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Nomenclature

h : Independent variable
ς : Time
u(h, ς) : Dependent function representing the physical quantity
δ : Fractional order
Y Yang transform
Y−1 : Inverse Yang transform
ϵ : Perturbation parameter

1. Introduction

The study of transport phenomena in porous media has been a topic of interest in several areas of
engineering and science, such as geology, environmental science, and chemical engineering. Porous
media are materials that contain voids or pores filled with fluids, which can include gases, liquids, or
a combination of both. The behavior of these fluids within the pores is influenced by various factors,
including the geometry of the pores, the properties of the fluid, and the interactions between the fluid
and the solid matrix [1–5].

Recently, there has been increasing interest in the study of transport phenomena in fractional porous
media, where the properties of the medium are described by fractional calculus. Fractional calculus
is a generalization of traditional calculus that deals with derivatives and integrals of non-integer order.
This mathematical tool has been successfully used to model various physical phenomena that exhibit
anomalous behavior, such as diffusion in complex media, viscoelasticity, and fractal geometry [6, 7].
One of the areas where fractional calculus has been particularly successful is in the study of heat
transfer in porous media. The fractional heat transfer equation (FHTE) has been proposed as a more
accurate and comprehensive model for heat transfer in porous media compared to the traditional heat
transfer equation. The FHTE takes into account the effects of non-locality and memory on heat transfer,
which are not captured by the traditional model [8–12].

Several studies have shown the potential of fractional calculus in improving our understanding of
heat transfer in porous media. For example, investigated the effect of fractional calculus on heat transfer
in a porous channel, and showed that the FHTE can accurately predict the temperature distribution in
the channel [13]. Another study by compared the performance of traditional and fractional models
for heat transfer in a fractured rock mass, and demonstrated that the FHTE provides a better fit to
experimental data. In summary, the study of fractional porous media and the use of the FHTE in
modeling heat transfer in these media represent promising areas of research that have the potential to
improve our understanding of transport phenomena in porous materials [14, 15].

Homotopy perturbation method (HPM) and Adomian decomposition method (ADM) are two
popular techniques used in solving nonlinear differential equations [16–18]. The HPM is a powerful
analytical method based on constructing a homotopy between the problem at hand and an auxiliary
linear problem. The method involves the use of a small parameter that helps to obtain an analytical
solution through a series expansion [19, 20]. On the other hand, ADM is an iterative method that
decomposes the nonlinear equation into a series of linear subproblems, and then solves them iteratively.
Recently, a new method known as Yang’s transform has been introduced to solve the nonlinear
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differential equations. This method is based on the concept of integral transforms and is a combination
of HPM and ADM. The Yang transform is known for its accuracy, robustness, and efficiency in solving
nonlinear differential equations [21–24].

In this article, we will explore the HPM, ADM, and Yang transform in detail and discuss their
applications in solving various types of fractional porous media and heat transfer equation. We will
also compare and contrast these methods and highlight their strengths and weaknesses. By the end of
this article, readers will have a good understanding of these methods and their potential for solving
complex nonlinear problems.

2. Preliminaries

We give the basic definitions which are needed in the rest of paper. For the sake of simplicity, we
write the exponential decay kernel as K(ς, ϱ) = exp[−δ(ς − ϱ)/(1 − δ)].

Definition 2.1. If h(ς) ∈ H1[0,T ],T > 0, then the Caputo Fabrizio (CF) derivative may be expressed
as follows [25]:

CF Dδ
ς[h(ς)] =

N(δ)
1 − δ

∫ ς

0
h′(ϱ)K(ς, ϱ)dϱ. (2.1)

N(δ) is the normalization function with N(1) = N(0) = 1. However, if h(ς) < H1[0,T ], then the
above derivative is defined as follows:

CF Dδ
ς[h(ς)] =

N(δ)
1 − δ

∫ ς

0
[h(ς) − h(ϱ)]K(ς, ϱ)dϱ. (2.2)

Definition 2.2. The definition of Laplace transform for the derivative of the characteristic function,
when N(δ) = 1, is given by [25]:

L
[
CF Dδ

ς[h(ς)]
]
=
ωL[h(ς)] − h(0)
ω + δ(1 − ω)

. (2.3)

Definition 2.3. The given expression is the fractional CF integral [25]

CF Iδς[h(ς)] =
1 − δ
N(δ)

h(ς) +
δ

N(δ)

∫ ς

0
h(ϱ)dϱ, ς ≥ 0, δ ∈ (0, 1]. (2.4)

Definition 2.4. The Yang transformation of h(ς) is given as [25]

Y [h(ς)] = χ(ω) =
∫ ∞

0
h(ς)e−

ς
ω d(ς), ς > 0. (2.5)

Remark 2.1. The Yang transformation of few term formulaes are given as [25]

Y[1] =ω,
Y[ς] =ω2,

Y[ςi] =Γ(i + 1)ωi+1.

(2.6)

Lemma 2.1. Yang-Laplace duality
Let the Laplace transformation of h(ς) is F(ω), then χ(ω) = F(1/ω) [25].
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Proof. By substituting ς/ω = ξ into Eq (2.5), we can derive an alternative expression for the Yang
transform.

L [h(ς)] = χ(ω) = ω
∫ ∞

0
h(ωξ)eξdξ. ξ > 0, (2.7)

Since L [h(ς)] = F(ω), this =⇒

F(ω) = L [h(ς)] =
∫ ∞

0
h(ς)e−ωςdς. (2.8)

Put ς = ξ/ω in (2.8), we get

F(ω) =
1
ω

∫ ∞

0
h
(
ξ

ω

)
eξdξ. (2.9)

Thus, from Eq (2.7), we achieved

F(ω) = χ
(

1
ω

)
. (2.10)

Also from Eqs (2.5) and (2.8), we have

F
(

1
ω

)
= χ (ω) . (2.11)

The Laplace and Yang transforms are dually connected, as represented by the links (2.10) and (2.11).
□

Lemma 2.2. Let h(ς) be a continue function, then, the Yang transformation CF derivative of h(ς) is
defined as [25]

Y [h(ς)] =
Y[h(ς)] − ωh(0)

1 + δ(ω − 1)
. (2.12)

Proof. The definition of the Laplace transformation of a fractional CF operator is as follows:

L [h(ς)] =
ωL[h(ς)] − h(0)
ω + δ(1 − ω)

, (2.13)

Additionally, we can establish a relationship between Laplace and Yang properties, expressed as
χ(ω) = F(1/ω). To derive this result, we substitute ω with 1/ω in Eq (2.13). This yields:

Y [h(ς)] =
1
ω
Y[h(ς)] − h(0)
1
ω
+ δ(1 − 1

ω
)
,

Y [h(ς)] =
Y[h(ς)] − ωh(0)

1 + δ(ω − 1)
.

(2.14)

The proof is completed. □
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3. General implementation of HPTM

Consider the fractional partial differential equation is given as

Dδ
ςu(h, ς) = P1u(h, ς) + R1u(h, ς), 0 < δ ≤ 1, (3.1)

with initial condition
u(h, 0) = ξ(h).

The notation Dδ
ς =

∂δ

∂ςδ
represents the fractional Caputo-Fabrizio derivative, while P1 and R1 show

that linear and nonlinear functions.
Applying the Yang transformation to Eq (3.1), we get

Y[Dδ
ςu(h, ς)] = Y[P1u(h, ς) + R1u(h, ς)], (3.2)

1
1 + δ(s − 1)

{Y[u(h, ς)] − su(h, 0)} = Y[P1u(h, ς) + R1u(h, ς)]. (3.3)

On simplification, we have

Y[u(h, ς)] = su(h, 0) + [1 + δ(s − 1)]Y[P1u(h, ς) + R1u(h, ς)]. (3.4)

We have, by using the inverse of Yang transform:

u(h, ς) = u(h, 0) + Y−1[(1 + δ(s − 1))Y[P1u(h, ς) + R1u(h, ς)]]. (3.5)

The basic solution in a power series can be expressed in terms of the high-performance computing
language HPM as follows:

u(h, ς) =
∞∑

k=0

ϵk
uk(h, ς). (3.6)

with homotopy parameter ϵ ∈ [0, 1].
The nonlinear term reads

R1u(h, ς) =
∞∑

k=0

ϵkHk(u), (3.7)

Hk(u0, u1, ..., un) =
1

Γ(n + 1)
Dk
ϵ

R1

 ∞∑
k=0

ϵ i
ui


ϵ=0

, (3.8)

where Dk
ϵ =

∂k

∂ϵk .

Putting Eqs (3.6) and (3.7) into Eq (3.5), we get

∞∑
k=0

ϵk
uk(h, ς) = u(h, 0) + ϵ ×

Y−1

(1 + δ(s − 1))Y{P1

∞∑
k=0

ϵk
uk(h, ς) +

∞∑
k=0

ϵkHk(u)}

 . (3.9)
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By setting the coefficients of ϵ equal to each other, we obtain:

ϵ0 : u0(h, ς) = u(h, 0),
ϵ1 : u1(h, ς) = Y−1 [(1 + δ(s − 1))Y(P1u0(h, ς) + H0(u))] ,
ϵ2 : u2(h, ς) = Y−1 [(1 + δ(s − 1))Y(P1u1(h, ς) + H1(u))] ,
.

.

.

ϵk : uk(h, ς) = Y−1 [(1 + δ(s − 1))Y(P1uk−1(h, ς) + Hk−1(u))] , k > 0, k ∈ N.

(3.10)

Ultimately, we express the analytical solution in series form by approximation.

u(h, ς) = lim
M→∞

M∑
k=1

uk(h, ς). (3.11)

4. General implementation of Yang transform decomposition method

Consider the fractional partial differential equation is given as

Dδ
ςu(h, ς) = P1u(h, ς) + R1u(h, ς), 0 < δ ≤ 1, (4.1)

with initial condition
u(h, 0) = ξ(h).

The notation Dδ
ς =

∂δ

∂ςδ
refers to the fractional Caputo-Fabrizio derivative, while P1 and R1 are

represented linear and nonlinear functions.
Employing the Yang transform Eq (4.1), we get

Y[Dδ
ςu(h, ς)] = Y[P1u(h, ς) + R1u(h, ς)],
1

1 + δ(s − 1)
{Y[u(h, ς)] − su(h, 0)} = Y[P1u(h, ς) + R1u(h, ς)].

(4.2)

On simplification, we have

Y[u(h, ς)] = su(h, 0) + [1 + δ(s − 1)]Y[P1u(h, ς) + R1u(h, ς)]. (4.3)

By using the inverse of Yang transform, we get

u(h, ς) = u(h, 0) + Y−1[1 + δ(s − 1)]Y[P1u(h, ς) + R1u(h, ς)]. (4.4)

The series form solution of u(h, ς) reads:

u(h, ς) =
∞∑

m=0

um(h, ς). (4.5)
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The nonlinear term is defined as

R1u(h, ς) =
∞∑

m=0

Am(u). (4.6)

with

Am

(
u0, u1, u2, · · · , um

)
=

1
m!

 ∂m

∂ℓm

R1

 ∞∑
m=0

ℓm
um




ℓ=0

, m = 0, 1, 2, · · · (4.7)

Substituting (4.5) and (4.6) into (4.4), we obtain

∞∑
m=0

um(h, ς) = u(h, 0) + Y−1[1 + δ(s − 1)]

Y
P1

( ∞∑
m=0

um(h, ς)
)
+

∞∑
m=0

Am(u)


 . (4.8)

Similarly,
u0(h, ς) = u(h, 0), (4.9)

u1(h, ς) = Y−1 [(1 + δ(s − 1))Y{P1(u0) +A0}] ,

In general for m ≥ 1, it can be written as

um+1(h, ς) = Y−1 [(1 + δ(s − 1))Y{P1(um) +Am}] .

5. Numerical problems

This section marks a novel application of the Homotopy perturbation transform method and the
Adomian decomposition transform method utilizing the Caputo-Fabrizio operator. Our focus lies on
solving two significant fractional partial differential equations: the fractional heat transfer equation and
the porous media equation.

Example 5.1. We consider the nonlinear heat equation called the porous media equation [26]:

∂u(h, ς)
∂ς

=
∂

∂h

(
u

m(h, ς)
∂u(h, ς)
∂h

)
, (5.1)

where m is a rational number. This equation often occurs in nonlinear problems of heat and mass
transfer, combustion theory and flows in porous media [23]. For instance, it describes unsteady heat
transfer in a quiescent medium with the heat diffusivity as a power-law function of a temperature [27].

Let us consider m = 1 in Eq (5.1).
Now we consider the fractional porous media equation as [28]:

∂δu(h, ς)
∂ςδ

=
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)
, 0 < δ ≤ 1, (5.2)

with the initial condition
u(h, 0) = h.
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Employing YT to Eq (5.2), we obtain

Y

(
∂δu

∂ςδ

)
= Y

[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]
. (5.3)

On simplification, we have

1
1 + δ(s − 1)

{Y[u(h, ς)] − su(h, 0)} = Y
[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]
, (5.4)

Y[u(h, ς)] = su(h, 0) + [1 + δ(s − 1)]Y
[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]
. (5.5)

By employing the inverse of YT, we obtain

u(h, ς) = u(h, 0) + Y−1
[
(1 + δ(s − 1))

{
Y

[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]}]
,

u(h, ς) = h + Y−1
[
(1 + δ(s − 1))

{
Y

[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]}]
.

(5.6)

In terms of HPM, we have
∞∑

k=0

ϵk
uk(h, ς) = h + Y−1

[
(1 + δ(s − 1))Y

[
∂

∂h

( ∞∑
k=0

ϵkHk(u)
)]]
. (5.7)

Here, the nonlinears term read

H0(u) = u0u0h,

H1(u) = u0u1h + u1u0h,

H2(u) = u0u2h + u1u1h + u2u0h,

...

Now by equating the coefficient of ϵ, we have

ϵ0 : u0(h, ς) = h,

ϵ1 : u1(h, ς) = Y−1
[
(1 + δ(s − 1))Y

[
∂

∂h

( ∞∑
k=0

ϵkH0(u)
)]]
=

(
1 + δς − δ

)
,

ϵ2 : u2(h, ς) = Y−1
[
(1 + δ(s − 1))Y

[
∂

∂h

( ∞∑
k=0

ϵkH1(u)
)]]
= 0,

...

Finally, we approximate the analytical solution in series form as

u(h, ς) = u0(h, ς) + u1(h, ς) + u2(h, ς) + · · · .

u(h, ς) = h +
(
1 + δς − δ

)
+ · · · .

If δ = 1, then Eq (5.2) can be reduced to the formula:

u(h, ς) = h + ς.
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Now apply Yang transform decomposition method
Using the Yang transform by Eq (5.2), we get

Y

{
∂δu

∂ςδ

}
= Y

[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]
. (5.8)

On simplification, we have

1
1 + δ(s − 1)

{Y[u(h, ς)] − su(h, 0)} = Y
[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]
, (5.9)

Y[u(h, ς)] = su(h, 0) + (1 + δ(s − 1))Y
[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]
. (5.10)

By using the inverse of Yang transform, we obtain

u(h, ς) = u(h, 0) + Y−1
[
(1 + δ(s − 1))

{
Y

[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]}]
,

u(h, ς) = h + Y−1
[
(1 + δ(s − 1))

{
Y

[
∂

∂h

(
u(h, ς)

∂u(h, ς)
∂h

)]}]
.

(5.11)

The series form solution of u(h, ς) is as:

u(h, ς) =
∞∑

m=0

um(h, ς), (5.12)

with u(h, ς)∂u(h,ς)
∂h
=

∑∞
m=0Am, shows the nonlinear term in terms of Adomian polynomial as, and

∞∑
m=0

um(h, ς) = u(h, 0) + Y−1
[
(1 + δ(s − 1))

{
Y

[
∂

∂h

( ∞∑
m=0

Am

)]}]
,

∞∑
m=0

um(h, ς) = h + Y−1
[
(1 + δ(s − 1))

{
Y

[
∂

∂h

( ∞∑
m=0

Am

)]}]
.

(5.13)

Here, the nonlinear terms read,

A0 = u0u0h,

A1 = u0u1h + u1u0h,

A2 = u0u2h + u1u1h + u2u0h,

...

Similarly,
u0(h, ς) = h.

On m = 0
u1(h, ς) =

(
1 + δς − δ

)
.
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On m = 1
u2(h, ς) = 0.

Finally, we approximate the analytical solution in series form as

u(h, ς) =
∞∑

m=0

um(h, ς) = u0(h, ς) + u1(h, ς) + u2(h, ς) + · · · .

u(h, ς) = h +
(
1 + δς − δ

)
+ · · · .

The exact result at δ = 1 is
u(h, ς) = h + ς. (5.14)

Example 5.2. Assuming that fractional heat transfer equation [28]

∂δu(h, ς)
∂ςδ

=
∂2u(h, ς)
∂h2

− 2u3(h, ς), 0 < δ ≤ 1, (5.15)

with the initial condition

u(h, 0) =
1 + 2h
h2 + h + 1

.

Employing the YT (5.15), we get

Y

(
∂δu

∂ςδ

)
= Y

[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]
. (5.16)

On simplification, we have

1
1 + δ(s − 1)

{Y[u(h, ς)] − su(h, 0)} = Y
[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]
, (5.17)

Y[u(h, ς)] = su(h, 0) + [1 + δ(s − 1)]Y
[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]
. (5.18)

By employing the inverse of YT, we obtain

u(h, ς) = u(h, 0) + Y−1
[
(1 + δ(s − 1))

{
Y

[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]}]

,

u(h, ς) =
1 + 2h
h2 + h + 1

+ Y−1
[
(1 + δ(s − 1))

{
Y

[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]}]

.

(5.19)

In terms of HPM, we have

∞∑
k=0

ϵk
uk(h, ς) =

1 + 2h
h2 + h + 1

+

(
Y−1

[
(1 + δ(s − 1))Y

[
∂2u(h, ς)
∂h2

−

∞∑
k=0

ϵkHk(u)
]])
. (5.20)

AIMS Mathematics Volume 8, Issue 11, 26543–26560.



26553

Here, the nonlinear terms read

H0(u) = 2u3
0(h, ς),

H1(u) = 6u2
0(h, ς)u1(h, ς),

H2(u) = 6u0(h, ς)u2
1(h, ς) + 6u2

0(h, ς)u2(h, ς),
...

Now by equating the coefficient of ϵ, we have

ϵ0 : u0(h, ς) =
1 + 2h
h2 + h + 1

,

ϵ1 : u1(h, ς) = Y−1

(1 + δ(s − 1))Y
[
∂2u(h, ς)
∂h2

−

∞∑
k=0

ϵkH0(u)
] = −6(1 + 2h)

(h2 + h + 1)2

(
1 + δς − δ

)
,

ϵ2 : u2(h, ς) = Y−1

(1 + δ(s − 1))Y
[
∂2u(h, ς)
∂h2

−

∞∑
k=0

ϵkH1(u)
] = 72(1 + 2h)

(h2 + h + 1)3

(
δ − 2δ + δ2ς

2

2
− 2δ(δ − 1)ς + 1

)
,

ϵ3 : u3(h, ς) = Y−1

(1 + δ(s − 1))Y
[
∂2u(h, ς)
∂h2

−

∞∑
k=0

ϵkH2(u)
] = (

−
1296(1 + 2h)
(h2 + h + 1)4 +

432(1 + 2h)3

(h2 + h + 1)5−

216(1 + 2h)3

(h2 + h + 1)5

)(
3δ(−2δ + 1 + δ2)ς +

δ3ς3

6
−

3δ2(δ − 1)ς2

2
+ 3δ2 − 3δ + 1 − δ3

)
,

...

Finally, we approximate the analytical solution in series form as

u(h, ς) = u0(h, ς) + u1(h, ς) + u2(h, ς) + u3(h, ς) + · · · .

u(h, ς) =
1 + 2h
h2 + h + 1

+
−6(1 + 2h)

(h2 + h + 1)2

(
1 + δς − δ

)
+

72(1 + 2h)
(h2 + h + 1)3

(
δ − 2δ + δ2ς

2

2
− 2δ(δ − 1)ς + 1

)
+

(
−

1296(1 + 2h)
(h2 + h + 1)4 +

432(1 + 2h)3

(h2 + h + 1)5 −
216(1 + 2h)3

(h2 + h + 1)5

)(
3δ(−2δ + 1 + δ2)ς +

δ3ς3

6

−
3δ2(δ − 1)ς2

2
+ 3δ2 − 3δ + 1 − δ3

)
+ · · · .

Now we apply Yang transform decomposition method
Employing the YT by Eq (5.15), we obtain

Y

{
∂δu

∂ςδ

}
= Y

[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]
. (5.21)

On simplification, we have

1
1 + δ(s − 1)

{Y[u(h, ς)] − su(h, 0)} = Y
[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]
, (5.22)

Y[u(h, ς)] = su(h, 0) + (1 + δ(s − 1))Y
[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]
. (5.23)
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By employing the inverse of YT, we obtain

u(h, ς) = u(h, 0) + Y−1
[
(1 + δ(s − 1))

{
Y

[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]}]

,

u(h, ς) =
1 + 2h
h2 + h + 1

+ Y−1
[
(1 + δ(s − 1))

{
Y

[
∂2u(h, ς)
∂h2

− 2u3(h, ς)
]}]

.

(5.24)

The series form solution of u(h, ς) is as:

u(h, ς) =
∞∑

m=0

um(h, ς). (5.25)

with 2u3(h, ς) =
∑∞

m=0Am, shows the nonlinear term in terms of Adomian polynomial as, and

∞∑
m=0

um(h, ς) = u(h, 0) − Y−1
[
(1 + δ(s − 1))

{
Y

[
∂2u(h, ς)
∂h2

−

∞∑
m=0

Am

]}]
,

∞∑
m=0

um(h, ς) =
1 + 2h
h2 + h + 1

− Y−1
[
(1 + δ(s − 1))

{
Y

[
∂2u(h, ς)
∂h2

−

∞∑
m=0

Am

]}]
.

(5.26)

Here, the nonlinear terms read,

A0 = 2u3
0(h, ς),

A1 = 6u2
0(h, ς)u1(h, ς),

A2 = 6u0(h, ς)u2
1(h, ς) + 6u2

0(h, ς)u2(h, ς),
...

Similarly,

u0(h, ς) =
1 + 2h
h2 + h + 1

.

For m = 0
u1(h, ς) =

−6(1 + 2h)
(h2 + h + 1)2

(
1 + δς − δ

)
.

For m = 1

u2(h, ς) =
72(1 + 2h)

(h2 + h + 1)3

(
δ − 2δ + δ2ς

2

2
− 2δ(δ − 1)ς + 1

)
.

For m = 2

u3(h, ς) =
(
−

1296(1 + 2h)
(h2 + h + 1)4 +

432(1 + 2h)3

(h2 + h + 1)5−
216(1 + 2h)3

(h2 + h + 1)5

)(
3δ(−2δ+1+δ2)ς+

δ3ς3

6
−

3δ2(δ − 1)ς2

2
+3δ2−3δ+1−δ3

)
.

Finally, we approximate the analytical solution in series form as

u(h, ς) =
∞∑

m=0

um(h, ς) = u0(h, ς) + u1(h, ς) + u2(h, ς) + u3(h, ς) + · · · .
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u(h, ς) =
1 + 2h
h2 + h + 1

+
−6(1 + 2h)

(h2 + h + 1)2

(
1 + δς − δ

)
+

72(1 + 2h)
(h2 + h + 1)3

(
δ − 2δ + δ2ς

2

2
− 2δ(δ − 1)ς + 1

)
+

(
−

1296(1 + 2h)
(h2 + h + 1)4 +

432(1 + 2h)3

(h2 + h + 1)5 −
216(1 + 2h)3

(h2 + h + 1)5

)(
3δ(−2δ + 1 + δ2)ς +

δ3ς3

6
−

3δ2(δ − 1)ς2

2

+ 3δ2 − 3δ + 1 − δ3
)
+ · · · .

The result obtained above is the same as the result obtained. If δ = 1, the above can be rearranged
as:

u(h, ς) =
1 + 2h
h2 + h + 1

−
6(1 + 2h)

(h2 + h + 1)2ς +
36(1 + 2h)

(h2 + h + 1)3ς
2 −

216(1 + 2h)
(h2 + h + 1)4ς

3 + · · · . (5.27)

6. Results and discussion

Figure 1 presents a comprehensive comparison of solutions for the fractional porous media equation
in Example 5.1. Panel (a) displays the exact solution, showcasing its precise representation. In panel
(b), the Yang transform decomposition method (YTDM) solution is depicted, demonstrating its efficacy
in approximating the true solution. The Homotopy Perturbation Transform Method (HPTM) solution
is showcased in the same panel, marked as (c), highlighting its accuracy and alignment with the exact
solution. Notably, panel (c) explores the influence of different fractional orders δ on the solution
u(h, ς), providing insights into how changing δ impacts the overall behavior of the solution. Figure 2
extends the analysis to the fractional heat transfer equation of Example 5.2. In panel (a), the YDTM
solution is illustrated, emphasizing its ability to approximate the solution profile. Subsequently, panel
(b) showcases the HPTM solution, revealing its remarkable agreement with the true solution. Similar to
the previous figure, panel (c) presents the impact of varying fractional orders δ on the solution u(h, ς),
offering a comprehensive exploration of the parameter’s influence on the solution’s characteristics.
These graphical representations provide valuable insights into the performance and accuracy of the
Yang transform method and homotopy perturbation transform method in approximating solutions for
fractional porous media and heat transfer equations. The varying effects of fractional order δ on
the solutions underscore the nuanced interplay between mathematical techniques and the underlying
physical phenomena.
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Figure 1. The (a) show that the exact (b) represent YTDM and HPTM (c) different fractional
order of δ for u(h, ς).

AIMS Mathematics Volume 8, Issue 11, 26543–26560.



26557

Figure 2. The (a) show that YTDM, (b) represents HPTM and (c) different fractional order
of δ for u(h, ς).

7. Conclusions

In conclusion, the homotopy perturbation transform method (HPTM) and the Yang transform
decomposition method (YTDM) are two powerful numerical techniques used to solve fractional
partial differential equations (FPDEs) arising in various fields of science and engineering. The
application of these methods to fractional porous media and fractional heat transfer equations has
shown promising results, with both techniques being able to accurately approximate the solutions of
these complex equations. The HPTM and YTDM offer several advantages over traditional numerical
methods, including their ability to handle nonlinear and non-homogeneous equations, their simplicity
in implementation, and their efficiency in computation. These methods have also been shown to have
high convergence rates, which allows for faster and more accurate solutions to be obtained. Overall,
the HPTM and YTDM are valuable tools for solving fractional porous media and fractional heat
transfer equations, and their continued development and application are expected to lead to significant
advancements in the field of fractional calculus and its applications.
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