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Abstract: This paper aims to consider the extended Perron complements for the collection of M-
matrices. We first exhibit the connection between the extended Perron complements of M-matrices
and nonnegative matrices. Moreover, we present some common inequalities involving extended Perron
complements, Schur complements, and principal submatrices of irreducible M-matrices by utilizing the
properties of M-matrices. We also discuss the monotonicity of the extended Perron complements and
minimum eigenvalue. For the collection of M-matrices, we demonstrate that all (extended) Perron
complements are M-matrices. Especially, we deduce that M-matrices and their Perron complements
share the same minimum eigenvalue. Finally, a simple example is presented to illustrate our findings.
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1. Introduction

In this paper, we deal with n-square real matrices. We denote the set {1, 2, · · · , n} by ⟨n⟩. The
expression A ⩾ 0 implies that all elements of the matrix A are nonnegative. We write B ⩾ A if and only
if B − A ⩾ 0 . According to the Perron-Frobenius theorem ( [1], Theorem 1.1, p.26), if A ⩾ 0, then the
spectral radius, denoted by ρ(A), is an eigenvalue of the matrix A and dominates all other eigenvalues
in modulus.

The n-square real matrix K =
(
ki j

)
is defined to be a Z-matrix provided ki j ≤ 0, i , j, i, j ∈ ⟨n⟩. The

collection of Z-matrices appears in many mathematical and physics problems. Let K be a Z-matrix and
define

q (K) = min {Re(λ) : λ ∈ σ (K)} ,

where σ (K) denotes the spectrum of the matrix K. Then, q (K) ∈ σ (K) and q (K) is called the
minimum eigenvalue of K ( [2], Problem 16 in Section 2.5, p.129–130 ). From the definition of Z-
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matrices, we can write a Z-matrix K as follows:

K = sI − A, A ≥ 0.

Here, I is the n-square identity matrix, and s is a real number. Clearly, q (K) = s − ρ (A).
A Z-matrix K is further defined to be a nonsingular M-matrix provided

K = sI − A, A ≥ 0, s > ρ (A) . (1.1)

For an M-matrix K, q (K) is also the eigenvalue of K with minimum modulus. Moreover, if K
is an irreducible M-matrix, there must exist a positive vector u such that Ku = q (K) u. The set of
M-matrices is one of the most famous subclasses of Z-matrices. These matrices are of considerable
importance in the research on the convergence of iterative processes in linear and nonlinear equation
systems, as well as the research on nonnegative solutions to such systems. In addition, there has
been considerable interest in inverse M-matrices, that is, nonsingular matrices whose inverses are M-
matrices. Undoubtedly, inverse M-matrices inherit significant structural properties from M-matrices.
M-matrices and inverse M-matrices have important applications in computational mathematics,
physics, intelligence science, biology, and other fields. Furthermore, the research on submatrices
and related matrices of M-matrices is an important study direction. Some interesting results proved
in references [3–8] inspired our research on the collection of M-matrices.

We now give some definitions and preliminary results that will be used in this study. Unless
otherwise specified, we assume that β is an increasing sequence of integers chosen from ⟨n⟩ and
α = ⟨n⟩ \β. We denote a submatrix of A by A

[
α, β

]
, whose rows depend on α and columns depend on

β. In particular, if α = β, A
[
β, β

]
is abbreviated as A

[
β
]

for convenience.
Suppose that ∅ , β ⊂ ⟨n⟩. For the nonsingular submatrix A

[
β
]

of A , the expression

A/A
[
β
]
= A [α] − A

[
α, β

] (
A

[
β
])−1A

[
β, α

]
is defined to be the Schur complement concerning A

[
β
]
.

The Schur complement is a powerful tool in the study of matrix theory. Utilizing the Schur
complement is a classical approach when dealing with matrix problems, such as deriving matrix
inequalities, deducing determinants, and dealing with large-scale matrix computations. Significant
research has been conducted on Schur complements of some special matrices since the late 1960s.

For a nonnegative irreducible matrix A , the notion of Perron complement concerning A
[
β
]

was
introduced by Meyer [5] as follows:

P
(
A/A

[
β
] )
= A [α] + A

[
α, β

] (
ρ (A) I − A

[
β
])−1A

[
β, α

]
. (1.2)

Because A is irreducible, we can easily get ρ (A) > ρ
(
A

[
β
])

. Therefore, ρ (A) I − A
[
β
]

is an invertible
M-matrix. Meyer thoroughly explored the properties of P

(
A/A

[
β
] )

and derived that the matrix
P

(
A/A

[
β
] )

inherits the nonnegativity and irreducibility of the matrix A. Meanwhile, A and its Perron
complement P

(
A/A

[
β
] )

possess the same spectral radius. Extensive studies have been conducted
on the Perron complements of matrices with special structures, such as Z-matrices [6] , inverse N0-
matrices [7] , and inverse M-matrices [8] , and notable results have been achieved [9–11].
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Neumann [8] made an improvement on (1.2) by substituting t for ρ (A) and proposed the notion of
extended Perron complement relative to A

[
β
]

at t as follows:

Pt
(
A/A

[
β
] )
= A [α] + A

[
α, β

] (
tI − A

[
β
])−1A

[
β, α

]
, t ≥ ρ (A) . (1.3)

Clearly, the above expression is well-defined because t ≥ ρ (A) > ρ
(
A

[
β
])

.
To obtain tight bounds of ρ (A), the concept of generalized Perron complement Pt

(
A/A

[
β
] )

for
t > ρ

(
A

[
β
])

was first proposed in [12]. Inspired by the definitions of Meyer and Neumann, we present
the following notions. Let ∅ , β ⊂ ⟨n⟩ and α = ⟨n⟩ \β. For an irreducible M-matrix K of order n , we
define the extended Perron complement relative to K

[
β
]

at t as follows:

Qt
(
K/K

[
β
] )
= K [α] + K

[
α, β

] (
tI − K

[
β
])−1K

[
β, α

]
, t ≤ q (K) . (1.4)

Remark 1.1. Set K = sI − A, A ≥ 0, and s > ρ (A). For any ∅ , β ⊂ ⟨n⟩, clearly, q (K) < q
(
K

[
β
])

because K is irreducible. Therefore, we have t ≤ q (K) < q
(
K

[
β
])

. This shows that

s − t ≥ s − q (K) > s − q
(
K

[
β
])
= ρ

(
sI − K

[
β
])
.

As sI − K
[
β
]
≥ 0, we conclude from (1.1) that (s − t) I −

(
sI − K

[
β
])
= K

[
β
]
− tI is an invertible

M-matrix and
(
K

[
β
]
− tI

)−1
≥ 0. Meanwhile,

K [α] + K
[
α, β

] (
tI − K

[
β
])−1K

[
β, α

]
= K [α] − K

[
α, β

] (
K

[
β
]
− tI

)−1K
[
β, α

]
.

Therefore, the definition of Qt
(
K/K

[
β
] )

in (1.4) is valid when t ≤ q (K).
If we set t=q (K) in (1.4), we will obtain the Perron complement relative to K

[
β
]
:

Q
(
K/K

[
β
] )
= K [α] + K

[
α, β

] (
q (K) I − K

[
β
])−1K

[
β, α

]
. (1.5)

This paper focuses on studying the properties of extended Perron complements concerning
irreducible M-matrices. The content of the paper is arranged as follows. For the collection of
irreducible M-matrices, we establish our concepts and notations of (extended) Perron complement
in Section 1.

In Section 2, utilizing the special structure of M-matrices, we establish the connection between the
(extended) Perron complements of M-matrices and nonnegative matrices.

In Section 3, some general inequalities involving extended Perron complements, Schur com-
plements, and submatrices of irreducible M-matrices are presented by employing the properties of
M-matrices. Additionally, we discuss the monotonicity of the extended Perron complements and
minimum eigenvalue.

At the end of this paper, we prove that the collection of M-matrices is closed on any (extended)
Perron complementation. We also demonstrate that an M-matrix and its Perron complement share the
same minimum eigenvalue.

2. Relationship between extended Perron complements of M-matrices and nonnegative matrices

For convenience and clarity, we employ the following notations. We will simply denote Perron and
Schur complements by the index sets rather than principal submatrices. For example, Qt

(
K/K

[
β
] )

is
abbreviated as Qt (K/β ), and K/K

[
β
]

is denoted by K/β .
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Equation (1.1) implies that there exists a close connection between M-matrices and nonnegative
matrices. The following theorem shows that this close relationship can be carried over to their extended
Perron complements.

Theorem 2.1. Suppose K is an n× n irreducible M-matrix such that K = sI − A, A ≥ 0, and s > ρ (A).
For any ∅ , β ⊂ ⟨n⟩, the following identity holds:

Qt (K/β ) + Ps−t (A/β ) = sI, t ≤ q (K) . (2.1)

Proof. For any ∅ , β ⊂ ⟨n⟩, we suppose that K is symmetrically permuted to the following block
matrix:

K =
(

K [α] K
[
α, β

]
K

[
β, α

]
K

[
β
] )
=

(
B C
D E

)
.

Therefore, we have

A = sI − K =
(
sI − B −C
−D sI − E

)
≥ 0. (2.2)

For any t ≤ q (K), we obtain s − t ≥ s − q (K) = ρ (A). According to (2.2), we get the extended Perron
complement with respect to A

[
β
]

at s − t as follows:

Ps−t (A/β) = (sI − B) + (−C) [(s − t) I − (sI − E)]−1 (−D)

= (sI − B) +C(E − tI)−1D

= (sI − B) −C(tI − E)−1D

= sI −
[
B +C(tI − E)−1D

]
= sI − Qt (K/β ) . (2.3)

From (2.3), we can immediately obtain our conclusion.
If we set t = q (K) in (2.1), we will obtain the following consequence.

Corollary 2.1. Suppose K is an n× n irreducible M-matrix such that K = sI −A, A ≥ 0, and s > ρ (A).
For any ∅ , β ⊂ ⟨n⟩, the following identity holds:

Q (K/β ) + P (A/β ) = sI.

3. Some basic properties of the extended Perron complement of M-matrices

In the following, we discuss some essential properties of the extended Perron complement of M-
matrices. We will establish some general inequalities involving extended Perron complements, Schur
complements, and principal submatrices of irreducible M-matrices. The monotonicity of the extended
Perron complements and minimum eigenvalue are also demonstrated. First, we introduce some basic
lemmas that are helpful in the proof of our conclusions.

Lemma 3.1. [1] If nonsingular M-matrices E and F satisfy F ≤ E, then 0 ≤ E−1 ≤ F−1.

Lemma 3.2. [12] Suppose the matrix A is irreducible and nonnegative. Then, the generalized Perron
complement Pt (A/β ) for t > ρ

(
A

[
β
])

is irreducible and nonnegative. In addition, as a function with
respect to t , the spectral radius ρ

[
Pt (A/β )

]
is strictly decreasing on

(
ρ
(
A

[
β
])
,+∞

)
.
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Theorem 3.1. Suppose K is an n × n irreducible M-matrix. For any ∅ , β ⊂ ⟨n⟩, the following
orderings hold:
(1) Qt (K/β ) ≤ K/β ≤ K [α] for 0 ≤ t ≤ q (K);
(2) K/β ≤ Qt (K/β ) ≤ K [α] for t ≤ 0.
Moreover, we have

lim
t→−∞

Qt (K/β ) = K [α] . (3.1)

Proof. For any ∅ , β ⊂ ⟨n⟩ and α = ⟨n⟩ \β, we assume that K is symmetrically permuted to the block
matrix:

K =
(

K [α] K
[
α, β

]
K

[
β, α

]
K

[
β
] )
=

(
B C
D E

)
. (3.2)

For any t ≤ q (K), we have

Qt (K/β ) = B +C(tI − E)−1D

= B −C(E − tI)−1D

and
K/β = B −CE−1D.

To obtain our conclusions, we discuss two cases.
Case 1. 0 ≤ t ≤ q (K)

Because E is a principal submatrix of K, E is also an M-matrix. Clearly, q (K) < q (E) because
K is irreducible. Therefore, we obtain 0 ≤ t < q (E), which guarantees that E − tI is a nonsingular
M-matrix. This important fact has also been mentioned in Remark 1.1. Based on Lemma 3.1, we
obtain (E − tI)−1

≥ E−1 ≥ 0. Meanwhile, for M-matrix K to be a Z-matrix, we must have that C ≤ 0
and D ≤ 0. Therefore, we obtain

C(E − tI)−1D ≥ CE−1D ≥ 0.

That is,
B −C(E − tI)−1D ≤ B −CE−1D ≤ B.

The above inequality implies that Qt (K/β ) ≤ K/β ≤ B = K [α].
Case 2. t ≤ 0

Clearly, E − tI ≥ E and E − tI, E are nonsingular M-matrices. From Lemma 3.1, we obtain E−1 ≥

(E − tI)−1
≥ 0. As C ≤ 0 and D ≤ 0, we obtain

CE−1D ≥ C(E − tI)−1D ≥ 0.

We further obtain
B −CE−1D ≤ B −C(E − tI)−1D ≤ B.

This means that K/β ≤ Qt (K/β ) ≤ B = K [α].
Next, we discuss the limit of Qt (K/β ) when t → −∞. If t , 0, we have

(tI − E)−1 =
1
t

(
I −

1
t

E
)−1
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=
1
t

(
I +

1
t

E +
1
t2 E2 + · · ·

)
.

Clearly, lim
t→−∞

(tI − E)−1 = 0. Therefore, we have

lim
t→−∞

Qt (K/β ) = lim
t→−∞

[
B +C(tI − E)−1D

]
= B + lim

t→−∞
C(tI − E)−1D

= B.

Thus, the proof of Theorem 3.1 is completed.

Theorem 3.2. Suppose K is an n × n irreducible M-matrix. For any ∅ , β ⊂ ⟨n⟩, the extended Perron
complement Qt (K/β ) is entry-wise decreasing concerning t on (−∞, q (K)

]
.

Proof. Let K be partitioned according to (3.2). Suppose t1 ≤ t2 ≤ q (K). We have

Qt1 (K/β ) = B +C(t1I − E)−1D

and
Qt2 (K/β ) = B +C(t2I − E)−1D.

Therefore,

Qt1 (K/β ) − Qt2 (K/β ) = C(t1I − E)−1D −C(t2I − E)−1D

= C(E − t2I)−1D −C(E − t1I)−1D

= C
[
(E − t2I)−1

− (E − t1I)−1
]

D.

According to Remark 1.1, we observe that E − t1I and E − t2I are both nonsingular M-matrices when
t1 ≤ t2 ≤ q (K). Moreover, E − t1I ≥ E − t2I. From Lemma 3.1, we have

(E − t2I)−1
≥ (E − t1I)−1.

Because K is an M-matrix, it must first be a Z-matrix, resulting in C ≤ 0,D ≤ 0. Hence, we deduce
that

C
[
(E − t2I)−1

− (E − t1I)−1
]

D ≥ 0.

This means Qt1 (K/β ) ≥ Qt2 (K/β ). Therefore, as a function concerning t, the extended Perron
complement Qt (K/β ) is entry-wise decreasing on (−∞, q (K)

]
.

Theorem 3.3. Suppose K is an n × n irreducible M-matrix. For any ∅ , β ⊂ ⟨n⟩, the minimum
eigenvalue q

[
Qt (K/β )

]
is strictly decreasing concerning t on (−∞, q (K)

]
.

Proof. Let K = sI − A, A ≥ 0, and s > ρ (A). Because t ≤ q (K) and A is irreducible and
nonnegative, we have s − t ≥ s − q (K) = ρ (A) > ρ

(
A

[
β
])

. According to Lemma 3.2, it can easily
be seen that Ps−t (A/β ) is an irreducible nonnegative matrix. Moreover, as s − t is strictly decreasing
concerning t, from Lemma 3.2, we deduce that ρ

[
Ps−t (A/β )

]
is strictly increasing concerning t on
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ρ
(
A

[
β
])
,+∞

)
. In particular, ρ

[
Ps−t (A/β )

]
is strictly increasing concerning t on

[
ρ (A) ,+∞) because[

ρ (A) ,+∞) ⊂
(
ρ
(
A

[
β
])
,+∞

)
. Meanwhile, by Theorem 2.1, we obtain

Qt (K/β ) = sI − Ps−t (A/β ) , t ≤ q (K) .

As Ps−t (A/β ) is nonnegative, Qt (K/β ) is a Z-matrix, and we obtain

q
[
Qt (K/β )

]
= s − ρ

[
Ps−t (A/β )

]
.

Therefore, q
[
Qt (K/β )

]
is strictly decreasing concerning t on (−∞, q (K)

]
.

4. Closure of the (extended) Perron complements of M-matrices

As one of the most well-known subclasses of the Z-matrices, M-matrices possess many features
and properties. For example, all the Schur complements and principal submatrices of nonsingular M-
matrices are nonsingular M-matrices. We highlight this to prove that the class of M-matrices is closed
on any (extended) Perron complementation, that is, all (extended) Perron complements of irreducible
M-matrices are irreducible M-matrices. Before proving this, we must recall the following conclusions.

Lemma 4.1. [5] Suppose the matrix A is irreducible and nonnegative. For any ∅ , β ⊂ ⟨n⟩,
(1) P (A/β ) is irreducible and nonnegative and
(2) ρ

[
P (A/β )

]
= ρ (A).

Lemma 4.2. [1] Suppose the matrix A is irreducible and nonnegative. Then, A has a positive
eigenvector v corresponding to ρ (A).

Lemma 4.3. [2] Suppose K is a Z-matrix. Then, K is a nonsingular M-matrix if and only if K−1 ≥ 0.

Lemma 4.4. [13] Suppose the m-square matrix P and k-square matrix L are nonsingular. Let M be an
m × k matrix and N be an k × m matrix. Then, P + MLN is invertible if and only if L−1 + NP−1M is
invertible and the following equation holds:

(P + MLN)−1 = P−1 − P−1M
(
L−1 + NP−1M

)−1
NP−1.

The above-mentioned result is called the Woodbury formula.

Theorem 4.1. Suppose K is an n×n irreducible M-matrix. For any∅ , β ⊂ ⟨n⟩, the Perron complement
Q (K/β ) is an irreducible M-matrix such that q

[
Q (K/β )

]
= q (K).

Proof. Set K = sI − A, A ≥ 0, and s > ρ (A). As irreducibility is independent of the main diagonal
elements, we find that A is irreducible. In terms of Lemma 4.1, we know P (A/β ) is nonnegative and
irreducible. Moreover, s > ρ (A) = ρ

[
P (A/β )

]
. According to Corollary 2.1, we have

Q (K/β ) = sI − P (A/β ) . (4.1)

Thus, we conclude from (1.1) and (4.1) that Q (K/β ) is an irreducible M-matrix.
In the following, we prove that the irreducible M-matrix K and its Perron complement Q (K/β )

share the same minimum eigenvalue. From Lemma 4.2, for the nonnegative irreducible matrix
P (A/β ), there must exist a positive vector v satisfying P (A/β ) v = ρ

[
P (A/β )

]
v. As ρ (A) =

ρ
[
P (A/β )

]
, we get

P (A/β ) v = ρ (A) v.
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Therefore, according to (4.1), we have

Q (K/β ) v =
[
sI − P (A/β )

]
v

= sv − P (A/β ) v

= sv − ρ (A) v

=
[
s − ρ (A)

]
v

= q (K) v.

This shows that q (K) is an eigenvalue of the matrix Q (K/β ) with a corresponding positive eigenvector
v. According to the theory of M-matrices, the minimum eigenvalue is the only eigenvalue that can
have a positive eigenvector. Thus, we infer that q (K) is indeed the minimum eigenvalue of the matrix
Q (K/β ). This completes the proof.

Remark 4.1. We can obtain q
[
Q (K/β )

]
= q (K) more straightforwardly. According to (4.1), we get

q
[
Q (K/β )

]
= s − ρ

[
P (A/β )

]
= s − ρ (A) = q (K) .

At the end of this paper, we demonstrate that the class of M-matrices is closed on any extended
Perron complementation.

Theorem 4.2. Suppose K is an n × n irreducible M-matrix. For any ∅ , β ⊂ ⟨n⟩ and t ≤ q (K), the
extended Perron complement Qt (K/β ) is an irreducible M-matrix.

Proof. Set K = sI − A, A ≥ 0, and s > ρ (A). In proving Theorem 3.3, we found that Ps−t (A/β ) is
irreducible and nonnegative. In addition, Theorem 2.1 states that

Qt (K/β ) = sI − Ps−t (A/β ) , t ≤ q (K) .

Therefore, Qt (K/β ) is an irreducible Z-matrix. Next, we focus on considering the inverse of Qt (K/β )
and proving

[
Qt (K/β )

]−1
≥ 0. Let K be partitioned according to (3.2). For any t ≤ q (K), we have

Qt (K/β ) = B +C(tI − E)−1D. (4.2)

As is established, all the Schur complements of a nonsingular M-matrix are nonsingular M-matrices.
Therefore, we know that K/α is a nonsingular M-matrix. We now discuss two cases when t ≤ q (K):
Case 1. If t ≤ 0, then K/α − tI is again a nonsingular M-matrix.
Case 2. If 0 < t ≤ q (K), by Theorem 3.3, we have

q [Q0 (K/α )] > q [Qt (K/α )] ≥ q
[
Qq(K) (K/α )

]
. (4.3)

In terms of the partitioned form of (3.2), we compute the extended Perron complement with respect to
K [α] as follows:

Qt (K/α ) = E + D(tI − B)−1C. (4.4)

Setting t = 0 and t = q (K) in (4.4), we obtain

Q0 (K/α ) = E − DB−1C = K/α (4.5)
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and
Qq(K) (K/α ) = E + D

[
q (K) I − B

]−1C = Q (K/α ) , (4.6)

respectively. Therefore, from (4.3), (4.5), and (4.6), we infer that

q (K/α ) > q [Qt (K/α )] ≥ q [Q (K/α )] .

Meanwhile, according to Theorem 4.1, for any ∅ , α ⊂ ⟨n⟩, we have q [Q (K/α )] = q (K). Thus, we
immediately get the following result:

q (K/α ) > q [Qt (K/α )] ≥ q (K) .

As 0 < t ≤ q (K), we obtain 0 < t < q (K/α ). This ensures that K/α − tI is an invertible M-matrix
and (K/α − tI )−1

≥ 0.
Moreover, we have that C ≤ 0 and D ≤ 0 because K is a Z-matrix. As a principal submatrix of K,

B is also an M-matrix and B−1 ≥ 0. By the Woodbury formula, we have[
Qt (K/β )

]−1
=

[
B +C(tI − E)−1D

]−1

= B−1 − B−1C
(
tI − E + DB−1C

)−1
DB−1

= B−1 − B−1C
[
tI −

(
E − DB−1C

)]−1
DB−1.

From (4.5), we get [
Qt (K/β )

]−1
= B−1 − B−1C(tI − K/α )−1DB−1

= B−1 + B−1C(K/α − tI )−1DB−1

≥ 0.

Combined with the previous analysis, Qt (K/β ) is an irreducible Z-matrix, while the inverse of
Qt (K/β ) is nonnegative. Thus, we conclude from Lemma 4.3 that Qt (K/β ) is an irreducible M-
matrix. The proof of Theorem 4.2 is completed.

5. Numerical example

In this section, we present the following example to verify our results. Let

A =


2 1 3 3
1 2 2 1
4 1 2 3
2 2 1 4

 .
We have ρ (A) = 8.70. As s > ρ (A), we may set s = 14. Thus, we obtain

K = sI − A =


12 −1 −3 −3
−1 12 −2 −1
−4 −1 12 −3
−2 −2 −1 10
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and q (K) = 5.30. Set t1 = 5, t2 = q (K) = 5.30, and t3 = −10. For α = {1, 2, 3}, β = {4}, we have

K [α] =


12 −1 −3
−1 12 −2
−4 −1 12

 , K/β =


11.40 −1.60 −3.30
−1.20 11.80 −2.10
−4.60 −1.60 11.70

 ,

Ps−t1 (A/β ) =


3.20 2.20 3.60
1.40 2.40 2.20
5.20 2.20 2.60

 , P (A/β ) =


3.28 2.28 3.64
1.43 2.43 2.21
5.28 2.28 2.64

 ,
Qt1 (K/β ) =


10.80 −2.20 −3.60
−1.40 11.60 −2.20
−5.20 −2.20 11.40

 , Qt2 (K/β ) = Q (K/β ) =


10.72 −2.28 −3.64
−1.43 11.57 −2.21
−5.28 −2.28 11.36

 ,
Qt3 (K/β ) =


11.70 −1.30 −3.15
−1.10 11.90 −2.05
−4.30 −1.30 11.85

 .
A direct calculation by MATLAB yields that

q
[
Qt1 (K/β )

]
= 5.45, q

[
Qt2 (K/β )

]
= q

[
Q (K/β )

]
= 5.30, q

[
Qt3 (K/β )

]
= 7.20.

According to the above data, it is easy to see that

Qt1 (K/β ) + Ps−t1 (A/β ) = sI, Q (K/β ) + P (A/β ) = sI.

These are consistent with Theorem 2.1 and Corollary 2.1.
For 0 ≤ t1 = 5 ≤ q (K), we have

Qt1 (K/β ) =


10.80 −2.20 −3.60
−1.40 11.60 −2.20
−5.20 −2.20 11.40

 ≤ K/β =


11.40 −1.60 −3.30
−1.20 11.80 −2.10
−4.60 −1.60 11.70

 ≤ K [α] =


12 −1 −3
−1 12 −2
−4 −1 12

 .
For t3 = −10 ≤ 0, we have

K/β =


11.40 −1.60 −3.30
−1.20 11.80 −2.10
−4.60 −1.60 11.70

 ≤ Qt3 (K/β ) =


11.70 −1.30 −3.15
−1.10 11.90 −2.05
−4.30 −1.30 11.85

 ≤ K [α] =


12 −1 −3
−1 12 −2
−4 −1 12

 .
For t ≤ q (K), we have

Qt (K/β ) =


12 −1 −3
−1 12 −2
−4 −1 12

 +

−3
−1
−3

 (t − 10)−1
(
−2 −2 −1

)

=


12 −1 −3
−1 12 −2
−4 −1 12

 + 1
t − 10


6 6 3
2 2 1
6 6 3

 .
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It is obvious that

lim
t→−∞

Qt (K/β ) =


12 −1 −3
−1 12 −2
−4 −1 12

 = K [α] .

These are consistent with Theorem 3.1.
Moreover, when t1 = 5 < t2 = 5.30 ≤ q (K), we have

Qt1 (K/β ) =


10.80 −2.20 −3.60
−1.40 11.60 −2.20
−5.20 −2.20 11.40

 > Qt2 (K/β ) =


10.72 −2.28 −3.64
−1.43 11.57 −2.21
−5.28 −2.28 11.36


and

q
[
Qt1 (K/β )

]
= 5.45 > q

[
Qt2 (K/β )

]
=5.30.

These are consistent with Theorems 3.2 and 3.3.
Finally, we can easily verify that Qt1 (K/β ), Q (K/β ), and Qt3 (K/β ) are all irreducible M-matrices.

These are complied with Theorems 4.1 and 4.2. The above-calculated data verify the correctness of
the conclusions presented in this paper.

6. Conclusions

In this paper, we have discussed various properties of the extended Perron complements of
irreducible M-matrices, including the connection between the extended Perron complements of M-
matrices and nonnegative matrices.

Furthermore, we presented a comparison among extended Perron complements, Schur comple-
ments, and principal submatrices of irreducible M-matrices and rigorously proved the monotonicity of
the extended Perron complements and minimum eigenvalue.

Notably, for the collection of irreducible M-matrices, we demonstrated that all the (extended) Perron
complements are irreducible M-matrices. Particularly, we deduced that M-matrices and their Perron
complements share the same minimum eigenvalue. Subsequently, a simple example was presented to
illustrate and explain our results.
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