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Abstract: Nowadays, the subclasses of analytic functions in terms of fuzzy subsets are studied by
various scholars and some of these concepts are extended using the q−theory of functions. In this
inspiration, we introduce certain subclasses of analytic function by using the notion of fuzzy subsets
along with the idea of q−calculus. We present the q−extensions of the fuzzy spiral-like functions
of a complex order. We generalize this class using the q−analogues of the Ruscheweyh derivative
and Srivastava-Attiya operators. Various interesting properties are examined for the newly defined
subclasses. Also, some previously investigated results are deduced as the corollaries of our major
results.
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1. Introduction

The article written by Lotfi A. Zadeh and published in 1965 [1] serves as the foundation for the
fuzzy sets theory. In response to the numerous attempts by researchers to connect this theory with
various areas of mathematics, the connection between fuzzy sets theory and the area of complex
analysis that studies analytic functions by virtue of their geometric properties was established in
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2011 [2]. Miller and Mocanu in [3, 4] introduced the concept of differential subordination. Oros and
Oros [2] researched the idea of fuzzy subordination in 2011, and they [5] introduced the idea of fuzzy
differential subordination in 2012. The history of the idea of a fuzzy set and its ties to various
scientific and technical fields are nicely reviewed in the 2017 paper [6], including references to the
findings up to that point regarding the fuzzy differential subordination concept. The first findings
confirmed the direction of the research, adapting the traditional theory of differential subordination to
the novel features of fuzzy differential subordination and providing techniques for investigating
dominants and best dominants of fuzzy differential subordinations [7], without which the research
could not have continued. Following that, the particular form of Briot-Bouquet fuzzy differential
subordinations was examined in [8]. Haydar in [9] adopted the concept and began to look into the
new findings on fuzzy differential subordinations. In this sequel, fuzzy differential subordinations
were associated with different operators [10, 11] giving a new direction to the study. Numerous
studies [12–14] carried out the investigations by employing certain linear operators. Furthermore, the
work of several scholars about the fuzzy differential subordination is referred to the readers, for
example, see [15–24]. The concept of fuzzy differential subordination is the first attempt to
incorporate the idea of a fuzzy set into research pertaining to geometric theory of analytic functions.
Recently, the authors [25–27] linked the notion of a fuzzy subsets with the concepts of quantum
extensions of analytic functions.

The classical results of univalent functions with the concept of differential subordination are
generalized in this current paper to include quantum (q)-extensions of univalent functions associated
with fuzzy differential subordination.

Let Γ (Π) denote the class of analytic functions h(υ) in Π = {υ : |υ| < 1}. The functions h ∈ Γ (Π) of
the form

h(υ) = υ + aη+1υ
η+1 + aη+2υ

η+2 + ..., (υ ∈ Π) , (1.1)

form the class denoted by Aη. We note that A1 = A; the class of normalized analytic functions in Π. Let
S T and CV denote the subclasses of A of starlike and convex univalent functions, respectively. Here,
we provide an overview of some important fundamental ideas connected to our work.

Definition 1.1. [28] A function F is said to be fuzzy subset on Y , φ, if it maps from Y to [0, 1].

In other words, fuzzy subset is defined as:

Definition 1.2. [28] A pair (U,FU) is said to be a fuzzy subset on Y, where
U = {x ∈ Y : 0 < FU(x) ≤ 1} = sup (U,FU) is the support of fuzzy set (U,FU) and FU : Y → [0, 1] is
the membership function of the fuzzy set (U,FU).

Definition 1.3. [28] Let
(
U1,FU1

)
and

(
U2,FU2

)
be two subsets of Y. Then,

(
U1,FU1

)
⊆

(
U2,FU2

)
if and only if FU1 (t) ≤ FU2 (t), t ∈ Y, whereas,

(
U1,FU1

)
and

(
U2,FU2

)
of Y are equal if and only if

U1 = U2.

We say that the analytic function h is subordinate to the analytic function g (written as h ≺ g) if
h(υ) = g(w(υ)), where w(υ) is a Schwartz function in Π, see Miller and Mocanu [29].

The generalization of the subordination technique of analytic functions in terms of fuzzy notion
was defined by Oros and Oros [5] as the following.
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Let the analytic function h be fuzzy subordinate to the analytic function g (written as h ≺F g). Then,

h(υ0) = g(υ0) and F (h (υ)) ≤ F (g (υ)) , υ ∈ R,

where R ⊂ C and υ0 be a fixed point in R.

Remark 1.1. If R = Π in the above definition, then the fuzzy subordination is equivalent to the
classical subordination.

For 0 < q < 1, the operator ∇q defined by

∇qh(υ) =
h(υ) − h(qυ)

(1 − q)υ
; q , 1, υ , 0, (1.2)

is called the q−difference operator. It was introduced by Jackson [30] and it is clear that lim
q→1−
∇qh(υ) =

h′(υ), where h′(υ) denotes the derivative of the function.
For j ∈ N = {1, 2, 3, ..}, we have

∇q

 ∞∑
j=1

a jυ
j

 =

∞∑
j=1

[
j
]
q a jυ

j−1, (1.3)

where [
j
]
q =

1 − q j

1 − q
= 1 + q + q2 + ... + q j−1. (1.4)

We have the following rules of ∇q, we refer to [31, 32].
(i) ∇q (ah1 (υ) ± bh2 (υ)) = a∇qh1 (υ) ± b∇qh2 (υ).
(ii) ∇q (h1 (υ) h2 (υ)) = h1 (qυ)∇q (h2 (υ)) + h2(υ)∇q (h1 (υ)).
(iii) ∇q

(
h1(υ)
h2(υ)

)
=
∇q(h1(υ))h2(υ)−h1(υ)∇q(h2(υ))

h2(qυ)h2(υ) , h2(qυ)h2(υ) , 0.

(iv) ∇q
(
log h(υ)

)
=

ln q∇q(h(υ))
(q−1)h(υ) .

Ismail et al. [33] were first who discussed various properties of function theory by virtue of q-theory.
In [34], Kanas and Raducanu introduced an operator Rλ

q : A→ A defined by

Rλ
qh(υ) = υ +

∞∑
j=1

[
j + λ − 1

]
q

!
[λ]q!

[
j − 1

]
q!a jυ

j, (λ > −1) . (1.5)

Also, if λ = m ∈ N0 = N ∪ {0}, then the operator (2.6) can be written as:

Rm
q h(υ) =

υ∇q

(
υm−1h(υ)

)
[m]q!

.

We note that R0
qh(υ) = h(υ) and R1

qh(υ) = υ∇qh(υ).
We obtain the Ruscheweyh derivative operator [35], in particular, for q→ 1−.
The q−extension of the Srivastava-Attiya operator discussed by Shah and Noor in [36]. They

defined, for b ∈ C \ Z−0 , s ∈ C when |υ| < 1 and< (s) > 1 when |υ| = 1, the operator J s
q,b : A→ A by

J s
q,bh(υ) = Λq (s, b; υ) ∗ h(υ)
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= υ +

∞∑
j=2

 [1 + b]q[
j + b

]
q

s

a jυ
j, (1.6)

where

Λq (s, b; υ) = υ +

∞∑
j=2

 [1 + b]q[
j + b

]
q

s

υ j.

The q−Srivastava-Attiya operator J s
q,b generalizes some well-known operators such as q−Alexander,

q−Libera, q−Bernardi and Srivastava-Attiya operator, we refer to [37, 38].
From (1.5) and (1.6), we use the convolution technique to define Υs,λ

q,b : A→ A as follows:

Υs,λ
q,bh(υ) =

(
Rλ

q ∗ J s
q,b

)
h(υ)

= υ +

∞∑
j=1

[
j + λ − 1

]
q!

[λ]q!
[
j − 1

]
q!

 [1 + b]q[
j + b

]
q

s

a jυ
j, (1.7)

where h ∈ A and ∗ denotes the Hadamard product(convolution).
It is clear that

Υ0,λ
q,bh(υ) = Rλ

qh(υ) and Υs,0
q,bh(υ) = J s

q,bh(υ).

The following identities can be implied from (1.5) to (1.7).

υ∇q

(
Υs+1,λ

q,b h(υ)
)

=

(
1 +

[b]q

qb

)
Υs,λ

q,bh(υ) −
[b]q

qb Υs+1,λ
q,b h(υ). (1.8)

υ∇q

(
Υs,λ

q,bh(υ)
)

=

(
1 +

[λ]q

qb

)
Υs,λ+1

q,b h(υ) −
[λ]q

qb Υs,λ
q,bh(υ). (1.9)

Several scholars studied various geometrical properties of analytic functions associated with
q-linear operators, so we refer the readers to [39–41]. Now, we use the q−difference operator and the
fuzzy subordination principle to define certain new subclasses FS q (%, δ; g) and FCq (%, δ; g) as the
following.

For % ∈ R : |%| < π
2 , q ∈ (0, 1), 0 , δ ∈ C, υ ∈ Π and g ∈ M, whereM is the class of all functions g

which are analytic and univalent in Π, and for which g(Π) is convex with g(0) = 1 and Re (g (υ)) > 0 in
Π we define

FS q (%, δ; g) =

{
h ∈ A : 1 +

ei%

δ cos %

(
υ∇qh

h
− 1

)
≺F g(υ)

}
,

FCq (%, δ; g) =

h ∈ A : 1 +
ei%

δ cos %

∇q

(
υ∇qh

)
∇qh

− 1

 ≺F g(υ)

 .

In application of the operator given in (1.7), we define;

FS T s,λ
q,b (%, δ; g) =

{
h ∈ A : Υs,λ

q,bh(υ) ∈ FS q (%, δ; g)
}

,

and
FCV s,λ

q,b (%, δ; g) =
{
h ∈ A : Υs,λ

q,bh(υ) ∈ FCq (%, δ; g)
}

,
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where g ∈ M, λ > −1, q ∈ (0, 1), s, % ∈ R : |%| < π
2 , b > −1, 0 , δ ∈ C and υ ∈ Π.

It is obvious that

h ∈ FCV s,λ
q,b (%, δ; g) if and only if υ∇qh ∈ FS T s,λ

q,b (%, δ; g) . (1.10)

Particularly, when δ = 1 and % = 0, we obtain the classes FS T s,λ
q,b (g) and FCV s,λ

q,b (g) introduced by
the authors in [26]. For λ = 0 = s, the classes FS T s,λ

q,b (%, δ; g) and FCV s,λ
q,b (%, δ; g) reduce to the classes

FS q (%, δ; g) and FCq (%, δ; g) respctively. Moreover, when q → 1−, we have the classes, FS T (%, δ; g)
and FCV (%, δ; g), introduced by the authors in [27]. Furthermore, for δ = 1 and % = 0, the classes
FS (%, δ; g) and FC (%, δ; g) coincides with the classes FS T (g) and FC (g), introduced and studied by
Shah et al. [20].

Now, in the next section, the inclusion problems between the subclasses are investigated.
Furthermore, we show that the subclasses are preserved q-Bernardi integral operator. We need the
following lemma for our findings.

Lemma 1.1. [25] Let β and γ be complex numbers with β , 0 and let g(υ) be a convex univalent in Π

with g(0) = 1 and
Re {βg(υ) + γ} > 0. (1.11)

If p(υ) = 1 + p1υ + p2υ
2 + ... is analytic in Π, then

p(υ) +
υ∇q p(υ)
βp(υ) + γ

≺F g(υ) implies p(υ) ≺F g(υ),

where F : C→ [0, 1].

2. Major results

2.1. Inclusion results

Theorem 2.1. Let g ∈ M, q ∈ (0, 1), λ ∈ N0, s, % ∈ R : |%| < π
2 , b > −1 and 0 , δ ∈ C. Then,

FS T s,λ
q,b (%, δ; g) ⊂ FS T s+1,λ

q,b (%, δ; g) , (2.1)

for

<
{
e−i%δ cos % (g(υ) − 1) +

(
1 + xq

)}
> 0, with xq =

[b]q

qb , (2.2)

and
FS T s,λ+1

q,b (%, δ; g) ⊂ FS T s,λ
q,b (%, δ; g) , (2.3)

for

<
{
e−i%δ cos % (g(υ) − 1) +

(
1 + dq

)}
> 0, with dq =

[λ]q

qb . (2.4)

Proof. To prove the relation (2.1), we suppose h ∈ FS T s,λ
q,b (%, δ; g). For analytic p1(υ) in Π with p1(0) =

1, we set

p1(υ) =
1

δ cos %

ei%
υ∇q

(
Υs+1,λ

q,b h(υ)
)

Υs+1,λ
q,b h(υ)

− (1 − δ) cos % − i sin %

 . (2.5)
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The identity (1.8) and (2.5) imply that

p1(υ) =
1

δ cos %

ei%


(
1 +

[b]q

qb

)
Υs,λ

q,bh(υ)

Υs+1,λ
q,b h(υ)

−
[b]q

qb

 − (1 − δ) cos % − i sin %

 ,
equivalently

(
1 + xq

) Υs,λ
q,bh(υ)

Υs+1,λ
q,b h(υ)

= e−i%δ cos % (p1(υ) − 1) +
(
1 + xq

)
,

(
for xq =

[b]q

qb

)
.

The q−logarithmic differentiation and (2.5) yield

1
δ cos %

ei%
υ∇q

(
Υs,λ

q,bh(υ)
)

Υs,λ
q,bh(υ)

− (1 − δ) cos % − i sin %

 = p1(υ) +
υ∇q p1(υ)

e−i%δ cos % (p1(υ) − 1) +
(
1 + xq

) . (2.6)

Since h ∈ FS T s,λ
q,b (%, δ; g), from (2.6) we have

p1(υ) +
υ∇q p1(υ)

e−i%δ cos % (p1(υ) − 1) +
(
1 + xq

) ≺F g(υ), (2.7)

for g ∈ M, we assume that

<
{
e−i%δ cos % (p1(υ) − 1) +

(
1 + xq

)}
> 0,

by Lemma 1.1 and (2.7), we conclude p1(υ) ≺F g(υ) implies h ∈ FS T s+1,λ
q,b (%, δ; g).

To prove (2.5), we set, for analytic p2(υ) in Π with p2(0) = 1,

p2(υ) =
1

δ cos %

ei%
υ∇q

(
Υs,λ

q,bh(υ)
)

Υs+1,λ
q,b h(υ)

− (1 − δ) cos % − i sin %

 . (2.8)

Now, using similar techniques as before, we can easily obtain the required result using the identity
(1.9) along with Lemma 1.1. �

Particularly, if we take δ = 1 and % = 0, we have:

Corollary 2.1. [26] Let q ∈ (0, 1), λ ∈ N0, s ∈ R, b > −1, and g ∈ M. Then,

FS T s,λ
q,b (g) ⊂ FS T s+1,λ

q,b (g) ,

for

<
{
g(υ) + xq

}
> 0, with xq =

[b]q

qb ,

and
FS T s,λ+1

q,b (g) ⊂ FS T s,λ
q,b (g) ,

for

<
{
g(υ) + dq

}
> 0, with dq =

[λ]q

qb .
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Furthermore, if we choose λ = 0 and q → 1−, then the inclusion relation (2.3) is reduced to the
following result.

Corollary 2.2. [20] Let s ∈ R, b > −1, and g ∈ M. Then, for<{g(υ) + b} > 0,

FS T s
b (g) ⊂ FS T s+1

b (g) .

Theorem 2.2. Let q ∈ (0, 1), λ ∈ N0, s, % ∈ R : |%| < π
2 , b > −1, 0 , δ ∈ C and g ∈ M. Then, for the

conditions (2.2) and (2.4),
FCV s,λ

q,b (%, δ; g) ⊂ FCV s+1,λ
q,b (%, δ; g) , (2.9)

and
FCV s,λ+1

q,b (%, δ; g) ⊂ FCV s,λ
q,b (%, δ; g) , (2.10)

respectively.

Proof. Let h ∈ FCV s,λ
q,b (%, δ; g). Then, by (1.10), υ∇qh ∈ FS T s,λ

q,b (%, δ; g). This implies, using Theorem
2.1, υ∇qh ∈ FS T s+1,λ

q,b (%, δ; g). Again, by (1.10), we get h ∈ FCV s+1,λ
q,b (%, δ; g). One can easily prove the

relation (2.10) using the same method as used for the relation (2.9). �

Particularly, if we take δ = 1 and % = 0, we have

Corollary 2.3. [26] Let q ∈ (0, 1), λ ∈ N0, s ∈ R, b > −1, and g ∈ M. Then,

FCV s,λ
q,b (g) ⊂ FCV s+1,λ

q,b (g) ,

for

<
{
g(υ) + xq

}
> 0, with xq =

[b]q

qb ,

and
FCV s,λ+1

q,b (g) ⊂ FCV s,λ
q,b (g) ,

for

<
{
g(υ) + dq

}
> 0, with dq =

[λ]q

qb .

Furthermore, if we choose λ = 0 and q → 1−, then the inclusion relation (2.9) is reduced to the
following result.

Corollary 2.4. [20] Let s ∈ R, b > −1, and g ∈ M. Then, for<{g(υ) + b} > 0,

FCV s
b (g) ⊂ FCV s+1

b (g) .

2.2. Integral preserving property

Theorem 2.3. Let g ∈ M, q ∈ (0, 1), λ ∈ N0, s, % ∈ R : |%| < π
2 , b > −1, 0 , δ ∈ C, and Fq,b is defined

by

Fq,b(υ) =
[1 + b]q

υb

∫ υ

0
tb−1
h(t)∇qt. (2.11)

Then, for
<

{
e−i%δ cos % (g(υ) − 1) +

(
1 + [b]q

)}
> 0,

Fq,b ∈ FS T s,λ
q,b (%, δ; g) whenever h ∈ FS T s,λ

q,b (%, δ; g).
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Proof. Let h ∈ FS T s,b
q,η (ϕ) and consider

χ(υ) =
1

δ cos %

ei%
υ∇q

(
Υs,λ

q,bFq,b(υ)
)

Υs,λ
q,bFq,b(υ)

− (1 − δ) cos % − i sin %

 , (2.12)

with χ(υ) is analytic in Π with χ(0) = 1.
From (2.11), we can write

∇q

(
υbFq,b(υ)

)
[1 + b]q

= υb−1
h(υ).

Using the product rule of q−difference operator, we get

υ∇qFq,b(υ) =

(
1 +

[b]q

qb

)
h(υ) − [b]q Fq,b(υ). (2.13)

From (2.9), (2.10) and (1.5), we have(
1 +

[b]q

qb

)
J s,b

q h(υ)

J s+1,b
q Fq,b(υ)

= e−i%δ cos % (χ(υ) − 1) +
(
1 + [b]q

)
.

After q−logarithmic differentiation, we get

1
δ cos %

ei%
υ∇q

(
Υs,λ

q,bh(υ)
)

Υs,λ
q,bh(υ)

− (1 − δ) cos % − i sin %

 = χ(υ) +
υ∇qχ(υ)

e−i%δ cos % (χ(υ) − 1) +
(
1 + [b]q

)
χ(υ) +

υ∇qχ(υ)

e−i%δ cos % (χ(υ) − 1) +
(
1 + [b]q

) ≺F g(υ),

we have used the fact h ∈ FS T s,λ
q,b (%, δ; g). Since g ∈ M and we assume that

<
{
e−i%δ cos % (g(υ) − 1) +

(
1 + [b]q

)}
> 0, using Lemma 1.1, we conclude that χ(υ) ≺F g(υ) and this

completes the proof. �

In particular, when δ = 1 and % = 0, we have:

Corollary 2.5. [26] Let h ∈ FS T s,λ
q,b (g). Then, Fq,b(υ) is in FS T s,λ

q,b (g), where Fq,b(υ) is given by (2.11).

Moreover, if we take λ = 0 and q→ 1−, then we get the following result.

Corollary 2.6. [20] Let h ∈ FS T s
b (g). Then, Fq,b(υ) is in FS T s

b (g), where Fq,b(υ) is given by (2.11).

Remark 2.1. (i) Upon following the same method as used in Theorem 2.3, we can easily prove that
the integral operator, given by (2.11), preserves the class FCV s,λ

q,b (%, δ; g).
(ii) Particularly, the classes FCV s,λ

q,b (g) and FCV s
b (ϕ) defined in [26] and [20] respectively, are

invariant under the q−Bernardi integral operator.
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3. Conclusions

In this article, we have defined q-analogue of certain subclasses of univalent functions with the
help of fuzzy subsets. The q−Ruscheweyh derivative operator and the q−Srivastava-Attiya operator
are combined by the Hadamard product and then the resultant operator is applied on the newly defined
classes to obtain some generalized subclasses. We presented various classical results, such as the
inclusion relationships and integral preserving property, for our newly defined subclasses. Various
previous work has pointed out as the corollaries of our major investigations.
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