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Abstract: In this paper, we propose an optimal fractional-order accumulative Grey Markov model 

with variable parameters (FOGMKM (1,1)) to predict the annual total energy consumption in China 

and improve the accuracy of energy consumption forecasting. The new model is built upon the 

traditional Grey model and utilized matrix perturbation theory to study the natural and response 

characteristics of a system when the structural parameters change slightly. The particle swarm 

optimization algorithm (PSO) is used to determine the number of optimal fractional order and 

nonlinear parameters. An experiment is conducted to validate the high prediction accuracy of the 

FOGMKM (1,1) model, with mean absolute percentage error (MAPE) and root mean square error 

(RMSE) values of 0.51% and 1886.6, respectively, and corresponding fitting values of 0.92% and 

6108.8. These results demonstrate the superior fitting performance of the FOGMKM (1,1) model 

when compared to other six competitive models, including GM (1,1), ARIMA, Linear, FAONGBM 

(1,1), FGM (1,1) and FOGM (1,1). Our study provides a scientific basis and technical references for 

further research in the finance as well as energy fields and can serve well for energy market 

benchmark research. 
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1. Introduction 

Energy is of paramount importance for human survival, societal progress, and national 

economic development. However, the excessive energy consumption poses a challenge to 

sustainable development for the society. Consequently, the exploration of factors that can ensure a 

stable energy supply and constrain accelerated energy consumption has become a priority concern 

for countries and regions in worldwide. Over the past few decades, the rapid growth of China's 

economy has drawn a global attention to its energy consumption patterns. 

Due to the complexity of energy consumption systems, they are influenced by a great number of 

factors and constraints. In response to the international situation and domestic development needs, 

researching total energy consumption has attracted increasing attention and extensive interest among 

scholars. This research has a long history in the field of statistics, which can be mostly divided into 

two aspects: studying the impact of single or multiple factors on total energy consumption through 

factor decomposition methods and researching the future trend of total energy consumption. A large 

number of scholars have discussed the factors that influence total energy consumption. For example, 

Guo [1] analyzed the characteristics of spatial differentiation of energy consumption intensity in 30 

Chinese provinces in 2019. Through empirical research, Guo identified the different factors that 

influence energy consumption intensity in different regions. They found that technological progress 

and industrial structure are key factors that influence energy consumption intensity, and different 

factors have varying impacts on a province's energy consumption intensity. In reference [2], the 

researchers used the STIRPAT model to decompose the factors that influence the energy 

consumption of each prefecture from five aspects: scale effect, economic benefit, technical effect, 

structural effect, and urbanization effect. As a result, they concluded that the influence of population 

on energy consumption was the greatest. In the study conducted by Zhang et al. [3], the researchers 

considered the driving factors of energy intensity in Beijing based on the structural decomposition 

technology of input-output analysis. They decomposed these factors into five components, including 

energy input coefficient, complete demand coefficient, final demand structure coefficient, final 

demand and final energy consumption coefficient. Sainu et al. [4] empirically studied the temporal, 

dynamic and causal relationships between urbanization, energy consumption and emissions using 

census data from 1901 to 2011 in India, with the aim of understanding the urbanization process, 

including the level and rhythm of urbanization and urban growth patterns. They also reviewed the 

increase in energy consumption and emissions under the context of rapid urbanization. Yang et al. [5] 

conducted a study using the logarithmic mean Divisia index (LMDI) method to examine the impact 

of urbanization on the growth of renewable energy consumption. They found that the growth of 

renewable energy consumption can be attributed to factors such as urbanization effects, energy 

structure effects, energy intensity effects, economic effects and population effects. The growth of 

renewable energy consumption was divided into three stages: slow growth, fluctuating growth and 

accelerated growth. He et al. [6] investigated the sustainable development of energy in rural Chinese 

households, particularly the distributed use of renewable energy. They emphasized the importance of 

synergistic effects among different energy sources, technologies and stakeholders, as well as flexible 

engineering schemes and policy designs that consider temporal changes and regional differences. 

Chong et al. [7] utilized the LMDI decomposition method to explore the factors influencing energy 

consumption growth in Guangdong Province. They integrated the input-output method and 

established the connection between final energy utilization and major energy consumption by 

deriving the main energy conversion coefficients. Zhou and Feng [8] focused on the intricate 

relationship between environmental regulation and fossil fuel consumption. They analyzed the direct 
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and indirect pathways through which environmental regulation affects fossil fuel consumption. 

Additionally, they incorporated three types of technologies (production technology, pollution 

prevention technology and standby technology) in their model to identify the indirect effects of 

environmental regulation on fossil fuel consumption.  

 On the other hand, many scholars have conducted extensive research on energy consumption 

trends. For instance, Wang and Zhang [9] adopted the trend method to predict China’s total energy 

consumption and compared it with the linear regression method. The empirical results showed that the 

trend prediction method has a smaller prediction error than the linear regression method. Paul et al. [10] 

used a nonlinear autoregressive neural network (NARNET) to predict the energy consumption of four 

campuses of a South African university. They filtered the data based on three-year daily energy 

consumption data and applied the Singular Spectrum Analysis (SSA) technique. Moreover, 

Emmanuel and Chandana [11] employed various parametric and non-parametric prediction 

techniques to analyze and evaluate energy consumption forecasts of electricity, petroleum, coal and 

renewable energy sources in Sri Lanka. Wang et al. [12] proposed a clustering model based on set 

pair analysis (SPA), and used Fisher’s optimal partition method to perform cluster analysis on the 

annual dynamic relative index (DRI) of historical energy consumption. Christopher [13] studied the 

interaction between climate variability and residential electricity consumption in a state in the 

southeast United States. He conducted a survey of residential electricity consumers to gain a better 

understanding of how to promote positive attitudes and behavior related to energy efficiency (EE) in 

households. After taking into account changes in various sectors and identifying possible deviation 

limits, their aim was to generate long-term forecasts of global energy consumption and projections of 

total energy consumption at the global level [14]. Wu et al. [15] proposed a new Grey system model 

with fractional order accumulation, which can better reflect the priority of new information as the 

accumulation order number becomes smaller in the in-sample model. Since then, considerable 

theoretical and application research has been developed in this area. Fan et al. [16] first proposed a 

hybrid prediction model, the GM-S-SIGM-GA model, to forecast China’s natural gas demand from 

2011 to 2017, which constructed a grey model (GM (1,1)) and an adaptive intelligent grey model 

(SIGM). Ma and Liu [17] discussed a novel time-delayed polynomial grey prediction model 

(TDPGM (1, 1)) based on the grey system theory. They compared its performance in forecasting the 

natural gas consumption of China with commonly used prediction models. Based on statistical data 

of natural gas consumption in China from 1995 to 2011, Zhang and Zhou [18] used the Boltzmann 

model and a third-order polynomial curve model to fit the historical data. Their aim was to explore 

past variation tendencies and identify a suitable model for forecasting. The fitting results 

demonstrated that a combination model based on the Boltzmann model and a third-order polynomial 

curve model showed excellent fit. To maximize the utilization of existing grey system models, 

ensemble learning was employed to develop a new strategy for constructing forecasting models for 

electricity supply in China [19]. Two numerical validation cases were conducted to validate the 

proposed method in comparison with other well-known models. Additionally, a novel time-delayed 

fractional grey model has been developed to forecast natural gas consumption, considering the 

time-delayed effects [20]. Theoretical analysis showed that it had a more general formulation, was 

unbiased and had greater flexibility than existing models. Wu et al. [21] investigated natural gas 

consumption in the United States, Germany, the United Kingdom, China and Japan using a new Grey 

Bernoulli model. They also derived analytical formulations for the time response function, restored 

values and linear parameter estimation. Chen et al. [22] established a novel Fractional Hausdorff 
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Discrete Grey Model (FHDGM (1,1)) to forecast renewable energy consumption for the years 2021 

to 2023 in three regions: the Asia Pacific, Europe, and the world. By improving the grey action 

quantity of the traditional grey model with an exponential time term, She et al. [23] proposed a novel 

power-driven grey model to forecast the total residential and thermal energy consumption in China 

as reference data for decision makers. Zhang et al. [24] constructed the Fractional Order Cumulative 

Multivariate Grey Model with Equal-Dimensional Recursive Optimization (EFMGM (1,2)) to predict the 

trend of carbon emissions from fossil energy consumption and constant-price GDP in China and 

calculated the carbon emissions from fossil energy consumption. Li et al. [25] provided two time series 

models, namely, the improved grey model (IGM (0,n)) and the Optimized fractional Grey model 

(OFGM (1,1)), to forecast waste water discharge and energy consumption in China. He et al. [26] 

established a novel structure adaptive new information priority discrete grey prediction model to 

forecast long term renewable energy generation, and the disturbance analysis shows that it is suitable 

for small sample modeling. The grey model was systematically studied based on the new definitions 

of the conformable fractional accumulation and difference to analysis the carbon dioxide emissions 

of BRICS [27]. Wang et al. [28] proposed a novel structural adaptive grey model FCSAGM (p,1) 

with Caputo fractional derivative and a new Caputo fractional order accumulation generation 

operator to predict China’s total energy consumption, China’s total primary energy production, 

China’s thermal power generation and China’s hydropower generation. A time-delayed power effect 

with high flexibility was considered to develop a new grey system model, which can be more 

efficient in dealing with small and complex time series and shares a more general formulation [29]. 

Wang et al. [30] proposed a novel fractional structural adaptive grey Chebyshev polynomial 

Bernoulli model to forecast China’s renewable energy. They used Monte Carlo simulation and 

probability density analysis to illustrate the robustness and accuracy of the proposed model. Based 

on the above research results, many scholars have made a great deal of efforts to the grey prediction 

model, and it is easy to generate random error among these models in fact. To capture the nonlinear 

trend in annual energy consumption data of China and obtain an appreciate prediction accuracy, we 

propose a FOGMKM (1,1) model. 

Although the Grey prediction model excels in handling short-term data in time series, it 

struggles to accurately make long-term predictions, especially when capturing nonlinear 

relationships within large datasets. To overcome these limitations and enhance prediction accuracy, 

we propose using the FOGM (1,1) model to capture nonlinear trends and improve the accuracy of 

predicting annual energy consumption data in China. The major contributions of this study can be 

summarized as follows: 

1) The FOGMKM (1,1) model is established based on the Particle Swarm Optimization (PSO) 

algorithm. The optimal order and nonlinear parameters of the FOGMKM (1,1) model are determined 

by minimizing the mean relative errors. 

2) Concrete expressions for the estimated and predicted values of the FOGMKM (1,1) model 

are constructed based on the Markov transition probability matrix and state division. 

3) The proposed model’s validity is verified through numerical examples and applied to forecast 

China’s annual energy consumption. Six comparative models are analysed with the proposed model. 

The validity and robustness of each model are expressed by the statistics 2R  and F . 

The paper is organized as follows: Section 2 constructs the FOGMKM (1,1) model using the 

FOGM (1,1) model and the PSO algorithm. It also illustrates the steps to modify the forecast using 

the Markov model. Section 3 displays the application of the model, presenting the results of 
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estimation and prediction using the FOGM (1,1) model and Markov model for modifying energy 

consumption. Finally, Section 4 concludes the paper and discusses its implications. 

2. The FOGMKM (1,1) model 

2.1. The evolution of Grey model and Markov Chain 

The fractional grey model has received significant attention in the field of grey systems in recent 

years. The classical grey model is based on 1-AGO. Wu et al. [15] proposed a fractional grey model 

based on FAGO, followed by Ma et al. [31], who established the discrete FAGO model. Wu et al. [32] 

constructed the FAGO grey Bernoulli models. Mao et al. [33–34] introduced fractional derivatives 

based on FAGO. Kang et al. [35] proposed a variable-order fractional grey model. Xie et al. [36] 

developed a generalized fractional grey model by introducing a generalized fractional derivative that 

conforms to the memory effect. While the fractional grey model can appropriately reflect the new 

information priority principle and memory characteristics of the system, Markov correction can improve 

its accuracy. 

Andrey Markov, a world-renowned Russian mathematician, studied and proposed a general 

model to solve changes in natural laws using mathematical methods and models in 1906. This model 

later became known as the Markov chain. It is a random process without after-effects, meaning that 

the current state is known, and the subsequent state is only related to the current state and not to the 

previous state. Markov theory is an essential part of stochastic processes and has a wide range of 

applications in many fields, such as operations research, biology and physics. Markov processes are 

found in various aspects of real life, such as the Brownian motion of the liquid in a cup. Markov 

chains, which have countable states and homogeneous time, are well-known examples of Markov 

processes [37]. In the energy field, the combination of grey prediction models and Markov processes 

has been applied. D'Amico et al. [38] used a second-order semi-Markov chain model to solve the 

problem of wind energy production, considering both state and duration. Ren and Gu [39] 

constructed a Markov chain model to predict the transition of the primary energy structure. They 

applied the GM (1,1) model and linear regression model to forecast the total energy consumption in 

2020 and 2030 based on wind speed. Liu [37] employed the Grey Markov model in an empirical 

analysis to study the relationship between renewable energy consumption and economic growth. 

2.2. The FOGM (1,1) model 

We construct FOGM (1, 1) model through the followings. 

Let ))(,),2(),1(( )0()0()0()0( nxxxX =  be the non-negative sequence, we use to set up the 

fractional accumulation operator ))(,),2(),1(( )()()()( nxxxX rrrr = . 

Similar to the definition of the non-negative sequence, we define the cumulative decreasing sequence 

with order r  is ))(,),2(),1(( )()()()( nxxxX rrrr −−−− =  , where 
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be the whitening equation of the FOGM (1,1) model. We define 
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as the basic form of the FOGM (1,1) model, 
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Then, we apply the least squares estimation, the parameters of the FOGM(1,1) model 

))1(()()1-()( )()()( uurrr kkbkazkxkx −−=+−  can be estimated as YBBB TT 1)( −= . 

Assume YB, are defined as in (4), taking )1()1(ˆ )0()( xx r = , then the solution of the time response 
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And the time response sequence of the equation 

))1(()()1-()( )()()( uurrr kkbkazkxkx −−=+− , 

which contained in FOGM (1,1) model is 
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Proof. According to the derivative formula: 
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Take the definite integral on both sides of the above equation on the interval [1, t], we get 
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We obtain the time response function as following 
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Make the cumulative decrease of order r  to the time response sequence, we obtain the final prediction 

value as follow: 
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This completes the proof. 

2.3. PSO algorithm 

In 1995, Kennedy and Eberhart [40] first proposed the Particle Swarm Optimization (PSO) 

algorithm, which is a swarm intelligence optimization algorithm in the field of computational 

intelligence, along with ant colony algorithm and fish swarm algorithm. The algorithm is easy to 

understand, requires less parameter adjustment, is easily programmable and has strong stability, 

among other benefits. PSO is a stochastic global optimization technique that finds optimal regions in 

complex search spaces through interactions between particles. The PSO algorithm is suitable for 

high-dimensional optimization problems with multiple local optimal solutions and low requirements 

for result accuracy. It has a wide range of applications in neural network training and function 

optimization. 

In this section, we mainly apply the PSO algorithm to minimize the mean relative error. We then 

search for the optimal Weibull parameter and the optimal non-linear parameter of the FOGM (1,1) 

model as follows: 
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2.4. The Markov model 

A Markov chain is a random process with no aftereffects, where the future state depends only 

on the current state, which is known as the Markov property. Most sample sequences exhibit the 

Markov property, which can be utilized to forecast the future states by considering different initial 

states and the state transition probabilities of the targets, thereby enhancing the accuracy of 

prediction models [41]. In one study, a BP neural network and Markov model were constructed to 

predict the degree of opioid-related flooding in the United States [42]. Researchers have also 

explored quantum Markov chains (QMCs) on graphs and trees, which are associated with many 

significant models that arise from quantum statistical mechanics and quantum information [43]. 

2.4.1. Partition of state space 

According to the Markov chain, the data sequence is divided into multiple different states 

nttt ,,, 21  , which are represented by nEEE ,,, 21  , and the state transition only occurs at 

equal-countable moments. State interval is 
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],[ 21 iii QQE = ，( ji ,2,1= ),                         (20) 

where, 21, ii QQ  respectively represent the lower and the upper limits of relative errors in the state 

interval, and j  represents the number of states divided. 

2.4.2. State transition probability matrix 

The transfer probability of Markov chain from state iE  to state jE  through k  steps is 

denoted by )(kpij , 

i
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)( = ,                               (21) 

where, iM represents the total number of occurrences of state iE , )(km ij  represents the number of 

state iE transferring to state jE byk steps, and m  represents the number of states divided. The 

matrix composed of transition probability is called transition probability matrix, which can reflect the 

potential rule of one-step or multi-step state transition and predict the unknown state according to the 

known state. The transition probability matrix is non-negative and the sum of the elements in each 

row is 1. Its matrix form is as follow: 
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2.5. Modify the forecast 

According to the sequence from near to far, we select j  groups of data nearest to the predicted 

data, and determine the step number t as j,,2,1  . Then, the row vectors of the t steps state 

transition matrix corresponding to each data are taken to form a new matrix. We determine the most 

likely state of the predicted value by summing the column vectors in the new matrix. The predicted 

value of the curve fitting model is then adjusted through the predicted state interval obtained, and the 

midpoint of the interval is selected for calculation. The formula is as follows: 
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3. Application of the model 

3.1. Estimation and prediction of the model FOGM (1,1) 

Importing the statistical yearbook data of China into R software, and combing the PSO 

algorithm with (2.2), we get the optimal fractional order 8.0=r  and the Weibull parameters 

26.1=u  of the accumulating generation operator respectively. 

Applying the accumulation with order 8.0=r  on Eq (18), we obtain the estimate value as 

16，,3,2,1 =k and the prediction value as 20，19,18,17=k . Using five models as the comparison 

model, the estimated equations of GM, ARIMA, FGM, linear and FAONGBM are respective as 

follows: 

，3640701)3640701)1(()1(̂ )0(k05609.0 −+=+ xekx                 (24) 

kkkk xxx +−+= −− 21 ˆ9359.0ˆ9071.105.306476ˆ ,                   (25) 

(0.34) 0.02kˆ ( ) 3731054 3886601x k e−= − + ,                        (26) 

ˆ( ) 151161.65 120004.394x k k= + ,                        (27) 

100)16(0146.001.0 )1403.1)1403.1)16((()(̂ +−= −− kexkx .               (28) 

At the same time, we get the estimated equation of FOGM, 

1.260.00002486(1 )ˆ( ) (( (1) 398980004) 398980004kx k x e −= − + .               (29) 

The prediction results are listed in Tables 1 and 3. 

As shown in Table 1, the results of the FOGM (1,1) model are closer to the actual values, with a 

smaller relative error than other models. When predicting the test data and estimating the training 

data, the FOGM (1,1) model also yields the smallest RMSE and MAPE values. 

Table 1. Comparison of GM (1,1), ARIMA, Linear and FOGM (1,1) results. 

Year Raw 

FOGM (1,1) GM (1,1) Linear  ARIMA 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

2001 155547 155547.0 0 155547.0 0 171166.0 10.0413% 155547 0 

2002 169577 169503.3 -0.0435% 219031.7 29.1636% 191170.4 12.7337% 169577 0 

2003 197083 204829.8 3.9307% 231669.1 17.5490% 211174.8 7.1502% 184599.2 -6.3343% 

2004 230281 235149.4 2.1141% 245035.7 6.4073% 231179.2 0.3900% 221546.4 -3.7930% 

2005 261369 261758.9 0.1492% 259173.5 -0.8400% 251183.6 -3.8969% 259146.8 -0.8502% 

2006 286467 285668.7 -0.2787% 274127.0 -4.3077% 271188.0 -5.3336% 289715.1 1.1339% 

2007 311442 307529.2 -1.2563% 289943.3 -6.9030% 291192.4 -6.5019% 311615.9 0.0558% 

Continued on next page 
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Year Raw 

FOGM (1,1) GM (1,1) Linear  ARIMA 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 
 

2008 320611 327774.6 2.2344% 306672.1 -4.3476% 311196.8 -2.9363% 336061.3 4.8190% 

2009 336126 346708.9 3.1485% 324366.1 -3.4987% 331201.2 -1.4652% 336359.8 0.0696% 

2010 360648 364553.3 1.0829% 343081.0 -4.8710% 351205.6 -2.6182% 353579.3 -1.9600% 

2011 387043 381474.7 -1.4387% 362875.7 -6.2441% 371210.0 -4.0908% 381408.8 -1.4557% 

2012 402138 397602.3 -1.1279% 383812.5 -4.5570% 391214.4 -2.7164% 407866.1 1.4244% 

2013 416913 413038.2 -0.9294% 405957.3 -2.6278% 411218.8 -1.3658% 416558.2 -0.0851% 

2014 428334 427865.2 -0.1094% 429379.8 0.2442% 431223.2 0.6745% 429666.2 0.3110% 

2015 434113 442151.0 1.8516% 454153.6 4.6164% 451227.6 3.9424% 437891.3 0.8704% 

2016 441492 455952.1 3.2753% 480356.9 8.8031% 471232.0 6.7362% 436115.7 -1.2178% 

  RMSE 6219.4 RMSE 22463 RMSE 14678 RMSE 6354.3 

  MAPE 1.44% MAPE 1.79% MAPE 4.54% MAPE 0.44% 

2017 455827 469316.0 2.9592% 508072.0 11.4616% 491235.6 7.7680% 443604.56 -2.6814% 

2018 471925 482283.2 2.1949% 537386.2 13.8711% 511240.0 8.3308% 441291.58 -6.4912% 

2019 487488 494888.5 1.5181% 568391.7 16.5960% 531244.4 8.9759% 434706.89 -10.8272% 

2020 498000 507162.1 1.8398% 601186.1 20.7201% 551248.8 10.6925% 423727.57 -14.9141% 

  RMSE 10344 RMSE 77794 RMSE 43444 RMSE 48451 

  MAPE 2.13% MAPE 15.66% MAPE 8.94% MAPE 8.73% 

3.2. Markov model modifying energy consumption 

3.2.1. State transition probability matrix 

In general, the state interval is partitioned according to the relative error of the FOGM model. 

From Table 1, we observe that the minimum and maximum relative errors of the first 16 fitted data 

points using this model are -1.44% and 3.941%, respectively. Therefore, based on the equal spacing 

rule, the state interval is divided into four partitions as follows: %]095.0%,44.1(1 −−E , 

%]251.1%,095.0(2 −E ， %]596.2%,251.1(3E ， %]941.3%,596.2(4E . 

Combining these state partitions with the probability of the current state transferring to the next 

state, we obtain the state transition matrix of steps one to four. 


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





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



=

0800.05760.003440.0

2304.03122.004574.0

0010
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0010
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3.2.2. China’s energy consumption forecast 

Constructing a new state transition matrix using the most recent sets of data, we get the state 

of 2017, which is listed in Table 2. 

Table 2. The prediction status of 2017. 

In Table 2, the value of ijP  comes from the value of row j  of matrix )(iP  in the article. 

The result shows that the most likely state of China’s energy consumption in 2017 is 3E , because 3E  

has the largest value in the total. The predicted value of FOGM model in 2017 is 469316, and the 

predicted value of Markov model is 460459 according to Formula (23). In accordance with the same 

method, the predicted values of Markov model in 2018–2020 can be obtained, and the specific 

results are shown in Table 3 

In Table 3, the results predicted by the FOGMKM (1,1) model are closer to the actual values, 

and the relative error is smaller than that of the FOGM (1,1) model. Using the FOGMKM (1,1) 

model to forecast the data from 2017–2020 and estimate the data from 2001–2016, we can obtain the 

smallest value of the RMSE as well as the MAPE. 

 

 

 

 

 

Year 
Initial 

status 
Transferring steps ijP  1E  2E  3E  4E  

2016 4 1 
14P  0 0 1 0 

2015 3 2 
23P  0.3400 0 0.5760 0.0800 

2014 1 3 
31P  0.4942 0 0.3888 0.1170 

2013 1 4 
41P  0.4817 0 0.3628 0.1555 

Total    1.3519 0 2.3276 0.3525 
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Table 3. The comparison results among FOGM (1,1), FAONGBM (1,1), FGM (1,1) and 

FOGMKM (1,1). 

The results in Figure 1 show that the curve of FOGMKM (1,1) model is closer to the true values 

than that of FOGM (1,1) model. 

Year Raw 

FOGM (1,1)  FAONGBM (1,1) FGM (1,1)  
FOGMK

M (1,1) 
 

Predicted 

value 

Relative  

error 

Station 

value 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

2001 155547 155547.0 0 2 144368.7 -7.1864% 155547.0 0.0000% 156750.0 0.7734% 

2002 169577 169503.3 -0.0435% 2 170997.4 0.8376% 176057.2 3.8214% 168529.2 -0.618% 

2003 197083 204829.8 3.9307% 4 197791.6 0.3595% 205410.7 4.2255% 198346.8 0.6413% 

2004 230281 235149.4 2.1141% 3 224205.6 -2.6383% 233281.4 1.3029% 230711.6 0.0187% 

2005 261369 261758.9 0.1492% 3 249792.8 -4.4291% 258994.1 -0.9086% 256818.9 -1.741% 

2006 286467 285668.7 -0.2787% 1 274212.5 -4.2778% 282681.6 -1.3214% 287878.1 0.4926% 

2007 311442 307529.2 -1.2563% 1 297226.4 -4.5644% 304568.1 -2.2071% 309907.7 -0.493% 

2008 320611 327774.6 2.2344% 3 318689.1 -0.5994% 324861.7 1.3258% 321588.8 0.305% 

2009 336126 346708.9 3.1485% 4 338535.3 0.7168% 343738.7 2.2648% 335735.3 -0.116% 

2010 360648 364553.3 1.0829% 3 356767.3 -1.0760% 361346.6 0.1937% 357673.4 -0.825% 

2011 387043 381474.7 -1.4387% 1 373444.4 -3.5135% 377808.7 -2.3859% 384425.1 -0.676% 

2012 402138 397602.3 -1.1279% 1 388676.5 -3.3475% 393229.6 -2.2153% 400677.4 -0.363% 

2013 416913 413038.2 -0.9294% 1 402630.3 -3.4258% 407698.4 -2.2102% 416232.7 -0.163% 

2014 428334 427865.2 -0.1094% 1 415563.1 -2.9815% 421292.1 -1.6440% 431174.4 0.6631% 

2015 434113 442151.0 1.8516% 3 427968.5 -1.4154% 434077.9 -0.0081% 433806.7 0.0710% 

2016 441492 455952.1 3.2753% 4 441492.0 0.0000% 446114.7 1.0471% 441520.9 0.0065% 

  RMSE 6219.4  RMSE 9507.2 RMSE 6044.5 RMSE 1886.6 

  MAPE 1.44%  MAPE 2.59% MAPE 1.69% MAPE 0.51% 

2017 455827 469316.0 2.9592% 4 441120.7 -3.2263% 457455.0 0.3572% 460459.0 1.0161% 

2018 471925 482283.2 2.1949% 3 449616.0 -4.7272% 468145.4 -0.8009% 473181.5 0.2662% 

2019 487488 494888.5 1.5181% 3 458055.0 -6.0377% 478227.8 -1.8996% 498716.1 2.3032% 

2020 498000 507162.1 1.8398% 3 468138.4 -5.9963% 487740.1 -2.0602% 497590.9 -0.0821% 

  RMSE 10344  RMSE 24860 RMSE 7210.3 RMSE 6108.8 

  MAPE 2.13%  MAPE 5.00% MAPE 1.28% MAPE 0.92% 
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Figure 1. The forecast results of different models for China’s energy consumption. 

Table 4. Statistical values of various models. 

Table 4 shows that the values of F statistics we calculated are all greater than the critical value 

4.41 ( 41.4)18,1(05.0 =F ). The value of 19547=FOGMKMF  is the maximum of these models. The 

goodness of fit of the FOGMKM (1,1) model is 2R =0.9991, which has a larger goodness of fit value 

than that of other models. 

4. Conclusions 

We establish a new optimal fractional-order accumulative grey Markov model (FOGMKM) 

with variable parameters. The appropriate state is determined using a Markov transition matrix, and a 

particle swarm optimization algorithm is used to find the optimal order and nonlinear parameters of 

the accumulative generation operator. The FOGMKM model is compared with the FOGM model, 

and it was found that the fitting effect and estimation accuracy of the FOGMKM model are better 

than those of the other six competitive models, including the FOGM model, GM, linear model, FGM, 

FAONGBM and ARIMA model. Finally, we apply the new model to predict the total energy 

consumption in China from 2017 to 2020. The results show that compared with the FOGM model, 

the new model has more accurate and effective prediction and evaluation. 

As the combination of the optimal weighted Markov model with variable parameters and the 

optimal fractional-order accumulative grey model has proven to be an effective method for 

Statistics FOGMKM (1,1) 
FAONGBM 

(1,1) 
Linear GM (1,1) FGM (1,1) 

FOGM 

(1,1) 
ARIMA 

2R  0.9991 0.9805 0.9589 0.8951 0.9962 0.9954 0.9468 

F  19547 925.4 438.01 171.62 4692.3 3937.4 338.53 
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improving prediction accuracy, we plan to further investigate the multi-variable optimal 

fractional-order accumulative grey Markov model with variable parameters and inverse problems for 

fractional equations [44–49]. We aim to use some frontier optimization algorithms, such as the ant 

lion optimizer, grey wolf optimizer and whale optimizer, to search for optimal parameters in our 

future work, hoping to achieve even more significant progress. 
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