment results subsection. 
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Figure 45 Confusion matrix PB system with LDA. 

 

Smart Initialization 

To test the effectiveness of the proposed new initialization strategy, three different 

values for the initial population fraction to initialize according to the procedure 

depicted in Algorithm 6 have been tested: 0.05, 0.10, and 0.15. 

To evaluate the improvement brought by the “smart initialization” have been analyzed 

and compared the population's average fitness (i.e., the training accuracy) along the 

evolution for the three tested values and without the smart initialization procedure 

(0.0). Figure 46 shows the results of the comparison. 
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Figure 46 Overall average fitness. 

As can be seen, the best performance was achieved by the values 0.0, 0.05, and 0.10, 

while the value 0.15 performed much worse than the other ones. From the obtained 

results can be concluded that: 

i. A too-high fraction of initialized individuals limits the exploration ability of 

the evolutionary algorithm. 

ii. Low values of initialization do not allow any improvement. 

iii. There is a value that allows a small but significant improvement. 

Other than the overall average fitness has been evaluated, even the average fitness 

along the evolution for the single substance (see Figure 47). From the results, for most 

of the substances, except for the sulphuric acid, the value 0.15 performed worse than 

the value of the others. Regarding the value 0.10, instead, the performance is slightly 

better than the others except for the one obtained with the formic acid; in this case, the 

0.0 value (random initialization) was the best performing. 
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                 (a) Ammonia                  (b) Formic Acid 

 

                 (c) Hydrogen Peroxide             (d) Sulphuric Acid 

 

                    (e) Acetic Acid            (f) Phosphoric  Acid 

Figure 47 Single substance average fitness. 
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Third experiment results 

The third experiment was meant to evaluate the effectiveness of the proposed 

approach by comparing the results obtained with the PB approach with those achieved 

by using four well-known and widely used classification algorithms: 

1. Decision Tree (DT) 

2. Nearest Neighbor (KNN) 

3. Neural Networks (NN) 

4. Support Vector Machines (SVM) 

Table 19 reports the values of the classifier parameters used for the comparison. For 

the sake of a fair comparison, the same training and test procedure has been used for 

our evolutionary algorithm (performing 30 runs). The Wilcoxon rank-sum test (α = 

0.05) has been performed to validate the comparison results. The obtained results are 

reported in Table 20. The results report the average accuracy and the related standard 

deviation computed over the 30 runs, the p–value of the Wilcoxon test, and the 

performance achieved on the best run.  

From Table 20 can be seen that the difference between the results of machine learning 

(ML) algorithms and those of our system is not statistically significant. However, 

looking at the best accuracy, the proposed approach outperforms the ML ones.  

Figure 48 reports confusion matrices computed over the best run of the ML algorithms. 

As can be seen, there are similar behaviors to those exhibited by our system, indeed 

there is confusion between acids e.g., between formic (#3), phosphoric (#5), and acetic 

(#1) acids. 

In contrast, regarding the confusion between the other substances with the SWW, only 

the DT had a significant percentage of confusion (about 22%), which makes this 

algorithm much less performing than the other ones. 
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Table 19 Classifier parameters. 

Classifier Parameter value 

DT 
Confidence factor 0.25 

Minimum #instances per leaf 2 

KNN 
K 3 

Distance Euclidian 

 

NN 

Learning rate 0.3 

Momentum 0.2 

Hidden Neurons  8 

Epochs 500 

 

SVM 

Kernel RBF 

C 1.0 

γ 0.5 

 

 

 

Table 20 Comparison results. 

Classifier Avg Std p Best 

Our system 0.69 0.13 — 0.87 

SVM 0.73 0.01 0.16 0.74 

MLP 0.73 0.01 0.11 0.74 

DT 0.69 0.02 0.92 0.74 

KNN 0.71 0.01 0.67 0.73 
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                      (a) DT               (b) KNN

 

                      (c) NN                (d) SVM 

Figure 48 Confusion matrices ML algorithmes. 
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3.3 Dynamic Labeling 

Even though the PB model has been capable to solves most of the problems related 

to the LB and CB models, during the Ph.D. thesis, another strategy aimed at further 

improvement has been evaluated: Dynamic Labeling (DL). It is worth specifying that 

even the DL model bases the class representation on lines in the 3-D space. The main 

idea behind the proposed strategy is that the genes (i.e., lines) which make up the 

individuals are not a priori associated whit any of the available classes (as was the case 

in the previously presented models), but their labeling occurs at runtime, more in 

details, after that each sample in the training set has been assigned to its nearest gene. 

In particular, the gene’s labeling association procedure is divided into two main steps: 

1. Each sample in the training set is assigned to the nearest gene (i.e., line) of 

the given individual to be evaluated. Then the Euclidean distance in the 

feature space (3-D in our case) is computed (as already described in the 

previous sections). After this step, 𝑝𝑖 (𝑝𝑖 ≥ 0) samples will have been 

assigned to the nearest i-th gene. Finally, the genes with 𝑝𝑖 > 0 will be 

referred to as valid, while the remaining genes with 𝑝𝑖 = 0 will be ignored. 

2. Each valid gene is, then, labeled with the class most widely represented 

among the patterns that have been assigned to it. 

For example, we can imagine a case in which four classes need to be recognized. In 

that case, each individual is made up of four genes. Now if we look at Figure 49 we 

can distinguish two possible cases: (a) where the DL strategy has been used, and (b) 

where the static labeling (SL) strategy was adopted.  

As can be noted with the DL approach (a) the gene G1 is labeled as the c4, G2 as c1, G3 

as c3, and G4 as c2, while with the SL the association is a priori defined: G1 → c1, G2 

→ c2, and so on. It is important to note that the DL, furthermore, allows the EA to 

automatically find the most proper number of genes for the considered classification 

problem. Yet, genes DL allows for the relaxation of a strong constraint due to the a 

priori labeling of the genes (as is the case of Figure 49 (b)).  

Indeed, suppose the generic case in which the data contains c classes, in the genes SL 

approach each individual will also contain c a priori labeled genes. The constraint 

imposed over the gene’s labels reduces a factor (c!) the number of solutions to be 

considered as a possible solution to the problem. 

It is clear that with an SL strategy among the (c!) possible permutations of a set of c 

genes, only one is considered a good solution, while the remaining ones are considered 

bad solutions. This is caused by the a priori gene’s labeling.  
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Instead using a gene’s DL strategy each individual is evaluated according to the fitness 

function value associated with the given c class. It's clear that by increasing the number 

of c classes the DL strategy outperforms, even more, the system performance obtained 

by the SL approach. 

                        

 

 

 

 

                             (a) DL strategy                                 (b) ST strategy 

Figure 49 Comparison between gene's DL and SL strategies. 

 

 

3.3.1 Obtained Results 

In order to prove the effectiveness of the proposed DL approach has been made two 

sets of experiments. In the first sets, to prove the improvement given by the proposed 

strategy, a comparison between the DL model using the Cartesian coordinates and the 

corresponding LB one has been made. The second set of experiments, on the other 

hand, aims to test the robustness of the new approach by using the polar coordinates 

and substantially increasing the number of substances used and by comparing the 

obtained results with those achieved by the well-known and widely used ML 

algorithms. 

 

First Set of Experiments 

In the first set of experiments, a comparison between the DL strategy and LB one 

using the cartesian coordinates has been made.  

Regarding the evolutionary algorithm, dataset structure, preprocessing techniques, and 

fitness function used within the DL strategy they are conceptually the same as already 

well discussed in the previous sections. 

To evaluate the effectiveness of the new DL approach have been performed different 

tests by changing the maximum number of genes that each individual can hold between 

3, 3.5, 4, 4.5, and 5 times the minimum number of genes, which was equal to the 

number of classes.  
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The idea is to exploit the capability of the gene’s DL to be able to find the best 

combination of genes in order to optimize the fitness function value. For each test 

performed, has been applied the cross-validation technique over 10-fold. Table 21 

reports the obtained result in terms of mean accuracy over the 10-fold. 

Figure 50, instead, reports the comparison between the best results obtained by the DL 

approach and the LB one. As can be seen from the shown results the DL strategy 

obtains the best accuracy of 81.4% outperforming the one obtained by the LB (42%). 

 

Table 21 DL strategy with a different number of genes results. 

 Max number of genes Accuracy (%) 

3 3.5 4 4.5 5 

Fold 1 19.9 25.8 34.8 27.5 36.5 

Fold 2 49.7 41.8 60.2 36.8 51.1 

Fold 3 37.7 41.5 39.9 46.3 61.3 

Fold 4 71.7 74.2 72.9 73.7 74.7 

Fold 5 43.9 57.5 56.5 48.9 51.3 

Fold 6 67.3 75.2 60.7 68.7 64.4 

Fold 7 76.7 54.1 64.4 73.9 77.9 

Fold 8 66.2 43.9 77.3 71.3 76.7 

Fold 9 58.9 71.8 72.8 71.1 75.8 

Fold 10 69.7 81.4 71.5 66.0 46.9 

Mean 56.17 56.72 61.10 58.42 61.66 
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                        (a) DL best results                                                    (b) LB best results  

Figure 50 Comparison results between DL and LB model's best results. 

 

Second Set of Experiments 

This set of experiments aims to evaluate the effectiveness of the PB model’s 

technique in conjunction with the usage of the DL strategy. Thus, in those experiments 

has been used all the previously presented techniques: have the polar coordinates and 

smart initialization. To prove the effectiveness brought by the DL has been increased 

the number of substances under test and a comparison with the well-known and wieldy 

used ML algorithms have been performed.  

It is worth specifying that the substances used during all those experiments are listed 

in the following: 

1. Acetic Acid (ACT) 

2. Ammonia (AMM) 

3. Dish Wash Detergent (DWD) 

4. Formic Acid (FMC) 

5. Hydrogen Peroxide (HDP) 

6. Nelsen (NLS) 

7. Phosphoric Acid (PSP) 

8. Sodium Chlorite (SCH) 
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9. Sulphuric Acid (SPH) 

10. Washing Machine Detergent (WMD) 

11. Synthetic Waste Water (SWW) 

Figure 51 shows the best results reached by the DL approach using a max of 3.5 

number of genes per class and 15% of smart initialization. Note that regarding the 

choice of the best value for the number of maximum allowed genes and the best value 

of the smart initialization fraction, previous tests have been performed. It is important 

to note that, given the large number of substances used, the obtained results have 

exceeded all expectations achieving an overall accuracy of the 89,73%.  

Moreover, looking the Figure 51 can be seen that there are mainly three major 

confusions: 

• 40% of the Phosphoric Acid samples have been confused with Formic Acid. 

• 26% of the Washing Machine Detergent has been confused with Dish Wash 

Detergent. 

• 18% of the Dish Wash Detergent has been confused with Sodium Chlorite. 

As already discussed in Section 3.2.5, the confusion showed by the DL system can be 

considered completely “acceptable”, indeed in the first case (PSP - FMC) we have 

confusion between two acids, while in the second (WMD – DWD)  and third (DWD - 

SCH) cases there is a confusion between two non-acid substances. 

Finally, to evaluate the effectiveness of the proposed approach, the obtained results 

have been compared with those achieved by using seven well-known classification 

algorithms: 

• Supported Vector Machine (SVM) 

• Multilayer Perceptron (MLP) 

• Decision Tree (DT) 

• K-Nearest Neighbor (KNN) 

• Bagging  

• Random Forest 

• Adaboost 

The comparison is reported in Table 22. The results show the average accuracy, the 

standard deviation computed over the 30 runs, the p–value of the Wilcoxon test (𝛼 = 

0.05) and the performance achieved on the best run. 
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Figure 51 DL best results. 

 

Table 22 Dynamic Labeling comparison results. 

Classifier Avg Std p Best 

Our system 0.72 0.05 — 0.83 

SVM 0.67 0.03 1.04e-04 0.74 

MLP 0.70 0.04 0.0584 0.78 

DT 0.55 0.05 5.5e-11 0.63 

KNN 0.57 0.03 5.5e-11 0.63 

BAGGING 0.57 0.04 1.33e-10 0.65 

RANDOM FOREST 0.67 0.04 2.68e-04 0.73 

ADABOOST 0.31 0.11 3.02e-11 0.51 
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The results show that the proposed systems tend to have an overall performance better 

than the machine learning ones. Even looking at the best case, our system outperforms 

the other ones. 

 

3.4 Conclusion 

Water pollution is a worldwide concern and therefore, it is crucial to find reliable 

and low-cost technologies for continuous and diffused monitoring of wastewater.  

In this Ph.D. work, I’ve presented a system for water pollutant classification to be 

implemented on the multi-sensor microcontroller SENSIPLUS, where input data were 

first projected into a 3-D space and then classified using simple geometrical models. 

The aim was to implement a pollutant classification system able to work even with the 

few computational resources available on cheap microcontrollers. In this study, I’ve 

presented a further development of those approaches. This development allowed us to 

(i) improve the effectiveness of the IoT-based system; (ii) reduce the number of 

computational resources needed.  

The obtained results proved the effectiveness of the proposed solutions to improve the 

performance of our system. The results also confirmed that our system can be 

compared, and sometimes outperforms, some state-of-the-art classification algorithms. 

Furthermore, with the implementation of the dynamic labeling strategy presented in 

[57], has been possible to reach further improvement both in terms of the number of 

output classes and in terms of overall performance. 

Even though the obtained results show that the proposed system is capable of correctly 

distinguishing between a set of substances, an interesting future work would be to 

implement the system on an MCU in order to perform some tests on the real scenario 

to evaluate the system capability to work in a real context. 
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CHAPTER 4.  TEST ON REAL FIELD 

4. Introduction 

It is important to say that part of the activity conducted during my Ph.D. thesis work 

was part of the European project named SYSTEM. SYSTEM is the three-year 

innovation action awarded to a consortium led by Fondazione FORMIT addressing the 

challenge of the topic "Integration of detection capabilities and data fusion with utility 

providers' network" (SEC-10-FCT-2017) included in the 2016-2017 Work Programme 

"Secure societies Protecting freedom and security of Europe and its citizens" of 

Horizon 2020. SYSTEM started on 1 September 2018 and aims at developing and 

testing a customized sensing system for hazardous substances detection in 

complementary utility networks and public spaces. The proposed innovative 

monitoring and observing of fused data sources will be tested and eventually adapted 

in six urban areas, while carefully tracking Ethics and Legal aspects as well as 

managing confidential information. To achieve these aims, a wide set of skills and 

capabilities has been considered key to success, determining the large partnership 

working on the project, made by partners cooperating with more than ten stakeholders 

supporting the project activities.  

For that reason, all the research activity depicted in the previous sections has been 

conducted with different tests on the field in a real savage network scenario. The main 

goal of the real tests was to validate the developed system in terms both of accuracy 

and robustness. Mainly, have been made two main sets of experiments on a real 

scenario: one at the wastewater treatment plant of Acqualatina in Borgo Piave (Latina, 

Italy) (see Figure 52), and the second set on a series of manholes situated in Via 

Castelbottaccio (East Rome, Italy) in collaboration with ACEA (see Figure 53).  

Other minor real scenario tests have been made during my Ph.D. and they will be 

discussed in Section 4.3. It is worth noting that during all the tests have been used 

different KNN models, trained on different sets of substances and in different 

conditions, but the one that best performs, in terms of accuracy and robustness, over 

different scenarios is reported in Figure 54. Regards the classification system is the 
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one depicted in Section 2.5 except for the anomaly detection system that at the time of 

testing had not yet been implemented. It is important to underline that both the 

classification system and the preprocessing module have been constantly developed, 

improved, and implemented alongside the evidence gathered during the real tests. 

 

 

Figure 52 Wastewater treatment plant, BorgoPiave Latina. 

 

Figure 53 Via Castelbottaccio East Rome. 
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Figure 54 Best KNN model used during real scenario test
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4.1 Borgo Piave (Latina) Tests 

The first set of experiments has been conducted in Borgo Piave at the wastewater 

treatment plant of Acqualatina. Figure 56 shows the experimental environment. In 

particular, the given substance under test was spilled from the spiking manhole (at the 

bottom right corner). Then, after 60 m pipe long were installed the SCW system 

(sensing well). For the acquisition procedure concerns, firstly the SCW where 

positioned inside the sensing well. Secondly, the measurement system starts the 

acquisition and waits until the Finite State Machine reaches the Baseline Tracking 

state. At this point, the given substance was spilled from the spiking manhole. It’s 

important to note that the spilled quantities were around 2 to 5 liters and have been 

chosen according to a qualitative campaign. 

 

 

Figure 55 Borgo Piave System tests. 

During all the performed tests been faced many problems of different natures. The first 

problem to be faced was the choice of the best spot in which to install the SCW sensor 

in order to be able to detect and recognize the spilled substances. After different tries 

shown in Figure 57 with red circles, the best position capable to maximize the 

classification accuracy has been found at the exit of the pipe, represented by the green 

circle. One of the problems related to the red circles' positions, was the heavy presence 

of the air bubbles. Indeed, by reproducing a similar scenario in the laboratory has been 
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possible to measure the effect that air bubbles have on the measurements (see Figure 

58). Another problem that has been faced concerns interference due to a lifting pump 

system located upstream of the spiking manhole shown in Figure 56. In particular, has 

been noted that leaving the SCW flooded in the wastewater without spilling external 

substances, the response of the sensors was affected by the activity of the pumps. 

Figure 59 shows the interference measured during the activity of the hydraulic system. 

Unfortunately, in this case, a solution has not yet been found and so in order to be able 

to test the classification system has been necessary to turn off the lifting pump system 

during the measurements. 

 

 

Figure 56 Experimental environment 

 

Figure 57 SCW positions. 
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Figure 58 Air bubbles from water turbulence effects. 

 

 

Figure 59 Lifting pump system interferences. 

Another open problem related to the Borgo Piave setups was the large presence of 

solid garbage (see Figure 60) in the wastewater that can alter the sensor's response.  

All other kinds of problems like those represented by the heavy environment noise, 

external activity interferences like industrial or domestic activity, and all the problems 

related to a different flow rate of water caused, for example, by heavy rain have been 

resolved by implementing the data pre-processing techniques depicted in the Section 

2.5.1. 

In this context, many substances have been tested: Phosphoric Acid, Sodium 

Hypochlorite, Acetic Acid, Formic Acid, Ammonia, and Hydrogen Peroxide (see 

Figure 61). 
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Figure 60 Solid garbage. 

 

Figure 61 BorgoPiave tested substances. 
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4.2 East Rome Tests 

 

 

Figure 62 East Rome System test. 

The second set of experiments has been conducted in Via Castelbottaccio at East 

Rome. In this case, the scenario was less complex, and much closer to a real use case, 

than the one related to the wastewater treatment plant in Borgo Piave due to the 

absence of any lifting pumps in the vicinity, due to the water flow rate that was much 

lower than the one related to the Acqualatina plant and, for that reason, even the 

presence of solid wastes was reduced. 

Unlike the tests performed at Borgo Piave in Latina, in this case, there was a sensing 

manhole and three different spiking manholes positioned at three different distances: 

50m, 75m, and 150m (see Figure 63). As for the Borgo Piave experiments, the SCW 

was installed inside the sensing manhole (green circle) while the substance under test 

was spilled from one of the spiking manholes (red circles). In this context, the spilled 

quantities were around 1 to 3 liters chosen according to some preliminary tests. 

During the tests has been spilled different substances, for example, sodium 

hypochlorite, acetone, formic acid, sulphuric acid, etc. at different distances in order 

to evaluate the effect of the dilution over the capacity of the system to detect and 

recognize the given substance. 

In order to be able to install the SCW inside the sensing manhole, has been developed 

a measurement system prototype shown in Figure 64. As can be seen, the measurement 
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system is composed of a white box with an IP56 waterproof certificate, a Raspberry 

Pi4, a GSM hat for Raspberry Pi based on SIM7600E-H, a 20000mAh power bank, an 

ESP32 board connected to the SCW via a 10m SENSIBUS cable and finally two 

antennas.  

 

 

Figure 63 East Rome test: green circle represents the sensing manhole, while red circles represent the 

spiking manholes respectively positioned at 50m, 75m, and 150m from the sensing manhole. 

 

In particular, on the Raspberry Pi4 was installed the Winux application depicted in 

Section 1.4.1, the GSM hat was meant to transfer all the acquired data, the ESP32 act 

as a communication bridge between the Raspberry Pi and the SCW board, the two 

antennas were needed to improve the signal quality and lastly, the power bank was 

necessary to power the entire system (Raspberry Pi, MCU, SCW, and the GSM hat). 

 

  Spiking Manhole   

  Sensing Manhole   
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Figure 64 Measurement system prototype, developed for East Rome tests. 

In this context, we faced two main problems, one related to the positioning inside the 

sensing manhole of the SCW board, and one related to some interference caused by 

household activities. 

Regards the positioning of the SCW inside the manhole, the problem was to find a 

reliable spot capable to keep all the SCW’s IDEs flooded into the wastewater; this was 

necessary since the flow rate of the wastewater inside the sewers network when there 

wasn’t any kind of activities, was really poor. To solve this problem, we decided to 

anchor the SCW to the bottom of the sewer pipe by using a little metallic bar. In this 

way has been possible to make tests without care about the state of the wastewater 

flow rate. 

Another problem was related to the interferences caused by human activity. Indeed, 

looking at the red circles depicted in Figure 65 can be seen the effect of those activities 

on the sensor’s response. Fortunately, at the time of the tests, this problem was already 

addressed by implementing the data pre-processing module based on a finite state 

machine (see Section 2.5.1 for more information). 
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Figure 65 East Rome human activities interferences. On the Right is shown the resistance over the 

gold IDE at 78kHz, and on the left resistance of the platinum IDE at 78 kHz. 

Figure 65, shows the effect of the same interference over two different features: gold 

IDE resistance at 78kHz and platinum IDE resistance at 78kHz; the others two sensors’ 

responses shown are related to two successive sodium hypochlorite spills.  

The only action that has been necessary to correctly reject all those kinds of 

interferences, was to correctly tune the finite state machine parameters (EMAc and 𝜏) 

see Figure 66.  

 

 

Figure 66 Finite State Machine parameters. 
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4.3  Further Tests 

In addition to the tests depicted in the previous section, other tests have been made. 

One was performed at the chemical laboratory of the RaCIS located in Caserma Salvo 

D’Acquisto Comando Polifunzionale Arma dei Carabinieri Roma shown in Figure 67. 

In this test has been made some demonstrative experiments using the following 

substances: Ammonia, Hydrogen Peroxide, Sulphuric Acid, Phosphoric Acid, Acetic 

Acid, Sodium Hypochlorite, and Nelsen. 

 

 

Figure 67 Test in the chemical laboratory of RaCIS in Rome. 

Finally, other tests on a real field, where I wasn’t personally present, have been made. 

One test has been made in Anzio at the Monumento Caduti Due Guerre Mondiali, 

where there were two manholes ten meters apart, one where the substances have been 

spilled (spiking manhole) and one where the SCW was installed (sensing manhole) 

shown in Figure 68.  
 

 

Figure 68 Anzio Monumento Caduti Due Guerre Mondiali real test location. The red circle indicates 

the spiking manhole, while the green is the sensing one. The manholes were located 10 meters apart. 

Sensing Manhole 

    Spiking Manhole  
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Figure 69 Anzio real test. 

Figure 69 shows how the SCW was installed inside the manhole. In this test has been 

used the Ammonia, Sulphuric Acid, and Hydrogen Peroxide.  

Another test has been made at the wastewater treatment plant located in Beuerbach 

(Frankfurt). This was one of the first tests on the real field and for that reason, only the 

Ammonia and Sulphuric Acid substances have been used. 

In these experiments, two SCWs have been installed into two successive spots see 

Figure 70 for more details. 
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Figure 70 Beurbach wastewater treatment plant tests. Red Circles indicate the two spots where SCW 

was installed. 
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4.4 Conclusion 

In conclusion, from all the evidence and all the experience obtained from the 

depicted real tests has been possible to build a reliable and robust system capable of 

correctly detecting and recognizing a given substance in a real application. It is 

essential to note the importance of having had the opportunity to perform various tests 

in the real field and in a different context, which allowed us to face many real problems 

that, otherwise, would hardly have emerged during laboratory tests.  

All this gave us the possibility of being able to develop an end-to-end system that, 

starting from the acquisition of the single data, was able to first process and then 

classify the measured sample. Even though some of the faced problems have been 

resolved, there are still many open problems that need to be addressed before being 

able to install the proposed system in a continuous wastewater monitoring station. 

Between the major problems that need to be resolved there is, for sure, the necessity 

to develop a module capable to manage two or more successive substance spills 

without giving the system the necessary time to return to a state capable to wait for the 

next spill (Baseline Tracking see Figure 66) and to the SCW’s sensors the time to clean 

itself by the particles of the last spilled substance. 

Another aspect that has to be taken into account and has to be faced is to evaluate the 

system behavior during continuous monitoring sessions, in this sense, an endurance 

test has never been performed. For a continuous monitoring system, it is important to 

collect as much as possible information regarding the possible problems that can be 

faced in this kind of context. 

After all the considerations that have been made, based on all the information gathered 

during the real tests and, in particular from the last tests performed at the wastewater 

treatment plant in Brogo Piave (Latina) and the East Rome ACEA’s manholes, we can 

reasonably state that the proposed system can represent a viable end-to-end solution 

for continuous wastewater monitoring. 
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APPENDIX A 

Winux XML measurements configuration file 

As already described in Section 1.4.1 from the Batch tab view it is possible to load 

a given XML file containing all the measurement information to allow the Winux 

application to execute the measurement session autonomously. Figure 71 shows the 

XML file structure and the related measurement flow result. 

 

 

Figure 71 XML file structure with an example showing the measurement flow. 

As can be seen, each XML can be composed of different experiments, and each 

experiment can be made by different kinds of measurements. Moreover, all the 

measurements of a given experiment are performed “Global Repetition” (see Figure 

72) times. Figure 72 and Figure 73 shows in detail the allowed XML attributes related 

to the experiment, sensor, eis, and pot tags. 



 APPENDIX A 

109 

 

 

Figure 72 XML attributes related to the experiment and sensor tags. 

 

Figure 73 XML attributes related to the eis and pot tags. 
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A commented XML file of an EIS measurement is reported in the following. 

 
<sensichips>  

<experiment date="14-02-2020" globalRepetition="5000" configRepetition="1" burst="1"  

   fillBufferBeforeStart="FALSE" outputDecimation="1" id="FileName" delay="0" > 

  <!-- Autorange sets Amplification parameters automatically, filter is a moving 

       average windows size--> 

<eis save="ALL" plot="RESISTANCE" autorange="TRUE" autoscale="false" 

  measurementTime="0" waitSET="0" SETwaitGET="0" filter="1" 

  fillBufferBeforeStart="true" burstMode="FALSE">  

   <!-- Measurement frequency [Hz]--> 

<frequencies order="1"> 

    <val>78125.00</val>  

   </frequencies> 

   <!-- Amplification parameter, allowed value [50, 500, 5000, 50000] --> 

   <rsense order="2"> 

    <val>50</val>  

   </rsense> 

    <!-- Amplification parameter, allowed value [1, 12, 20, 40] --> 

    <ingain order="3"> 

    <val>1</val>  

   </ingain> 

<!-- Peak-to-peak amplitude of the output Sinewave, allowed value   

        [0 to 7] --> 

    <outgain order="4"> 

    <val>7</val>  

   </outgain> 

<!-- add a programmable DC offset to DASF terminal, allowing value to  

       [-2048 to 2047] --> 

    <dcbiasP order="5"> 

    <val>0</val>  

   </dcbiasP> 

<!-- add a programmable DC offset to VSCMF terminal, allowed      

       value [-32 to 31] --> 

    <dcbiasN order="6"> 

     <val>0</val>  

    </dcbiasN> 

    <!-- number of contacts available [TWO, FOUR] --> 

    <contacts order="7"> 

     <val>TWO</val>  

    </contacts> 
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 <!-- Measurement Mode allowed [Vout_Iin, Vout_Vin, Iout_Iin,  

         Iout_Vin] --> 

    <modevi order="8"> 

     <val>VOUT_IIN</val>  

   </modevi> 

    <!-- Selects the demodulation frequency allowed 

         [FIRST_HARMONIC, SECOND_HARMONIC, THIRD_HARMONIC] --> 

    <harmonic order="9"> 

     <val>FIRST_HARMONIC</val>  

    </harmonic> 

     <!-- Measurement PORT allowed [PORT0 to PORT11, PORT_HP,  

          PORT_EXT1 to PORT_EXT3, PORT_EXT1_1 to PORT_EXT3_1,  

          PORT_TEMPERATURE, PORT_VOLTAGE, PORT_LIGHT, PORT_DARK,  

          PORT_NA, PORT_SHORT, PORT_OPEN] --> 

    <inport order="10"> 

     <val>PORT_HP</val>  

    </inport> 

    <!-- Measurement PORT allowed [PORT0 to PORT11, PORT_HP,  

        PORT_EXT1 to PORT_EXT3, PORT_EXT1_1 to PORT_EXT3_1,  

        PORT_TEMPERATURE, PORT_VOLTAGE, PORT_LIGHT, PORT_DARK,  

        PORT_NA, PORT_SHORT, PORT_OPEN] -->    

    <outport order="11"> 

     <val>PORT_HP</val>  

    </outport>     

   <SequentialMode order="12"> 

    <val>0</val> 

   </SequentialMode> 

    <!-- add a delay to the Demodulation Channel --> 

    <phaseShift order="13"> 

    <val>Quadrants, 0, IN_PHASE</val>  

   </phaseShift> 

  </eis>   

</experiment> 

</sensichips> 
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A commented XML file of a Sensor measurement is reported in the following. 

 
<sensichips> 

<experiment globalRepetition="100000" outputDecimation="1" id="TestTemp" delay="0" > 
<sensor save="" plot="" autoscale="true" wait = "100" filter = "1"> 

              <val>ONCHIP_TEMPERATURE</val> 
          </sensor>  
     </experiment> 
</sensichips> 
 

A commented XML file of a POT measurement is reported in the following. 
 

<sensichips> 

<experiment globalRepetition="500" outputDecimation="1" id="TEST" delay="0" > 

<!-- POSSIBLE PLOT: VOLTAGE - CURRENT - CURRENT_VS_VOLTAGE --> 

<pot plot="VOLTAGE, CURRENT, CURRENT_VS_VOLTAGE" filter="1" 

burstMode="true" > 

               <!-- Possible values: LINEAR_SWEEP - STAIRCASE - SQUAREWAVE - 

                  NORMAL_PULSE - DIFFERENTIAL_PULSE - POTENTIOMETRIC - CURRENT --> 

               <type>STAIRCASE</type> 

               <rsense>500</rsense> 

               <ingain>1</ingain> 

               <port>PORT_HP</port> 

               <contacts>TWO</contacts> 

               <!-- range: [-1250,1250] --> 

               <initial_potential>-1250</initial_potential> 

               <!-- range: [-1250,1250] --> 

               <final_potential>1250</final_potential> 

               <step>30</step> 

               <pulse_amplitude>75</pulse_amplitude> 

               <pulse_period>100</pulse_period> 

               <alternative_signal>true</alternative_signal> 

          </pot> 

</experiment> 

</sensichips> 

 

 

 

 

 

 



 

113 

 



 

114 

 

 

REFERENCES 

 

[1]  D. T. Jamison, J. G. Breman, A. R. Measham, G. Alleyne, M. Claeson, D. 

B. Evans, P. Jha, A. Mills and P. Musgrove, Disease Control Priorities in 

Developing Countries, The International Bank for Reconstruction and 

Development / The World Bank, 2006.  

[2]  P. K. Goel, Water Pollution: Causes, Effects and Control, New Age 

International, 2006.  

[3]  A. J. Whelton, L. McMillan, M. Connell, K. M. Kelley, J. P. Gill, K. D. 

White, R. Gupta, R. Dey and C. Novy, "Residential Tap Water Contamination 

Following the Freedom Industries Chemical Spill: Perceptions, Water 

Quality, and Health Impacts," Environmental Science & Technology, vol. 49, 

p. 813–823, January 2015.  

[4]  S. K., T. V. S., M. S. Kumaraswamy and V. Nair, “IoT based Water 

Parameter Monitoring System,” in 2020 5th International Conference on 

Communication and Electronics Systems (ICCES), 2020.  

[5]  Z. Sun, N. B. Chang, C. F. Chen, C. Mostafiz and W. Gao, “Ensemble 

Learning via Higher Order Singular Value Decomposition for Integrating 

Data and Classifier Fusion in Water Quality Monitoring,” IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, 

pp. 3345-3360, 2021.  

[6]  J. Cleary, D. Maher, C. Slater and D. Diamond, “In situ monitoring of 

environmental water quality using an autonomous microfluidic sensor,” in 

2010 IEEE Sensors Applications Symposium (SAS), 2010.  

[7]  A. C. D. S. Júnior, R. Munoz, M. D. L. A. Quezada, A. V. L. Neto, M. M. 

Hassan and V. H. C. D. Albuquerque, “Internet of Water Things: A Remote 

Raw Water Monitoring and Control System,” IEEE Access, vol. 9, pp. 35790-

35800, 2021.  



 REFERENCES 

115 

 

[8]  L. Atzori, A. Iera and G. Morabito, “The Internet of Things: A survey,” 

Computer Networks, vol. 54, pp. 2787-2805, 2010.  

[9]  R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar and B. Qureshi, 

“An Overview of IoT Sensor Data Processing, Fusion, and Analysis 

Techniques,” Sensors, vol. 20, 2020.  

[10]  D. S. Rathee, K. Ahuja and A. Nayyar, “Sustainable future IoT services 

with touch-enabled handheld devices,” Security and Privacy of Electronic 

Healthcare Records: Concepts, paradigms and solutions, 2019.  

[11]  A. Nayyar and V. Puri, “Smart farming: IoT based smart sensors 

agriculture stick for live temperature and moisture monitoring using Arduino, 

cloud computing & solar technology,” 2016.  

[12]  W. Shi and S. Dustdar, “The Promise of Edge Computing,” Computer, vol. 

49, pp. 78-81, May 2016.  

[13]  A. Kaur, P. Singh and A. Nayyar, “Fog Computing: Building a Road to 

IoT with Fog Analytics,” in Fog Data Analytics for IoT Applications: Next 

Generation Process Model with State of the Art Technologies, S. Tanwar, Ed., 

Singapore, Springer Singapore, 2020, p. 59–78. 

[14]  A. Bernieri, L. Ferrigno, M. Laracca and M. Molinara, “An SVM 

Approach to Crack Shape Reconstruction in Eddy Current Testing,” in 2006 

IEEE Instrumentation and Measurement Technology Conference 

Proceedings, 2006.  

[15]  G. Cerro, M. Ferdinandi, L. Ferrigno, M. Laracca and M. Molinara, 

“Metrological Characterization of a Novel Microsensor Platform for 

Activated Carbon Filters Monitoring,” IEEE Transactions on Instrumentation 

and Measurement, vol. 67, pp. 2504-2515, 2018.  

[16]  G. Cerro, M. Ferdinandi, L. Ferrigno and M. Molinara, “Preliminary 

Realization of a monitoring system of Activated Carbon Filter RLI based on 

the SENSIPLUS® microsensor platform,” 2017.  

[17]  J. Li and S. Cao, “A Low-cost Wireless Water Quality Auto-monitoring 

System,” International Journal of Online and Biomedical Engineering 

(iJOE), vol. 11, p. pp. 37–41, May 2015.  

[18]  W. Schmidt, D. Raymond, D. Parish, I. G. C. Ashton, P. I. Miller, C. J. A. 

Campos and J. D. Shutler, “Design and operation of a low-cost and compact 



 REFERENCES 

116 

 

autonomous buoy system for use in coastal aquaculture and water quality 

monitoring,” Aquacultural Engineering, vol. 80, p. 28–36, 2018.  

[19]  S. Zhuiykov, “Solid-state sensors monitoring parameters of water quality 

for the next generation of wireless sensor networks,” Sensors and Actuators 

B: Chemical, vol. 161, pp. 1-20, 2012.  

[20]  M. H. Gholizadeh, A. M. Melesse and L. Reddi, “A comprehensive review 

on water quality parameters estimation using remote sensing techniques,” 

Sensors, vol. 16, p. 1298, 2016.  

[21]  S. N. Zulkifli, H. A. Rahim and W.-J. Lau, “Detection of contaminants in 

water supply: A review on state-of-the-art monitoring technologies and their 

applications,” Sensors and Actuators B: Chemical, vol. 255, pp. 2657-2689, 

2018.  

[22]  C. Desmet, A. Degiuli, C. Ferrari, F. S. Romolo, L. Blum and C. 

Marquette, “Electrochemical Sensor for Explosives Precursors’ Detection in 

Water,” Challenges, vol. 8, 2017.  

[23]  J. K. Atkinson, M. Glanc, M. Prakorbjanya, M. Sophocleous, R. P. Sion 

and E. Garcia‐Breijo, "Thick film screen printed environmental and chemical 

sensor array reference electrodes suitable for subterranean and subaqueous 

deployments," Microelectronics International, April 2013.  

[24]  A. M. Syaifudin, K. P. Jayasundera and S. C. Mukhopadhyay, “A low cost 

novel sensing system for detection of dangerous marine biotoxins in seafood,” 

Sensors and Actuators B: Chemical, vol. 137, p. 67–75, 2009.  

[25]  X. Li, K. Toyoda and I. Ihara, “Coagulation process of soymilk 

characterized by electrical impedance spectroscopy,” Journal of Food 

Engineering, vol. 105, p. 563–568, 2011.  

[26]  P. Geng, X. Zhang, W. Meng, Q. Wang, W. Zhang, L. Jin, Z. Feng and Z. 

Wu, “Self-assembled monolayers-based immunosensor for detection of 

Escherichia coli using electrochemical impedance spectroscopy,” 

Electrochimica Acta, vol. 53, pp. 4663-4668, 2008.  

[27]  G. Charulatha, S. Srinivasalu, O. Uma Maheswari, T. Venugopal and L. 

Giridharan, “Evaluation of ground water quality contaminants using linear 

regression and artificial neural network models,” Arabian Journal of 

Geosciences, vol. 10, p. 128, 20 March 2017.  



 REFERENCES 

117 

 

[28]  N. S. Gunda, S. Gautam and S. Mitra, “Artificial Intelligence for Water 

Quality Monitoring,” ECS Meeting Abstracts, Vols. MA2018-02, p. 1997–

1997, July 2018.  

[29]  X. Wang, F. Zhang and J. Ding, “Evaluation of water quality based on a 

machine learning algorithm and water quality index for the Ebinur Lake 

Watershed, China.,” Scientific Reports, vol. 7, pp. 12858-12858, 2017.  

[30]  S. N. Dean, L. C. Shriver-Lake, D. A. Stenger, J. S. Erickson, J. P. Golden 

and S. A. Trammell, “Machine Learning Techniques for Chemical 

Identification Using Cyclic Square Wave Voltammetry,” Sensors, vol. 19, 

2019.  

[31]  A. Bria, G. Cerro, M. Ferdinandi, C. Marrocco and M. Molinara, “An IoT-

ready solution for automated recognition of water contaminants,” Pattern 

Recognition Letters, vol. 135, pp. 188-195, 2020.  

[32]  C. Bourelly, A. Bria, L. Ferrigno, L. Gerevini, C. Marrocco, M. Molinara, 

G. Cerro, M. Cicalini and A. Ria, “A Preliminary Solution for Anomaly 

Detection in Water Quality Monitoring,” in 2020 IEEE International 

Conference on Smart Computing (SMARTCOMP), 2020.  

[33]  M. Molinara, M. Ferdinandi, G. Cerro, L. Ferrigno and E. Massera, “An 

End to End Indoor Air Monitoring System Based on Machine Learning and 

SENSIPLUS Platform,” IEEE Access, vol. 8, pp. 72204-72215, 2020.  

[34]  G. Betta, G. Cerro, M. Ferdinandi, L. Ferrigno and M. Molinara, 

“Contaminants detection and classification through a customized IoT-based 

platform: A case study,” IEEE Instrumentation & Measurement Magazine, 

vol. 22, pp. 35-44, 2019.  

[35]  M. Ferdinandi, M. Molinara, G. Cerro, L. Ferrigno, C. Marroco, A. Bria, 

P. Di Meo, C. Bourelly and R. Simmarano, “A Novel Smart System for 

Contaminants Detection and Recognition in Water,” in 2019 IEEE 

International Conference on Smart Computing (SMARTCOMP), 2019.  

[36]  I. Nopens, C. Capalozza and P. A. Vanrolleghem, “Stability analysis of a 

synthetic municipal wastewater,” Department of Applied Mathematics 

Biometrics and Process Control, University of Gent, Belgium, 2001.  

[37]  H. Janna, “Characterisation of Raw Sewage and Performance Evaluation 

of Al-Diwaniyah Sewage Treatment Work, Iraq,” World Journal of 

Engineering and Technology, vol. 4, p. 296–304, 2016.  



 REFERENCES 

118 

 

[38]  A. Bria, L. Ferrigno, L. Gerevini, C. Marrocco, M. Molinara, P. Bruschi, 

M. Cicalini, G. Manfredini, A. Ria, G. Cerro, R. Simmarano, G. Teolis and 

M. Vitelli, “A False Positive Reduction System For Continuous Water 

Quality Monitoring,” in 2021 IEEE International Conference on Smart 

Computing (SMARTCOMP), 2021.  

[39]  F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. 

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. 

Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, “Scikit-

learn: Machine Learning in Python,” Journal of Machine Learning Research, 

vol. 12, p. 2825–2830, 2011.  

[40]  Y. Zhao, Z. Nasrullah and Z. Li, “PyOD: A Python Toolbox for Scalable 

Outlier Detection,” Journal of Machine Learning Research, vol. 20, pp. 1-7, 

2019.  

[41]  P. Vanýsek, “ELECTROCHEMICAL SERIES,” 2010.  

[42]  T. P. Lambrou, C. C. Anastasiou, C. G. Panayiotou and M. M. Polycarpou, 

“A Low-Cost Sensor Network for Real-Time Monitoring and Contamination 

Detection in Drinking Water Distribution Systems,” IEEE Sensors Journal, 

vol. 14, pp. 2765-2772, 2014.  

[43]  P. Bruschi, G. Cerro, L. Colace, A. De Iacovo, S. Del Cesta, M. Ferdinandi, 

L. Ferrigno, M. Molinara, A. Ria, R. Simmarano, F. Tortorella and C. 

Venettacci, “A Novel Integrated Smart System for Indoor Air Monitoring and 

Gas Recognition,” in 2018 IEEE International Conference on Smart 

Computing (SMARTCOMP), 2018.  

[44]  E. Lotfi and A. Keshavarz, “Gene expression microarray classification 

using PCA–BEL,” Computers in Biology and Medicine, vol. 54, pp. 180-187, 

2014.  

[45]  C. Jing and J. Hou, “SVM and PCA based fault classification approaches 

for complicated industrial process,” Neurocomputing, vol. 167, pp. 636-642, 

2015.  

[46]  M. O. Faruqe and M. A. M. Hasan, “Face recognition using PCA and 

SVM,” in 2009 3rd International Conference on Anti-counterfeiting, 

Security, and Identification in Communication, 2009.  



 REFERENCES 

119 

 

[47]  X. Xu and X. Wang, “An Adaptive Network Intrusion Detection Method 

Based on PCA and Support Vector Machines,” in Advanced Data Mining and 

Applications, Berlin, 2005.  

[48]  C. De Stefano, F. Fontanella and C. Marrocco, “A GA-Based Feature 

Selection Algorithm for Remote Sensing Images,” in Applications of 

Evolutionary Computing, Berlin, 2008.  

[49]  N. D. Cilia, C. De Stefano, F. Fontanella and A. Scotto di Freca, “Variable-

Length Representation for EC-Based Feature Selection in High-Dimensional 

Data,” in Applications of Evolutionary Computation, Cham, 2019.  

[50]  C. De Stefano, F. Fontanella, G. Folino and A. S. di Freca, “A Bayesian 

Approach for Combining Ensembles of GP Classifiers,” in Multiple Classifier 

Systems, Berlin, 2011.  

[51]  N. D. Cilia, C. De Stefano, F. Fontanella, S. Raimondo and A. Scotto di 

Freca, “An Experimental Comparison of Feature-Selection and Classification 

Methods for Microarray Datasets,” Information, vol. 10, 2019.  

[52]  L. Ying, G. Yanfeng and Z. Ye, “Hyperspectral Feature Extraction using 

Selective PCA based on Genetic Algorithm with Subgroups,” in First 

International Conference on Innovative Computing, Information and Control 

- Volume I (ICICIC'06), 2006.  

[53]  Y. Xia, L. Wen, S. Eberl, M. Fulham and D. D. F. Feng, “Genetic 

algorithm-based PCA eigenvector selection and weighting for automated 

identification of dementia using FDG-PET imaging,” 2008.  

[54]  F. Mahmud, M. E. Haque, S. T. Zuhori and B. Pal, “Human face 

recognition using PCA based Genetic Algorithm,” in 2014 International 

Conference on Electrical Engineering and Information & Communication 

Technology, 2014.  

[55]  N. Halko, P. G. Martinsson and J. A. Tropp, “Finding Structure with 

Randomness: Probabilistic Algorithms for Constructing Approximate Matrix 

Decompositions,” SIAM Review, vol. 53, pp. 217-288, 2011.  

[56]  G. Ochoa, “Error Thresholds in Genetic Algorithms,” Evolutionary 

Computation, vol. 14, pp. 157-182, June 2006.  

[57]  L. P.cordella, C. De Stefano and F. Fontanella, “Evolutionary prototyping 

for handwriting recognition,” International Journal of Pattern Recognition 

and Artificial Intelligence, vol. 21, November 2011.  



 REFERENCES 

120 

 

[58]  I. H. Witten and E. Frank, “Data Mining: Practical Machine Learning 

Tools and Techniques with Java Implementations,” SIGMOD Rec., vol. 31, 

p. 76–77, March 2002.  

 

 


