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Abstract: In this paper, we investigate the multiplicity of positive periodic solutions of a discrete
blood cell production model with impulse effects. This model is described by periodic coefficients and
time delays, as well as nonlinear feedback with exponential terms. By employing the Krasnosel’skii
fixed point theorem, we establish a sufficient condition for the existence of at least two positive
periodic solutions. To this end, we construct solution transformation between an impulsive delay
difference equation and the corresponding nonimpulsive delay difference equation. Aditionally, a
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Moreover, a numerical example and its simulations are given to illustrate the main result.
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1. Introduction

Hematopoiesis is a continuous physiological process of blood cell formation that occurs primarily in
the bone marrow [1]. In this procedure, as a common origin, hematopoietic stem cells are responsible
for the lifetime generation of the three major cell lines: erythrocytes (red blood cells), leukocytes (white
blood cells), and platelets. These stem cells have the extraordinary ability to renew, self-replicate, and
differentiate into other functional cells. Blood cell numbers in the hematopoietic system maintain a
dynamic balance through complex regulatory mechanisms [2]. The concentration of blood cells can
be measured in venous blood samples [3]. Under normal physiological conditions, cell concentrations
are maintained within the determinable normal range. However, blood cell counts appear to have wide
abnormal fluctuations under pathological conditions, leading to a variety of blood diseases [4, 5]. For
instance, an increased red blood cell count indicates polycythemia vera, cardiovascular disease and
stress. A decreased red blood cell count is an indicator of anemia, chronic renal failure and acute
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hemorrhaging. Therefore, exploring the dynamic changes in blood cell counts is of crucial importance
for human life and health.

Conceptually simple differential equations are believed to be fundamental for modeling a large
number of different physiological processes [6]. Delay is typically incorporated into such models to
provide a more accurate description for the dynamical systems [7, 8]. Delay differential equations
are used to describe the development systems that depend on not only the current state but also
the historical state and have been widely applied into many fields such as biology, engineering and
epidemiology [9, 10]. To understand the dynamics of blood cell production, the behaviors of blood
cell number have been widely employed by delay differential models. In 1977, first-order nonlinear
autonomous differential equations, called by Mackey-Glass equations, with time delay were proposed
in [11]. Blood cells change over time with the increase or decrease in number. Hence, different
feedback control mechanisms, responsive to the body’s demand for cells, are operated in these models.
They showed the dynamic behaviors including limit cycle, oscillations and chaotic solutions of models.
Lasota [12] studied a delay feedback model in which the nonlinear feedback has an exponential term.
By using the approach of ergodic theory, chaotic behaviour of this biological model was obtained.

Considering the important effects of environmentally driven cyclical factors on organisms,
Berezansky et al. [13] studied a continuous hematopoiesis model with periodic coefficient and time
delay. The feedback control mechanism was implemented by a monotonically decreasing function.
In their other work [14], a unimodal feedback control mechanism was taken into account to show the
different behaviors of blood cell number. More comprehensive hematopoiesis models were presented
by considering the different maturation times required for different blood cells in hematopoietic
system. Continuous hematopoiesis models with multiple feedback loops dominated by different time
delays (maturation times) were used in Liu et al. [15] and Wu et al. [16]. On the other hand, Yao [17]
and the present author [18] explored such models from a discrete perspective, wherein the discrete
models are more effective than continuous ones. All these results suggest the existence or global
attractivity of positive periodic solutions for hematopoiesis models under some suitable conditions.
The research of positive periodic solutions is of great significance both in theoretical interest and real
applications [19–22].

Impulses maybe generated in evolutionary system due to transient changes in state experienced
at certain moments. In the hematopoietic process, these instantaneous and abrupt changes are
caused by external interference such as received radiation, medication or other forms of blood cell
pressure [23, 24]. The blood cell model driven by impulse effects allows discrete rapid changes in
cell number and is more accurate and effective in capturing external disturbances [25]. For relevant
literatures about impulse in other research areas, we refer to [26–34].

The mechanism by which blood cells increase and decrease have gradually elucidated by clinical
studies. On the other hand, it is also important to identify the essence of hematopoietic phenomena by
studying relatively simple mathematical models based on various facts. From that point of view, models
of blood cells production have been investigated by various studies. Existing studies on continuous
models of blood cell dynamics conducted with impulsive effects can be referred to [23, 35–38]. By
contrast, relatively few studies on discrete dynamical models have considered the impulse terms.
Therefore, in this paper, we formulate a new discrete blood cell production model considering the
key impacts of impulse to study the dynamics of blood cell numbers in hematopoietic system.

The present paper is organized as follows: In Section 2, we investigate the multiplicity of positive
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periodic solutions of discrete impulsive blood cell production model. Section 3 constructs a solution
transformation and a solution representation for the positive periodic solution of the model. Section 4
discusses the multiple positive periodic solutions, which are found by using the Krasnosel’skii fixed
point theorem. Section 5 provides a numerical example and its simulations to illustrate our main result.

2. Blood cell production model

In this paper, we focus on the positive periodic solutions of a hematopoietic system with impulse
effects. We begin with the Lasota equation [12], which describes the dynamics of the formation of
blood cells based on experimental results

∆x(k) = −αx(k) + βxn(k − τ)e−x(k−τ).

In this model, x denotes the number of blood cells in blood circulation. The first term on the right-hand
side represents the destruction of blood cells and α is the death rate of blood cells. The second term
on the right-hand side represents the influx of blood cells into blood circulation, in which β and n are
positive constants. The production process of blood cells is inherently nonlinear in nature, and the
parameter n is intended to capture this nonlinearity that has nonmonotonic character. The delay τ is the
time required for blood cells to attain maturity from immature cells made in bone marrow to mature
ones.

Cyclical fluctuations in the environment have an important effect on many living systems and they
give the organisms inherent periodicity. However, constant coefficients and constant time delay could
not reflect such periodic environmental influence on blood cells. Hence, it is reasonable and realistic to
consider the environmental cyclicity by assuming that mortality, productivity, and maturation during
hematopoietic processes change periodically.

Incorporating periodicity and impulsive effects into the hematopoietic system, we discuss the
following blood cell production model: ∆x(k) = −α(k)x(k) +

m∑
i=1

βi(k)xn(k − τi(k))
ex(k−τi(k)) , k ∈ Z+ and k , k j,

∆x(k j) = γ jx(k j), j ∈ N.
(2.1)

Here, ∆ is the forward difference operator defined by ∆x(k) = x(k + 1) − x(k) for k ∈ Z; m ≥ 1 is a
natural number and n > 1 is a real constant; α : Z→ (0, 1), βi : Z→ (0,∞), and τi : Z→ Z+ (1 ≤ i ≤ m)
are ω-periodic; sequence of real numbers {γ j} j∈N (γ j > −1) and increasing sequence of natural numbers
{k j} j∈N are ω-periodic, i.e., there exists a q ∈ N such that k j+q = k j + ω and γ j+q = γ j. For this model,
we assume that

(H)
∏

0≤k j<ω
(1 + γ j)

∏
r,k j, 0≤r<ω

(1 − α(r)) < 1.

The initial condition of system (2.1) is

x(s) = ϕ(s) > 0, s ∈ Z[− τ, 0], (2.2)

where τ = max1≤i≤m

{
max0≤k<ω τi(k)

}
∈ Z+ and Z[− τ, 0] = {− τ,− τ + 1, . . . , 0}. We note that 0 <

α(k) < 1 for k ∈ Z and γ j > −1 for j ∈ N. The solution of (2.1) denoted by x(·; ϕ) is obviously positive.
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The purpose of this study is to present a sufficient condition that ensures that system (2.1) has at least
two positive ω-periodic solutions. The main result is the following:

Theorem 2.1. Assume that (H) holds. Let β
i
= min

k,k j,0≤k<ω
βi(k) for each i = 1, 2, . . . ,m and γ−j =

min{γ j, 0} for j ∈ N. If

c
m∑

i=1

β
i

∏
0≤k j<ω

(1 + γ−j )ρnnn−1 > enρ (2.3)

holds, then (2.1) has at least two positive ω-periodic solutions, where

c =

∏
r,k j, 0≤r<ω

(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
r,k j, 0≤r<ω

(1 − α(r))
and ρ =

∏
r,k j, 0≤r<ω

(1 − α(r)).

3. Krasnosel’skii fixed point theorem and solution transformation

In this section, we start with the well-known Krasnosel’skii fixed point theorem [39] which is an
efficient method for searching periodic solutions of nonlinear differential or difference equations.

Lemma 3.1. (Krasnosel’skii fixed point theorem) Let (X, || · ||) be a Banach space, and let P ⊂ X be
a cone in X. Suppose that Ω1 and Ω2 are open bounded subsets of X with θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Let
Φ : P→ P be a completely continuous operator on P such that, either

(i) ||Φx|| ≤ ||x|| for x ∈ P ∩ ∂Ω1 and ||Φx|| ≥ ||x|| for x ∈ P ∩ ∂Ω2, or
(ii) ||Φx|| ≥ ||x|| for x ∈ P ∩ ∂Ω1 and ||Φx|| ≤ ||x|| for x ∈ P ∩ ∂Ω2.

Then, Φ has a fixed point in P ∩
(
Ω2\Ω1

)
.

For i = 1, 2, . . . ,m, let

α̃(k) =
{
α(k), k , k j,

0, k = k j, j ∈ N,
and β̃i(k) =

{
βi(k), k , k j,

0, k = k j, j ∈ N.

Under the initial condition y(s) = ϕ(s) > 0 for s ∈ Z[− τ, 0], we consider the following nonimpulsive
difference equation with time-delays:

∆y(k) = − α̃(k)y(k) +
∏

0≤k j<k

(1 + γ j)−1
m∑

i=1

β̃i(k)yn(k − τi(k))
∏

0≤k j<k−τi(k)(1 + γ j)n

ey(k−τi(k))
∏

0≤k j<k−τi(k)(1+γ j)
, (3.1)

and we perform the transformation between the solutions of (2.1) and (3.1).

Lemma 3.2. (i) If y(k) is a solution of (3.1), then x(k) = y(k)
∏

0≤k j<k(1 + γ j) is a solution of (2.1); (ii)
If x(k) is a solution of (2.1), then y(k) = x(k)

∏
0≤k j<k(1 + γ j)−1 is a solution of (3.1).

Proof. We first prove part (i). For any k , k j and j ∈ N, we obtain
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x(k + 1) − (1 − α(k))x(k) −
m∑

i=1

βi(k)xn(k − τi(k))
ex(k−τi(k))

= y(k + 1)
∏

0≤k j<k+1

(1 + γ j) − (1 − α̃(k))y(k)
∏

0≤k j<k

(1 + γ j) −
m∑

i=1

β̃i(k)yn(k − τi(k))
∏

0≤k j<k−τi(k)(1 + γ j)n

ey(k−τi(k))
∏

0≤k j<k−τi(k)(1+γ j)

=
∏

0≤k j<k

(1+γ j)

y(k+1) − (1− α̃(k))y(k) −
∏

0≤k j<k

(1+γ j)−1
m∑

i=1

β̃i(k)yn(k − τi(k))
∏

0≤k j<k−τi(k)(1 + γ j)n

ey(k−τi(k))
∏

0≤k j<k−τi(k)(1+γ j)


= 0.

It follows from (3.1) that y(k j + 1) = y(k j). Then,

x(k j + 1) = y(k j + 1)
∏

0≤kt<k j+1

(1 + γt) = (1 + γ j)y(k j)
∏

0≤kt<k j

(1 + γt) = (1 + γ j)x(k j).

Thus, x(k) = y(k)
∏

0≤k j<k(1 + γ j) is a solution of (2.1).
Now, we prove part (ii). For any k , k j and j ∈ N, one has

∆y(k) = y(k + 1) − y(k)

= x(k + 1)
∏

0≤k j<k+1

(1 + γ j)−1 − x(k)
∏

0≤k j<k

(1 + γ j)−1

= (x(k + 1) − x(k))
∏

0≤k j<k

(1 + γ j)−1

=

−α(k)x(k) +
m∑

i=1

βi(k)xn(k − τi(k))
ex(k−τi(k))

 ∏
0≤k j<k

(1 + γ j)−1

= − α̃(k)y(k) +
∏

0≤k j<k

(1 + γ j)−1
m∑

i=1

β̃i(k)yn(k − τi(k))
∏

0≤k j<k−τi(k)(1 + γ j)n

ey(k−τi(k))
∏

0≤k j<k−τi(k)(1+γ j)
.

Moreover, from (2.1), we have

x(k j + 1) = (1 + γ j)x(k j) for j ∈ N.

Hence, it follows the definition of y that

y(k j + 1) = x(k j + 1)
∏

0≤kt<k j+1

(1 + γt)−1 = (1 + γ j)x(k j)
∏

0≤kt<k j+1

(1 + γt)−1

= x(k j)
∏

0≤kt<k j

(1 + γt)−1 = y(k j)

for j ∈ N. That is, y(k) satisfies (3.1). Therefore, y(k) = x(k)
∏

0≤k j<k(1 + γ j)−1 is a solution of (3.1).
The proof is complete. □
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We define X =
{
x : x(k) = x(k + ω) ∈ R for k ∈ Z

}
. Then, X is a finite dimensional Banach space

with the norm ||x|| = max0≤k<ω |x(k)|. Let x be an element of X satisfying x(k) > 0 for k ∈ Z and then
we set x̂(k) = x(k) for k ∈ Z[− τ,∞) def

= [− τ,∞) ∩ Z and ϕ̂(k) = x(k) for k ∈ Z[− τ, 0]. Denote

H(k, s) =

∏
s+1≤r<k+ω

(1 − α̃(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α̃(r))
, k ≤ s ≤ k + ω − 1 with k ∈ Z.

Then, the following representation of a positive ω-periodic solution of (2.1) can be obtained.

Lemma 3.3. Assume that (H) holds. Then a positive ω-periodic sequence x̂ is the solution x(·; ϕ̂)
of (2.1) if and only if the original sequence x ∈ X satisfies

x(k) > 0 and x(k) =
k+ω−1∑

s=k

H(k, s)
∏

s≤k j<k+ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))

 . (3.2)

Proof. (Necessity) Suppose that the positiveω-periodic sequence x̂ is the solution x(·; ϕ̂) of (2.1). Then
it is obvious that x(k) > 0 for k ∈ Z. We rewrite (3.1) as

y(k + 1) − (1 − α̃(k))y(k) =
∏

0≤k j<k

(1 + γ j)−1
m∑

i=1

β̃i(k)yn(k − τi(k))
∏

0≤k j<k−τi(k)(1 + γ j)n

ey(k−τi(k))
∏

0≤k j<k−τi(k)(1+γ j)
.

Due to Lemma 3.2, we multiply both sides of the above equality by
∏

0≤r<k+1 1/(1 − α̃(r)) to obtain

x(k + 1)
∏

0≤k j<k+1

(1 + γ j)−1
∏

0≤r<k+1

1
1 − α̃(r)

− x(k)
∏

0≤k j<k

(1 + γ j)−1
∏

0≤r<k

1
1 − α̃(r)

=
∏

0≤k j<k

(1 + γ j)−1
m∑

i=1

β̃i(k)xn(k − τi(k))
ex(k−τi(k))

∏
0≤r<k+1

1
1 − α̃(r)

.

Summing up both sides from k to k + ω − 1 results in

x(k + ω)
∏

0≤k j<k+ω

(1 + γ j)−1
∏

0≤r<k+ω

1
1 − α̃(r)

− x(k)
∏

0≤k j<k

(1 + γ j)−1
∏

0≤r<k

1
1 − α̃(r)

=

k+ω−1∑
s=k

 ∏
0≤k j<s

(1 + γ j)−1
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))

∏
0≤r<s+1

1
1 − α̃(r)

 ,
which leads to

x(k)

1 − ∏
k≤k j<k+ω

(1 + γ j)
∏

k≤r<k+ω

(1 − α̃(r))


=

k+ω−1∑
s=k

 ∏
s≤k j<k+ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))

∏
s+1≤r<k+ω

(1 − α̃(r))

 .
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Using the periodicity of α̃ and γ j, we have

x(k)=
1

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α̃(r))

×

k+ω−1∑
s=k

 ∏
s≤k j<k+ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))

∏
s+1≤r<k+ω

(1 − α̃(r))


=

k+ω−1∑
s=k

H(k, s)
∏

s≤k j<k+ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))


for k ∈ Z. Thus, x satisfies (3.2).

(Sufficiency) Direct computation shows that

H(k + ω, s + ω) =

∏
s+ω+1≤r<k+2ω

(1 − α̃(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α̃(r))
=

∏
s+1≤r<k+ω

(1 − ã(r + ω))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α̃(r))

=

∏
s+1≤r<k+ω

(1 − ã(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α̃(r))
= H(k, s).

Hence, H is ω-periodic with respect to both variables k and s. Then, we can prove that an element x of
X having the expression (3.2) is ω-periodic. In fact,

x(k + ω) =
k+2ω−1∑
s=k+ω

H(k + ω, s)
∏

s≤k j<k+2ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))


=

k+ω−1∑
s=k

H(k + ω, s + ω)
∏

s+ω≤k j<k+2ω

(1 + γ j)
m∑

i=1

β̃i(s + ω)xn(s + ω − τi(s + ω))
ex(s+ω−τi(s+ω))


=

k+ω−1∑
s=k

H(k, s)
∏

s≤k j<k+ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))

 = x(k).

Now, we construct x̂ and ϕ̂ from the element x of X given by (3.2). To prove that x̂ is the positive
ω-periodic solution x(·; ϕ̂) of (2.1), it suffices to show that x satisfies (2.1). For k , k j, since β̃i = βi

(i = 1, 2, . . . ,m) for k ∈ Z, we have

x(k + 1) =
k+ω∑

s=k+1

H(k + 1, s)
∏

s≤k j<k+ω+1

(1 + γ j)
m∑

i=1

βi(s)xn(s − τi(s))
ex(s−τi(s))


=

k+ω−1∑
s=k+1

H(k + 1, s)
∏

s≤k j<k+ω+1

(1 + γ j)
m∑

i=1

βi(s)xn(s − τi(s))
ex(s−τi(s))


+ H(k + 1, k + ω)

∏
k+ω≤k j<k+ω+1

(1 + γ j)
m∑

i=1

βi(k + ω)xn(k + ω − τi(k + ω))
ex(k+ω−τi(k+ω))

AIMS Mathematics Volume 8, Issue 11, 26515–26531.
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=

k+ω−1∑
s=k+1


∏

s≤k j<k+ω+1
(1 + γ j)

∏
s+1≤r<k+ω+1

(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α(r))

m∑
i=1

βi(s)xn(s − τi(s))
ex(s−τi(s))


+

∏
k+ω+1≤r<k+ω+1

(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α(r))

m∑
i=1

βi(k)xn(k − τi(k))
ex(k−τi(k))

=

k+ω−1∑
s=k+1


∏

s≤k j<k+ω+1
(1 + γ j)

∏
s+1≤r<k+ω+1

(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α(r))

m∑
i=1

βi(s)xn(s − τi(s))
ex(s−τi(s))


+

1
1 −

∏
0≤k j<ω

(1 + γ j)
∏

0≤r<ω
(1 − α(r))

m∑
i=1

βi(k)xn(k − τi(k))
ex(k−τi(k)) .

Moreover,

(1 − α(k))x(k) =
k+ω−1∑

s=k

(1 − α(k))H(k, s)
∏

s≤k j<k+ω

(1 + γ j)
m∑

i=1

βi(s)xn(s − τi(s))
ex(s−τi(s))


=

k+ω−1∑
s=k+1

(1 − α(k))H(k, s)
∏

s≤k j<k+ω

(1 + γ j)
m∑

i=1

βi(s)xn(s − τi(s))
ex(s−τi(s))


+ (1 − α(k))H(k, k)

∏
k≤k j<k+ω

(1 + γ j)
m∑

i=1

βi(k)xn(k − τi(k))
ex(k−τi(k))

=

k+ω−1∑
s=k+1

(1 − α(k + ω))

∏
s≤k j<k+ω

(1 + γ j)
∏

s+1≤r<k+ω
(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α(r))

m∑
i=1

βi(s)xn(s − τi(s))
ex(s−τi(s))


+ (1 − α(k))

∏
0≤k j<ω

(1 + γ j)
∏

k+1≤r<k+ω
(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α(r))

m∑
i=1

βi(k)xn(k − τi(k))
ex(k−τi(k))

=

k+ω−1∑
s=k+1


∏

s≤k j<k+ω+1
(1 + γ j)

∏
s+1≤r<k+ω+1

(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α(r))

m∑
i=1

βi(s)xn(s − τi(s))
ex(s−τi(s))


+

∏
0≤k j<ω

(1 + γ j)
∏

0≤r<ω
(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α(r))

m∑
i=1

βi(k)xn(k − τi(k))
ex(k−τi(k)) .

Then, we obtain

x(k + 1) − (1 − α(k))x(k) =
1

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α(r))

m∑
i=1

βi(k)xn(k − τi(k))
ex(k−τi(k))
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−

∏
0≤k j<ω

(1 + γ j)
∏

0≤r<ω
(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
0≤r<ω

(1 − α(r))

m∑
i=1

βi(k)xn(k − τi(k))
ex(k−τi(k))

=

m∑
i=1

βi(k)xn(k − τi(k))
ex(k−τi(k)) .

For k = k j, one has

x(k j + 1) =
k j+ω∑

s=k j+1

H(k j + 1, s)
∏

s≤kt<k j+ω+1

(1 + γt)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))


=

k j+ω−1∑
s=k j+1

H(k j + 1, s)
∏

s≤kt<k j+ω+1

(1 + γt)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))


+ H(k j + 1, k j + ω)

∏
k j+ω≤kt<k j+ω+1

(1 + γt)
m∑

i=1

β̃i(k + ω)xn(k + ω − τi(k + ω))
ex(k+ω−τi(k+ω))

=

k j+ω−1∑
s=k j+1


∏

s≤kt<k j+ω+1
(1 + γt)

∏
s+1≤r<k j+ω+1

(1 − ã(r))

1 −
∏

0≤kt<ω
(1 + γt)

∏
0≤r<ω

(1 − ã(r))

m∑
i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))

 ,
and

x(k j) =
k j+ω−1∑

s=k j

H(k j, s)
∏

s≤kt<k j+ω

(1 + γt)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))


=

k j+ω−1∑
s=k j+1

H(k j, s)
∏

s≤kt<k j+ω

(1 + γt)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))


+ H(k j, k j)(1 + γ j)

∏
k j≤k j<k j+ω

(1 + γ j)
m∑

i=1

β̃i(k)xn(k − τi(k))
ex(k−τi(k))

=

k j+ω−1∑
s=k j+1


∏

s≤kt<k j+ω
(1 + γt)

∏
s+1≤r<k j+ω

(1 − α̃(r))

1 −
∏

0≤kt<ω
(1 + γt)

∏
0≤r<ω

(1 − α̃(r))

m∑
i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))

 .
Because of the periodicity of γ j, we see that x(k j + 1) = (1 + γ j)x(k j). Hence, x satisfies system (2.1).
The proof is complete. □ □

We define a cone in Banach space X by P =
{
x ∈ X : x(k) ≥ ρ||x|| for k ∈ Z

}
. Let

Φx(k) =
k+ω−1∑

s=k

H(k, s)
∏

s≤k j<k+ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))

 for x ∈ P. (3.3)

Then, it is easy to obtain the following property of the operator Φ.

AIMS Mathematics Volume 8, Issue 11, 26515–26531.



26524

Lemma 3.4. Assume that (H) holds. Then the operator Φ : P→ P is completely continuous.

Proof. In view of the proof of sufficiency of Lemma 3.3, it follows from (3.3) that Φx(k +ω) = Φx(k).
Hence, Φx ∈ X. Since 0 < α̃ < 1 for k ∈ Z, we can estimate that

H(k, s)≥

∏
k+1≤r<k+ω

(1 − α̃(r))

1 −
∏

0≤k j<ω

(1 + γ j)
∏

0≤r<ω

(1 − α̃(r))
≥

∏
k≤r<k+ω

(1 − α̃(r))

1 −
∏

0≤k j<ω

(1 + γ j)
∏

0≤r<ω

(1 − α̃(r))

=

∏
r,k j, 0≤r<ω

(1 − α(r))

1 −
∏

0≤k j<ω
(1 + γ j)

∏
r,k j, 0≤r<ω

(α(r))
= c.

Moreover,

H(k, s) ≤

∏
k+ω≤r<k+ω

(1 − α̃(r))

1 −
∏

0≤k j<ω

(1 + γ j)
∏

0≤r<ω

(1 − α̃(r))
=

1

1 −
∏

0≤k j<ω

(1 + γ j)
∏

0≤r<ω

(1 − α̃(r))

=
1

1 −
∏

0≤k j<ω

(1 + γ j)
∏

r,k j, 0≤r<ω

(1 − α(r))
≜ d.

The above two inequalities lead to

c
k+ω−1∑

s=k

 ∏
s≤k j<k+ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s−τi(s))
ex(s−τi(s))

≤ Φx(k) ≤ d
k+ω−1∑

s=k

 ∏
s≤k j<k+ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s−τi(s))
ex(s−τi(s))

 . (3.4)

Hence,

∥Φ∥ ≤ d
k+ω−1∑

s=k

 ∏
s≤k j<k+ω

(1 + γ j)
m∑

i=1

β̃i(s)xn(s − τi(s))
ex(s−τi(s))

 ≤ d
c
Φx(k).

Therefore,
Φx(k) ≥

∏
r,k j, 0≤r<ω

(1 − α(r)) ∥Φ∥ = ρ ∥Φ∥.

Thus, Φx ∈ P. The straightforward calculations can show that Φ is a completely continuous operator.
The proof is complete. □

4. Multiplicity of positive ω-periodic solutions

In this section, we investigate the multiplicity of positive ω-periodic solutions. The main result
Theorem 2.1 is proved by the Krasnosel’skii fixed point theorem below.
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Proof. From the solution representation (3.2) in Lemma 3.3, we observe that the positive ω-periodic
solution of (2.1) is a fixed point of the completely continuous operator Φ defined by (3.3). It suffices
to establish the existence of two fixed points of Φ. Let βi = maxk,k j,0≤k<ω βi(k) for each i = 1, 2, . . . ,m
and γ+j = max{γ j, 0} for j = 1, 2, . . . . It follows that

lim
u→0

un/ueu = lim
u→0

un−1/eu = 0, lim
u→∞

un/eu = 0.

Choose a constant ε0 satisfying

0 < ε0 <
1

dω
m∑

i=1
βi
∏

0≤k j<ω
(1 + γ+j )

,

where d = 1/(1 −
∏

0≤k j<ω(1 + γ j)
∏

r,k j, 0≤r<ω(1 − α(r))). Then one can find an u0 with 0 < u0 < n and
an U with n < U such that

un/eu < ε0u0, 0 ≤ u ≤ u0; un/eu < ε0U, u ≥ U. (4.1)

Let u1 = U/ρ > U. The condition (2.3) implies that there exists a sufficiently small σ∗ ∈ (0, u1 − n)
such that

c
m∑

i=1

β
i

∏
0≤k j<ω

(1 + γ−j )
nnρn

enρ > n + σ∗. (4.2)

Then we define four open bounded subsets Ωi(1 ≤ i ≤ 4) of X by

Ω1 =
{
x ∈ X : ||x|| < u0

}
, Ω2 =

{
x ∈ X : ||x|| < n

}
,

Ω3 =
{
x ∈ X : ||x|| < n + σ∗

}
, Ω4 =

{
x ∈ X : ||x|| < u1

}
with θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2 ⊂ Ω2 ⊂ Ω3 ⊂ Ω3 ⊂ Ω4 ⊂ Ω4.

According to the characteristics of the open bounded sets Ωi (1 ≤ i ≤ 4), the discussion is divided
into four cases.

Case 1. Suppose that x is an element of P ∩ ∂Ω1 ⊂ X. For k ∈ Z, we see that 0 ≤ x(k) < u0 and x is
ω-periodic. By (3.4) and (4.1), one has

(Φx)(k)≤d
k+ω−1∑

s=k

 ∏
s≤k j<k+ω

(1 + γ+j )
m∑

i=1

βi
xn(s − τi(s))

ex(s−τi(s))


≤d

m∑
i=1

βiε0u0

k+ω−1∑
s=k

∏
k≤k j<k+ω

(1 + γ+j )


≤dω

m∑
i=1

βi

∏
0≤k j<ω

(1 + γ+j )ε0u0 < u0

for k ∈ Z. Hence, ||Φx|| < u0 = ||x|| for x ∈ P ∩ ∂Ω1.
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Case 2. Suppose that x is an element of P ∩ ∂Ω2 ⊂ X. For k ∈ Z, we see that nρ= ρ∥x∥ ≤ x(k)< n
and x is ω-periodic. The unimodal property of un/eu shows that minnρ≤u≤nun/eu = nnρn/enρ. Hence,
from (2.3) and (3.4), it leads to

(Φx)(k) ≥ c
k+ω−1∑

s=k

 ∏
s≤k j<k+ω

(1 + γ−j )
m∑

i=1

β̃i(s)
xn(s − τi(s))

ex(s−τi(s))


≥ c

k+ω−1∑
s=k

 ∏
k≤k j<k+ω

(1 + γ−j )
m∑

i=1

β̃i(s)
xn(s − τi(s))

ex(s−τi(s))


≥ c
∏

0≤k j<ω

(1 + γ−j )
nnρn

enρ

k+ω−1∑
s=k

m∑
i=1

β̃i(s)

≥ c
m∑

i=1

β
i

∏
0≤k j<ω

(1 + γ−j )nnρn/enρ > n

for k ∈ Z. Whence ||Φx|| > n = ||x|| for x ∈ P ∩ ∂Ω2.
Case 3. Suppose that x is an element of P ∩ ∂Ω3 ⊂ X. For k ∈ Z, we see that ρ(n + σ∗) = ρ∥x∥ ≤

x(k) ≤ n + σ∗ and x is ω-periodic. Note that σ∗ is a sufficiently small positive constant, then

min
ρ(n+σ∗)≤u≤(n+σ∗)

un

eu =
ρn(n + σ∗)n

eρ(n+σ∗)
>

nnρn

enρ .

It follows from (3.4) and (4.2) that, for k ∈ Z,

(Φx)(k) ≥ c
k+ω−1∑

s=k

 ∏
k≤k j<k+ω

(1 + γ−j )
m∑

i=1

β̃i(s)
xn(s − τi(s))

ex(s−τi(s))


≥ c
∏

0≤k j<ω

(1 + γ−j )
ρn(n + σ∗)n

eρ(n+σ∗)

k+ω−1∑
s=k

m∑
i=1

β̃i(s)

≥ c
m∑

i=1

β
i

∏
0≤k j<ω

(1 + γ−j )
nnρn

enρ > n + σ∗.

Hence, ||Φx|| > n + σ∗ = ||x|| for x ∈ P ∩ ∂Ω3.
Case 4. Suppose that x is an element of P ∩ ∂Ω4 ⊂ X. For k ∈ Z, we see that ρu1 ≤ x(k) ≤ u1 and x

is ω-periodic. By (3.4) and (4.1), one has

(Φx)(k)≤d
k+ω−1∑

s=k

 ∏
k≤k j<k+ω

(1 + γ+j )
m∑

i=1

βi
xn(s − τi(s))

ex(s−τi(s))

 ≤ d
m∑

i=1

βiε0U

k+ω−1∑
s=k

∏
k≤k j<k+ω

(1 + γ+j )


≤ dω

m∑
i=1

βi

∏
0≤k j<ω

(1 + γ+j )ε0U < U < u1

for k ∈ Z, which implies that ||Φx|| < u1 = ||x|| for x ∈ P ∩ ∂Ω4.
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Now we are in the position to conclude that the conditions of the Krasnosel’skii fixed point theorem
are satisfied by Ω1, Ω2 and by Ω3, Ω4, respectively. Therefore, the operator given by (3.3) has two
fixed points. Among them, one is x1 ∈ P ∩

(
Ω2\Ω1

)
which satisfies x1(k) ≥ ρ||x1|| for k ∈ Z and

0 < u0 ≤ ||x|| ≤ n, and the other is x2 ∈ P ∩
(
Ω4\Ω3

)
which satisfies x2(k) ≥ γ||x2|| for k ∈ Z and

0 < n + σ∗ ≤ ||x2|| ≤ u1. Let x̂1(k) = x1(k) for k ∈ Z[− τ,∞) and ϕ̂1(k) = x1(k) for k ∈ Z[− τ, 0].
Moreover, let x̂2(k) = x2(k) for k ∈ Z[− τ,∞) and ϕ̂2(k) = x2(k) for k ∈ Z[− τ, 0]. Then, Lemma 3.3
implies that x̂1 is a positive ω-periodic solution of (2.1) with the initial function ϕ̂1 and x̂2 is another
positive ω-periodic solution of (2.1) with the initial function ϕ̂2. Thus, (2.1) has two different positive
ω-periodic solutions x̂1 and x̂2 satisfying ∥x̂1∥ ≤ n < n + σ∗ ≤ ∥x̂2∥. The proof is complete. □

5. Numerical example

Let us consider the difference equation ∆x(k) = −α(k)x(k) +
β1(k)x2(k − 1)

ex(k−1) +
β2(k)x2(k − 7)

ex(k−7) , k ∈ Z+ and k , k j,

∆x(k j) = γ jx(k j), k j = 2 j − 1, j ∈ N.
(5.1)

Here, all coefficients are positive 4-periodic discrete functions defined as follows:

α(k) =

0.5, if k = 0,
0.4, if k = 2,

β1(k) =

9, if k = 0,
8, if k = 2,

β2(k) =

35, if k = 0,
40, if k = 2.

The impulse values are γ1 = −0.5 for k1 = 1 and γ2 = 1.5 for k2 = 3. We can verify that there are at
least two positive 4-periodic solutions of (5.1).

It is obvious that
∑2

i=1 βi
= 35 + 8 = 43. Since γ−1 = min{−0.5, 0} = −0.5, γ−2 = min{1.5, 0} = 0, it

follows that ∏
0≤k j<4

(1 + γ−j ) = (1 − 0.5) × 1 = 0.5.

In view of values of α, we have

ρ =
∏

r,k j, 0≤r<4

(1 − α(r)) = (1 − 0.5)(1 − 0.4) = 0.3.

Hence,

c =
ρ

1 − ρ
∏

0≤k j<4
(1 + γ j)

=
0.3

1 − 0.3(1 − 0.5)(1 + 1.5)
= 0.48.

Note that n = 2. It can be checked easily that

c
2∑

i=1

β
i

∏
0≤k j<4

(1 + γ−j )ρnnn−1 = 0.48 × 43 × 0.5 × o.32 × 2 = 1.8576 > e0.6.

Therefore, condition (2.3) is satisfied. Thus, from Theorem 2.1, we see that (5.1) has at least two
positive 4-periodic solutions.
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Figure 1a shows that as k gradually increases, the four solutions separately determined by arbitrarily
given four initial functions display the same periodic changes. In other words, there exists a positive
4-periodic solution of (5.1). The details of this positive 4-periodic solution are revealed in Figure 1b.

(a) (b)

Figure 1. Graphs of four arbitrary positive solutions of system (5.1). The numerical
simulations show that there is a positive 4-periodic solution of (5.1) and this positive 4-
periodic solution is locally asymptotically stable.

Theorem 2.1 ensures the existence of two positive 4-periodic solutions. In addition to the locally
asymptotically stable positive 4-periodic solution described above, system (5.1) has another positive
4-periodic solution. In general, this solution is considered unstable and very difficult to find.

6. Conclusions

A discrete blood cell production model subjected to impulse effects is studied in this paper. This
model considers sudden changes in the number of blood cells at certain times that cannot be ignored.
The sufficient condition that guarantees the multiplicity of positive periodic solutions is established by
Krasnoseli-skii fixed point theorem. To be precise, there exist at least two positive periodic solutions
of the model under this condition. By using coefficients and impulse values, this sufficient condition
can be easily verified.
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