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1. Introduction

Computer systems and computer networks are the primary engineering devices. Being utilized
in the operation, planning, control, and design of all sizes of buildings, businesses, machinery,
transportation, and life-supporting technologies. As a result, computer viruses have become one of the
most significant causes of uncertainty, lowering the reliability of critical processes. A computer worm
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is self-replicating software that can spread itself without the assistance of other programs. Worms
replicate themselves by exploiting security flaws or policy flaws in the target program or operating
system, such as the instinctive automatic receiving and transmitting characteristics common to many
gadgets. It will scan and infect the other computer using this device as a host. It has a high rate
of self-replication. As a result, the virus’ continual multiplication and infection of other software
packages can be dangerous to computer users [1,2]. In a short period of time, a worm may control and
infect a large number of devices. Furthermore, new types of viruses are produced on a regular basis.
Because of its numerous uses in earthquake measures in battlefield, military, and civic arenas, WSN
has attracted a lot of interest. Due to a cyber attack by a worm, the computer and WSNs’ dependability
and unification are at risk. Computer worms are a sort of computer virus, however, there are various
characteristics that distinguish them from conventional viruses. The fact that viruses actually spread
through human action such as running software, uploading data, installing programs, and opening a
file [3, 4]. Computer worms, on the other hand, can replicate themselves without human intervention.
Internet technology has evolved over the years, in step with technological advancement and demand,
to provide a wide range of capabilities and services. The development of Internet technology has
posed serious issues, such as the need for a competent cyber defense system to protect the valuable
information kept on the system as well as information in transit.

Mathematical expressions are powerful tools that are used in modeling various procedures in
the computer sciences to explain the dynamical behavior of complex processes. With the help of
mathematical models, researchers can predict the future of a phenomenon. For instance, with the
help of mathematical models of infectious or viral diseases, from their simulations, we get plenty of
information about the transmission dynamics, their eradication, or their further spreading in society.
In the field of computer science, a mathematical model is a tool that forms relationships between
variables, constants, functions, and parameters. In addition, the aforesaid tools are increasingly
used to solve problems in military operations or business, which makes up a large part of the
field of operations research. For the said discussion we refer to [5, 6]. Many natural systems in
physics, chemistry, astronomy, biology, manufacturing, and climatology, as well as human systems in
psychology, economics, health care, engineering, and social science, have benefited from mathematical
modeling. Mathematical models come in a variety of shapes and sizes differential equations, dynamical
systems, game theoretic, and statistical models are just a few examples.

Here, the point to be noted is that the model is an abstract structure that has many kinds, including
dynamical systems, game theoretical models, statistical and stochastic type models, bioethical
models operational research models, etc. All the mentioned models have important applications in
computational and information sciences. The idea of the term model was used a few centuries ago.
In this regard, Bernoulli [7] created a mathematical system in the case of infectious diseases, and the
influence of smallpox immunizations as well as life tables was examined. Following that, a large
number of models were systemized for different complex phenomena. It is stated that the first attempt
to develop models for the transmission of computer viruses based on their epidemiological equivalents
has been made [8]. Using the Markov chains to depict the local patterns of infection, action in a
particular node like susceptible-infected-recovered models was introduced to attempt the investigation
of long-term patterns of virus transmission (see detail [9]).

The theory of differentiation and integration of arbitrary orders, often known as fractional calculus,
is an extension of the classical approaches where orders of differentiating operators can take arbitrary
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values. Fractional calculus has recently been popular in a variety of fields due to its realistic modeling
of certain aspects, such as memory effects, which can be performed using fractional calculus, whereas
traditional models with integer orders are unable to leverage this attribute. The development of
definitions and fractional derivatives has increased in recent years. For a variety of causes, these acts
were carried out. On the one hand, mathematicians wish to extend existing definitions to include
a wider variety of kernel functions by generalizing many present definitions beyond basic power
functions. A novel type of nonlinear differential and integral equations may be created with these
efficient operators, and current chaotic models can be expanded, as seen in [10–14]. However, in
order to test the efficacy of such fractal-fractional operators in simulating chaotic attractors, the models
must be solved numerically because their precise solutions are difficult to get using present analytical
approaches. A few numerical approaches have been employed to discretize such models so far, with
some numerical findings for chaotic attractors. Atangana [15] based on combination of power law,
modified exponential decay law and Mittag-Leffler law, developed novel differential operators with
fractal derivatives. Akgul et al. [16] studied a computer virus model for the existence of solutions,
steady state, equilibrium point and stability solutions in the context of the Atangana-Baleanu operator.
Abdel-Gawad et al. [17] present a study about the model of antivirus in computer network and endemic
strategy, transformation to non-atounmus ODEs from fractional-order system and numerical solutions
for the model in the sense of Caputo and Caputo-Fabrizio operators. Singh et al. [18] analyzed a
fractional order computer virus epidemiological model for existence results and numerical analysis.
Ozdemir et al. [19] provided a qualitative study for the fractional order computer viruses spreading
for the existence and uniqueness of results and numerical analysis. Mishra and Keshri [20] present
stability, reproduction number, and equilibria for the wireless sensor networks model. Kumar and
Singh [21] studied the existence and uniqueness of a fractional epidemiological model for computer
viruses in the context of the Mittag Leffler kernel by the fixed point theory and obtained numerical
solutions. Since the irregular and complex geometry in the dynamics of the aforesaid model cannot
be explained with usual fractional derivatives, we utilize the concept of fractal theory to study the
irregular, and complex geometry pattern of the considered networking model. Therefore, we replaced
the integer order derivative with the fractal fractional derivative in the context of the Mittage-Leffler
kernel. Further, existence results, stability, and numerical analysis for the fractal fractional order WSN
model are studied.

The manuscript is structured as follows. In section 2, basic definitions of fractal fractional
derivatives are given. In Section 3, the Wireless Sensor Network e-Epidemic Model is addressed.
In section 4, the results are given. In section 5, a numerical scheme for the system is given. In section
6, graphical representations are given. In section 7, a brief conclusion is given.

2. Fundamentals concepts

This section is enriched with some definitions and results recollected from [15, 22–25].

Definition 2.1. [22] The fractal fractional derivative in the sense of Reimann-Liouville forY ∈ C(a, b)
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associated with power law is defined as

f f p
a Dϵ,σ

t Y(t) =
1

Γ[n − ϵ]
d

dtσ

∫ t

a
Y(v)(t − v)n−ϵ−1dv,

where, n − 1 < ϵ ≤ n, 0 < n − 1 < σ ≤ n,
dY(v)
dvσ

= lim
t−v

Y(t) − Y(v)
tσ − vσ

,

(2.1)

generalized form is

f f p
a Dϵ,σ

t Y(t) =
1

Γ[n − ϵ]
dθ

dtσ

∫ t

a
Y(v)(t − v)n−ϵ−1dv,

where

dθY(v)
dvσ

= lim
t−v

Yθ(t) − Yθ(v)
tσ − vσ

,

where , n − 1 < ϵ ≤ n, 0 < n − 1 < θ, σ ≤ n.

(2.2)

Definition 2.2. [22] IfY : (a, b)→ R, is a continuous function with orderσ, then the fractal fractional
derivative ϵ in the sense Reiamman-Liouville associated with the exponential kernel is defined as

f f e
a Dϵ,σ

t Y(t) =
W (ϵ)

[1 − ϵ]
d

dtσ

∫ t

a
Y(v) exp

[
−

ϵ

1 − ϵ
(t − v)

]
dv,

where, 0 < ϵ, σ ≤ n, (2.3)

generalized form is

f f e
a Dϵ,σ,θ

t Y(t) =
W (ϵ)

[1 − ϵ]
dθ

dtσ

∫ t

a
Y(v) exp

[
−

ϵ

1 − ϵ
(t − v)

]
dv, 0 < ϵ, σ, θ ≤ 1, (2.4)

such that W (ϵ) is normalization function, such that W (0) = 1 = W (1).

Definition 2.3. [22] The fractal fractional derivative ϵ in the sense of Reimann-Liouville associated
with Mittag-Leffler kernel for a continuous function Y : (a, b)→ R, with order σ is described as

f f m
a Dϵ,σ

t Y(t) =
W (ϵ)
[1 − ϵ]

∫ t

a

dY(v)
dtσ

Eϵ

[
−

ϵ

1 − ϵ
(t − v)ϵ

]
dv,

where, 0 < ϵ, σ ≤ 1, W (ϵ) = 1 − ϵ + ϵ/Γ(ϵ), (2.5)

generalized form is

f f m
a Dϵ,σ,θ

t Y(t) =
W (ϵ)

[1 − ϵ]

∫ t

a

dθY(t)
dvσ

Eϵ

[
−

ϵ

1 − ϵ
(t − v)ϵ

]
dv, 0 < θ ≤ 1. (2.6)

Definition 2.4. [22] Let 0 < ϵ ≤ 1, be fractal and fractional order and Y ∈ L[a, b], then integral with
power law kernel is given by

f f p
0 JϵtY(t) =

1
Γ(ϵ)

∫ t

0
(t − v)ϵ−1v1−σY(v)dv. (2.7)
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Definition 2.5. [22] Let 0 < ϵ, σ ≤ 1, be fractal and fractional order and Y ∈ L[a, b], then integral
with exponential kernel is given by

f f e
0 Jϵ,σt Y(t) =

σ(1 − ϵ)tσ−1Y(t)
W (ϵ)

+
ϵσ

W (ϵ)

∫ t

0
vϵ−1Y(v)dv. (2.8)

Definition 2.6. [22] Let 0 < ϵ, σ ≤ 1, be fractal and fractional order and Y ∈ L[a, b], then integral
with Mittag-Leffler kernel is given by

f f m
0 Jϵ,σt Y(t) =

σ(1 − ϵ)tσ−1Y(t)
W (ϵ)

+
ϵσ

W (ϵ)

∫ t

0
(t − v)ϵ−1vϵ−1Y(v)dv. (2.9)

3. Wireless sensor network e-epidemic model

Here, we will study the dynamics of integer order WSN model and for more explanation one can
see [16–21], which is formulated for susceptible infected recovered (SIR) system. The variables of the
model stands for S(t), rate of suspectable at time t, E(t), rat of exposed at time t, I(t), rat of infectious
at time t, R(t), rat of recovered at time t and R(t), rate of recovered at time t. The following Wireless
Sensor Network e-Epidemic Model

Ṡ(t) = A− βS(t)I(t) − µS(t) − pS(t) + δR + ηV(t),
Ė(t) = βS(t)I(t) − (µ + α)E(t),
İ(t) = αE(t) − (µ + λ + γ)I(t),
Ṙ(t) = γI(t) − (µ + δ)R(t),
V̇(t) = pS(t) − (µ + η)V(t),

(3.1)

subject to initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, V(0) = V0.

Where, µ is the crashing rate of the sensor nodes due to software/hardware problem, β is the infectivity
contact rate, A is the inclusion of new sensor nodes to the population,γ is the rate of recovery, α is
the rate of transmission from E-class to I-class, δ is the rate of transfer from R-class to S-class, p is
the vaccinating rate coefficient for the susceptible nodes. η is the rate of transmission from V-class to
S-class, λ is denotes the damaging rate due to attack of worms.

The prominent of this article to establish existence of solutions and numerical outcomes of fractal
fractional order WSN model. In the next section, we are going to provide existence of results for the
model (4.1) and next step to uniqueness of results is our target for the proposed model. For these,
to define a Banach space. Let K = I × R5 → R, be the Banach space such that I = [0, τ], for
0 < t < τ < ∞, under the norm ∥(S,E, I,R,V)∥ = maxt∈I {|S(t)| + |E(t)| + |I(t)| + |R(t)| + |V(t)|}.

4. Qualitative theory

We re-write the model (3.1) under the fractal fractional derivative as

f f mDϵ,σ0,t (S(t)) = A− βS(t)I(t) − µS(t) − pS(t) + δR + ηV(t),
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f f mDϵ,σ0,t (E(t)) = βS(t)I(t) − (µ + α)E(t), (4.1)
f f mDϵ,σ0,t (I(t)) = = αE(t) − (µ + λ + γ)I(t),

f f mDϵ,σ0,t (R(t)) = γI(t) − (µ + δ)R(t),
f f mDϵ,σ0,t (V(t)) = pS(t) − (µ + η)V(t),

subject to initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, V(0) = V0. (4.2)

In addition, we can write right sides of

Θ1(z,S,E, I,R,V) = A− βS(t)I(t) − µS(t) − pS(t) + δR + ηV(t),
Θ2(z,S,E, I,R,V) = βS(t)I(t) − (µ + α)E(t),
Θ3(z,S,E, I,R,V) = αE(t) − (µ + λ + γ)I(t),
Θ4(z,S,E, I,R,V) = γI(t) − (µ + δ)R(t),
Θ5(z,S,E, I,R,V) = pS(t) − (µ + η)V(t).

(4.3)

Rearranging the system (4.1) as

ABRD0,t(Φ(t)) = Ψ(t,Φ(t)), (4.4)

such that Φ and Ψ represent

Φ(t) =



S(t)
E(t)
I(t)
R(t)
V(t)

and Ψ{t,Φ(t)} =



Θ1(t,S,E, I,R,V)
Θ2(t,S,E, I,R,V)
Θ3(t,S,E, I,R,V)
Θ4(t,S,E, I,R,V)
Θ5(t,S,E, I,R,V).

(4.5)

In view of Definition 2.3, Eq (4.4) yields

W (ϵ)
1 − ϵ

d
dt

∫ t

0
Ψ(ω,Φ(ω))Eϵ

[
−

ϵ

1 − ϵ
(t − ω)ϵ

]
dω = σtσ−1Ψ(t,Φ(t)). (4.6)

In view of Definition 2.6, Eq (4.6) yields

Ψ(t) = Ψ(0) +
(1 − ϵ)σtσ−1

W (ϵ)
Ψ(t,Φ(t)) +

σϵ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1Ψ(ω,Φ(ω))ωσ−1dω. (4.7)

Consider here

Bq
a =Hn(tn) × C0(Φ0), (4.8)

such that Hn = [tn−a, tn+a], and Cb(Φ0) = [t0 − b, t0 + b]. Let supt∈Bq
a
∥Ψ∥ = P, and consider norm as

∥Ω∥∞ = sup
t∈Bq

a

|Ω(t)|. (4.9)
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Let G be space of continuous functions from Hn to Cb(tn), then define an operator ℧ : G → G, such
that

℧Φ(t) = Φ0 +
(1 − ϵ)σtσ−1

W (ϵ)
Ψ(t,Φ(t)) +

σϵ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1Ψ(ω,Φ(ω))ωσ−1dω. (4.10)

We consider

∥℧Φ(t) − Φ0∥ ≤
1 − ϵ
W (ϵ)

σtσ−1∥Ψ(t,Φ(t))∥ (4.11)

+
σϵ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1∥Ψ(ω,Φ(ω))∥ωσ−1dω,

≤
1 − ϵ
W (ϵ)

σtσ−1P +
σϵ

W (ϵ)Γ(ϵ)
P

∫ t

0
(t − ω)ϵ−1ωσ−1dω.

If we replace ω by = tv in Eq (4.11), one has

∥℧Φ(t) − Φ0∥ ≤
1 − ϵ
W (ϵ)

σtσ−1P +
σϵP

W (ϵ)Γ(ϵ)
ωσ+ϵ−uQ(σ, ϵ). (4.12)

Equation (4.12) yields

∥℧Φ(t) − Φ0∥ ≤ q → P <
qQ(σ, ϵ)W (ϵ)Γ(ϵ)

(1 − ϵ)Γ(α)σtσ−1 + ϵσtσ+ϵ−u .

For Φ1,Φ2, one has

∥℧Φ1 −℧Φ2∥ ≤
1 − ϵ
W (ϵ)

σtσ−1∥Ψ(t,Φ1(t)) − Ψ(t,Φ2(t))∥

+
σϵ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1∥Ψ(t,Φ1(t)) − Ψ(t,Φ2(t))∥ωσ−1dω,

as ℧ is a contraction, hence

∥℧Φ1 −℧Φ2∥ ≤
(1 − ϵ)σtσ−1

W (ϵ)
X∥Φ1 − Φ2∥∞

+
σϵX

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1∥Φ1 − Φ2∥∞ω

σ−1dω.

≤
1 − ϵ
W (ϵ)

σtσ−1X∥Φ1 − Φ2∥∞

+
σϵX

W (ϵ)Γ(ϵ)
∥Φ1 − Φ2∥∞tϵ+σ−3Q(σ, ϵ).

∥℧Φ1 −℧Φ2∥ ≤
[ 1 − ϵ
W (ϵ)

σtσ−1X +
σϵX

W (ϵ)Γ(ϵ)
tϵ+σ−3Q(z, ϵ)

]
∥Φ1 − Φ2∥∞. (4.13)

Thus, ℧ is a contraction if

∥℧Φ1 −℧Φ2∥∞ ≤ ∥Φ1 − Φ2∥, (4.14)
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holds which implies that

X <
1

1−ϵ
W (ϵ)σtσ−1 + σϵ

W (ϵ)Γ(ϵ) t
ϵ+σ−3Q(σ, ϵ)

, (4.15)

and

P <
1

1−ϵ
W (ϵ)σtσ−1 + σϵ

W (ϵ)Γ(ϵ) t
ϵ+σ−3Q(σ, ϵ)

. (4.16)

Thus the model (4.1) has a unique solution.

5. Stability analysis

This section is devoted to derive the UH stability for the proposed model (4.1), one can see [26–28].

Definition 5.1. The fractal fractional WSN model (4.1) is UH stable, if for every (S∗,E∗, I∗,R∗,V∗)
there exists ℏ j > 0, j ∈H 5

1 , one has a number ψ j > 0, j ∈H 5
1 , such that

| f f mDϵ,σt S∗(t) − Θ1(t,S∗)| ≤ ψ1,

| f f mDϵ,σt E∗(t) − Θ2(t,E∗)| ≤ ψ2,

| f f mDϵ,σt I∗(t) − Θ3(t, I∗)| ≤ ψ3,

| f f mDϵ,σt R∗(t) − Θ4(t,R∗)| ≤ ψ4,

| f f mDϵ,σt V∗(t) − Θ5(t,V∗)| ≤ ψ5,

(5.1)

such that (S,E, I,R,V), for the fractal fractional WSN model (4.1) which implies that

∥S − S∗∥ ≤ ℏ1ψ1,

∥E − E∗∥ ≤ ℏ2ψ2,

∥I − I∗∥ ≤ ℏ3ψ3,

∥R − R∗∥ ≤ ℏ4ψ4,

∥V − V∗∥ ≤ ℏ5ψ5,

(5.2)

where Θ j ∈H 5
1 is mentioned in Eq (4.3).

Remark 5.2. For an mapping Π not depend on the solution, one has

(1) |Π1(t)| < ψ1, (5.3)
(2) f f mDϵ,σt S∗(t) = Θ1(t,S∗)| ≤ ψ1 + Π1(t).

Theorem 5.3. The model (4.1) is UH stable if the condition

λi[
ϵσΓ(σ) + σ(1 − ϵ)Γ(ϵ + σ)

W (ϵ)Γ(ϵ + σ)
] ≤ 1, i ∈H 5

1 , i = 1, 2, 3, 4, 5, (5.4)

holds.
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Proof. For any S∗ and ψ > 0, one has

| f f mDϵ,σt S∗(t) − Θ1(t,S∗)| ≤ ψ1. (5.5)

By the above Remark 5.2, then Eq (5) takes the form

f f mDϵ,σt S∗(t) = Θ1(t,S∗) ≤ ψ1 + Π1(t). (5.6)

From Eq (5.6), the solution is obtained as

S∗(t) = S0 +
ϵσ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1ωσ−1Θ1(ω,S∗(ω))dω +

(1 − ϵ)σ
W (ϵ)

tσ−1Θ1(ω,S∗(t)) (5.7)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1ωσ−1Π1(ω)dω +

(1 − ϵ)σ
W (ϵ)

tσ−1Π1(t).

Let S be the unique solution, then one has

|S∗(t) − S(t)| ≤
ϵσ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1ωσ−1|Θ1(ω,S∗(ω)) − Θ1(ω,S(ω))|dω

+
(1 − ϵ)σ
W (ϵ)

tσ−1|Θ1(ω,S∗(t)) − Theta1(ω,S(t))| (5.8)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1ωσ−1|Π1(ω)|dω

+
(1 − ϵ)σ
W (ϵ)

tσ−1|Π1(t)|,

≤ λi[
ϵσΓ(σ) + σ(1 − ϵ)Γ(ϵ + σ)

W (ϵ)Γ(ϵ + σ)
]|S∗(t) − S(t)|

+ [
ϵσΓ(σ) + σ(1 − ϵ)Γ(ϵ + σ)

W (ϵ)Γ(ϵ + σ)
]ψ1. (5.9)

In addition

∥S∗(t) − S(t)∥ ≤
[ ϵσΓ(σ)+σ(1−ϵ)Γ(ϵ+σ)

W (ϵ)Γ(ϵ+σ) ]ψ1

1 − [ ϵσΓ(σ)+σ(1−ϵ)Γ(ϵ+σ)
W (ϵ)Γ(ϵ+σ) ]λ1

. (5.10)

Let consider

ℏ1 ≤
[ ϵσΓ(σ)+σ(1−ϵ)Γ(ϵ+σ)

W (ϵ)Γ(ϵ+σ) ]

1 − [ ϵσΓ(σ)+σ(1−ϵ)Γ(ϵ+σ)
W (ϵ)Γ(ϵ+σ) ]λ1

, (5.11)

which gives ∥S∗ − S∥ ≤ λ1ψ1. In the same way

∥E∗ − E∥ ≤ λ2ψ2, ∥I∗ − I∥ ≤ λ3ψ3

∥R∗ − R∥ ≤ λ4ψ4, ∥V∗ − V∥ ≤ λ5ψ5.

Therefore, the Eq (4.1) satisfies all the conditions of UH stability. □
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6. Scheme for numerical results

We consider the fractal fractional WSN model (4.1) in the context of fractal fractional Mittag-Leffler
kernel with using U = (S,E, I,R,V) as

f f mDϵ,σ0,t (S(t)) = Θ1(t,U ),
f f mDϵ,σ0,t (E(t)) = Θ2(t,U ), (6.1)
f f mDϵ,σ0,t (I(t)) = Θ3(t,U ),

f f mDϵ,σ0,t (R(t)) = Θ4(t,U ),
f f mDϵ,σ0,t (V(t)) = Θ5(t,U ).

The solution of Eq (6.1) can be obtained as

S(t) = S(0) +
σtσ−1(1 − ϵ)Θ1(t,U )

W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1Θ1(t,U )ωσ−1dω, (6.2)

E(t) = E(0) +
σtσ−1(1 − ϵ)Θ2(ω,U )

W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1Θ2(ω,U )ωσ−1dω,

I(t) = I(0) +
σtσ−1(1 − ϵ)Θ3(t,U )

W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1Θ3(ω,U )ωσ−1dω,

R(t) = R(0) +
σtσ−1(1 − ϵ)Θ4(t,U )

W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1Θ4(ω,U )ωσ−1dω,

V(t) = V(0) +
σtσ−1(1 − ϵ)Θ5(t,U )

W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ t

0
(t − ω)ϵ−1Θ5(ω,U )ωσ−1dω.

Let set t = tn+1 in Eq (6.2) yields

Sn+1(t) = S0 +
σtσ−1

n (1 − ϵ)Θ1(tn,U n)
W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ tn+1

0
(tn+1 − ω)ϵ−1Θ1(t,U )ωσ−1dω, (6.3)

En+1(t) = E0 +
σtσ−1

n (1 − ϵ)Θ2(tn,U n)
W (ϵ)
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+
ϵσ

W (ϵ)Γ(ϵ)

∫ tn+1

0
(tn+1 − ω)ϵ−1Θ2(ω,U )ωσ−1dω,

In+1(t) = I0 +
σtσ−1

n (1 − ϵ)Θ3(tn,U n)
W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ tn+1

0
(tn+1 − ω)ϵ−1Θ3(ω,U )ωσ−1dω,

Rn+1(t) = R0 +
σtσ−1

n (1 − ϵ)Θ4(tn,U n)
W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ tn+1

0
(tn+1 − ω)ϵ−1Θ4(ω,U )ωσ−1dω,

Vn+1(t) = V0 +
σtσ−1(1 − ϵ)Θ5(tn,U n)

W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

∫ tn+1

0
(tn+1 − ω)ϵ−1Θ5(ω,U )ωσ−1dω.

Approximate the integral in Eq (6.3), one has

Sn+1(t) = S0 +
σtσ−1

n (1 − ϵ)Θ1(tn,U n)
W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

ℓ∑
r=0

∫ tr+1

tr
(tn+1 − ω)ϵ−1Θ1(t,U )ωσ−1dω, (6.4)

En+1(t) = E0 +
σtσ−1

n (1 − ϵ)Θ2(tn,U n)
W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

ℓ∑
r=0

∫ tr+1

tr
(tn+1 − ω)ϵ−1Θ2(t,U )ωσ−1dω, (6.5)

In+1(t) = I0 +
σtσ−1

n (1 − ϵ)Θ3(tn,U n)
W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

ℓ∑
r=0

∫ tr+1

tr
(tn+1 − ω)ϵ−1Θ3(t,U )ωσ−1dω, (6.6)

Rn+1(t) = R0 +
σtσ−1

n (1 − ϵ)Θ4(tn,U n)
W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

ℓ∑
r=0

∫ tr+1

tr
(tn+1 − ω)ϵ−1Θ4(t,U )ωσ−1dω, (6.7)

Vn+1(t) = V0 +
σtσ−1

n (1 − ϵ)Θ5(tn,U n)
W (ϵ)

+
ϵσ

W (ϵ)Γ(ϵ)

ℓ∑
r=0

∫ tr+1

tr
(tn+1 − ω)ϵ−1Θ5(t,U )ωσ−1dω.
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In view of Lagrangian interpolation for discretization, and using

Λℓ,r,ϵ,p = ((ℓ+1− r)ϵ(ℓ− r+2+ϵ)− (ℓ− r)ϵ(p− r+2+2ϵ)), Υℓ,r,ϵ,p = ((ℓ− r+1)ϵ+1− (p− r)ϵ(p− r+1+ϵ)),

one has

Sn+1(t) = S0 +
σtσ−1

n (1 − ϵ)Θ1(tn,U n)
W (ϵ)

+
σ(h)ϵ

W (ϵ)Γ(ϵ + 2)

ℓ∑
r=0

[
tσ−1
r Θ1(tr,U

r)Λℓ,r,ϵ,p − tσ−1
r−1 Θ1(tr,U

r−1)Υℓ,r,ϵ,p
]
,

En+1(t) = E0 +
σtσ−1

n (1 − ϵ)Θ2(tn,U n)
W (ϵ)

+
σ(h)ϵ

W (ϵ)Γ(ϵ + 2)

ℓ∑
r=0

[
tσ−1
r Θ2(tr,U

r)Λℓ,r,ϵ,p − tσ−1
r−1 Θ2(tr,U

r−1)Υℓ,r,ϵ,p
]
,

In+1(t) = I0 +
σtσ−1

n (1 − ϵ)Θ3(tn,U n)
W (ϵ)

+
σ(h)ϵ

W (ϵ)Γ(ϵ + 2)

ℓ∑
r=0

[
tσ−1
r Θ3(tr,U

r)Λℓ,r,ϵ,p − tσ−1
r−1 Θ3(tr,U

r−1)Υℓ,r,ϵ,p
]
,

Rn+1(t) = R0 +
σtσ−1

n (1 − ϵ)Θ4(tn,U n)
W (ϵ)

+
σ(h)ϵ

W (ϵ)Γ(ϵ + 2)

ℓ∑
r=0

[
tσ−1
r Θ4(tr,U

r)Λℓ,r,ϵ,p − tσ−1
r−1 Θ4(tr,U

r−1)Υℓ,r,ϵ,p
]
,

Vn+1(t) = V0 +
σtσ−1

n (1 − ϵ)Θ5(tn,U n)
W (ϵ)

+
σ(h)ϵ

W (ϵ)Γ(ϵ + 2)

ℓ∑
r=0

[
tσ−1
r Θ5(tr,U

r)Λℓ,r,ϵ,p − tσ−1
r−1 Θ5(tr,U

r−1)Υℓ,r,ϵ,p
]
.

7. Neural network analysis of WSN model

The approximate solutions of the fractal fractional order WSN model have been obtained by
constructing a numerical technique. Various scenarios for the fractal fractional order WSN model have
been addressed. We utilized the above iterative technique for the numerical outcomes to graphically
represent the fractal fractional WSN model. For dynamical observation of the model, we select
appropriate constant values for the model’s parameters.

Figure 1 Shows a dynamical representation of the constant value of σ, and ϵ for the WSN model.
Let A = 0.33, β = 0.1, µ = 0.003, p = 0.3, η = 0.06, α = 0.25, λ = 0.07, γ = 0.4 and let
(S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0) be initial values.

Figure 2 Shows a dynamical representation of susceptible nodes for various σ and ϵ. Assume
A = 0.33, β = 0.1, µ = 0.003, p = 0.3, η = 0.06, α = 0.25, λ = 0.07, γ = 0.4 and let
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(S0,E0, I0,R0,)
V0) = (100, 3, 1, 0, 0) be initial values.
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Figure 1. Numerical simulation of the system (3.1) for the classical derivative ϵ = σ = 1.
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Figure 2. Numerical simulation of susceptible class S of (4.1) involving fractal-fractional
order derivative with different values of ϵ = σ = 1, 0.98, 0.96, 0.94.

Figure 3 Shows a dynamical representation exposed node at various values of σ and ϵ in the
model under consideration. Assuming A = 0.33, β = 0.1, µ = 0.003, p = 0.3, η = 0.06, α =
0.25, λ = 0.07, γ = 0.4 and (S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0) be initial values.

Figure 4 Shows dynamically infected exposed nodes at various values of σ and ϵ. Assuming A =
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0.33, β = 0.1, µ = 0.003, p = 0.3, η = 0.06, α = 0.25, λ = 0.07, γ = 0.4 and consider
(S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0) be initial values.
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Figure 3. Numerical simulation of exposed node S of system (4.1) involving fractal-
fractional order derivative with different values of ϵ = σ = 1, 0.98, 0.96, 0.94.
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Figure 4. Numerical simulation of infected node S of system (4.1) involving fractal-
fractional order derivative with different values of ϵ = σ = 1, 0.98, 0.96, 0.94.

Figure 5 Shows a dynamical representation recovered node at various values of σ and ϵ. Assuming
A = 0.33, β = 0.1, µ = 0.003, p = 0.3, η = 0.06, α = 0.25, λ = 0.07, γ = 0.4 and considering
(S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0) be initial values.
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Figure 6 Shows a dynamical representation of vaccinated nodes at various values of σ and ϵ.
Assuming A = 0.33, β = 0.1, µ = 0.003, p = 0.3, η = 0.06, α = 0.25, λ = 0.07, γ = 0.4 and
(S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0).
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Figure 5. Numerical simulation of recovered node S of system (4.1) involving fractal-
fractional order derivative with different values of ϵ = σ = 1, 0.98, 0.96, 0.94.

0 5 10 15 20 25 30 35 40 45 50

Time t (Days)

0

5

10

15

20

25

V
ac
ci
n
at
ed

n
o
d
e
V
(t
)

1 0.98 0.96 0.94

Figure 6. Numerical simulation of vaccinated node S of system (4.1) involving fractal-
fractional order derivative with different values of ϵ = σ = 1, 0.98, 0.96, 0.94.
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8. Conclusions and discussion

In this article, we suggest a new WSN model with fractal-fractional order and investigate chaos
analysis and numerical model solutions. For the WSN, new models may be derived. By taking into
account some of the transmission rates (or particulars) as random or uncertain, it is also feasible to build
connections within this WSN model and stochastic models. We come to the conclusion that the model
set out in this research yields effective results and might be used for a variety of computer mathematical
applications. One of the most essential characteristics of these derivatives is the idea of memory. The
development of the events depicted by such systems may be anticipated more precisely with this useful
characteristic. The proposed new strategies have been put to the test by applying them to fractional
order WSN model (6.1). For the dynamical observation of the considered model, we choose suitable
constant values for the model’s parameters. “ Figure 1 shows a dynamical representation of the constant
value of σ and ϵ for the WSN model, considering the values of the parameters in the WSN model,
including A = 0.33, p = 0.3, η = 0.06, β = 0.1, µ = 0.003, α = 0.25, λ = 0.07, γ = 0.4
and considering the initial data as (S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0). Figure 2 shows a dynamical
representation of susceptible nodes for different values of σ and ϵ in the fractional order WSN model,
showing the parameter values in the fractional WSN model, including A = 0.33, p = 0.3, η =
0.06, β = 0.1, µ = 0.003, α = 0.25, λ = 0.07, γ = 0.4 and considering the initial data as
(S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0). Figure 3 shows the dynamical representation of exposed nodes
different values of σ and ϵ for the fractional order WSN model, showing the parameter values in
the fractional WSN model, including A = 0.33, p = 0.3, η = 0.06, β = 0.1, µ = 0.003, α =

0.25, λ = 0.07, γ = 0.4 and considering the initial data as (S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0).
Figure 4 shows dynamically infected exposed nodes with different values of σ and ϵ for the proposed
fractional order WSN model, showing the parameter values in the fractional WSN model, including
A = 0.33, p = 0.3, η = 0.06, β = 0.1, µ = 0.003, α = 0.25, λ = 0.07, γ = 0.4 and considering
the initial data as (S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0). Figure 5 shows a dynamical representation of
recovered nodes with different values of σ and ϵ for the considered fractional order WSN model,
showing the parameter values in the fractional WSN model, including A = 0.33, p = 0.3, η =
0.06, β = 0.1, µ = 0.003, α = 0.25, λ = 0.07, γ = 0.4 and considering the initial data as
(S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0). Figure 6 shows a dynamical representation vaccinated node with
different values ofσ and ϵ for the suggested fractional order WSN model, showing the parameter values
in the fractional WSN model, including A = 0.33, p = 0.3, η = 0.06, β = 0.1, µ = 0.003, α =

0.25, λ = 0.07, γ = 0.4 and considering the initial data as (S0,E0, I0,R0,V0) = (100, 3, 1, 0, 0)”. The
approaches were applied to these challenges and showed some extremely intriguing system behaviors
with reasonable explanations. The numerical approaches described in this paper have the potential to
be applied to other models. These are essential research possibilities left for future investigation since
each new numerical approach should be evaluated in terms of stability, convergence, and consistency.
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