Research article

Distinguishing colorings of graphs and their subgraphs

Baolin Ma ${ }^{1, *}$ and Chao Yang ${ }^{2}$
${ }^{1}$ School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
${ }^{2}$ Center of Intelligent Computing and Applied Statistics, School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China
* Correspondence: Email: xxdsmbl@163.com.

Abstract

In this paper, several distinguishing colorings of graphs are studied, such as vertex distinguishing proper edge coloring, adjacent vertex distinguishing proper edge coloring, vertex distinguishing proper total coloring, adjacent vertex distinguishing proper total coloring. Finally, some related chromatic numbers are determined, especially the comparison of the correlation chromatic numbers between the original graph and the subgraphs are obtained.

Keywords: vertex distinguishing edge coloring; adjacent vertex distinguishing edge coloring; vertex distinguishing total coloring; adjacent vertex distinguishing total coloring Mathematics Subject Classification: 05C15

1. Introduction

Graph distinguishing coloring is a hot issue in the area of graph coloring theory. As an application, graph distinguishing colorings may be connected with the frequency assignment problem in wireless communication. The vertices (nodes) of graphs (networks) represent transmitters, the set $C[u, \pi]$ of colors assigned to a vertex u and the edges (links) incident to u under a total coloring π indicates the frequencies usable. For a pair of adjacent vertices u and v, the property $C[u, \pi] \neq C[v, \pi]$ ensures the corresponding two stations can operate on a wide range of frequencies without the danger of interfering with each other.

We use standard notation and terminology of graph theory [1]. Some additional notations will be used. The shorthand notation $[m, n]$ stands for a set $\{m, m+1, \ldots, n\}$, where integers n and m hold $n>m \geq 0$. The set of vertices that are adjacent to a vertex u of G is denoted as $N(u)$, thus, the degree $d_{G}(u)$ of the vertex u is equal to the cardinality $|N(u)| . N(u)$ is also called the neighborhood of the vertex u. The edge neighborhood of the vertex u is defined as $N_{e}(u)=\{u v: v \in N(u)\}$. Let $\Delta(G)$ (or
$\Delta)$ and $\delta(G)$ denote the maximum degree and minimum degree of G, respectively. Let $n_{d}(G)$ be the number of vertices of degree d in G. In a graph, a k-degree vertex is a vertex of degree k, especially, a Δ-vertex is a vertex of maximum degree; a leaf is a vertex of degree one; a k-cycle is a cycle of k vertices.

Graphs mentioned here are undirected, connected and simple, and all graph colorings are proper. A k-total coloring π of a graph G from a nonempty subset $S \subset V(G) \cup E(G)$ to [1,k] (also, $[1, k]$ is called a color set) satisfies that $\pi(x) \neq \pi(y)$ for any two adjacent/incident elements $x, y \in S$. The set $\left\{\pi(u x): u x \in N_{e}(u)\right\}$ is called the edge-color set of the vertex u, and denoted by $C(u, \pi)$. Notice that an edge-color set $C(u, \pi)$ is never a multiset, that is, $|C(u, \pi)|=d_{G}(u)$. Let π be a total coloring of G, the set $C[u, \pi]=C(u, \pi) \cup\{\pi(u)\}$ is called a closed color set of vertex u. Clearly, $|C[u, \pi]|=d_{G}(u)+1$. The following distinguishing constraints will be used in the following Definitions:
(A1) $C(u, \pi) \neq C(v, \pi)$ for distinct vertices $u, v \in V(G)$;
(A2) $C(u, \pi) \neq C(v, \pi)$ for each edge $u v \in E(G)$;
(A3) $C[u, \pi] \neq C[v, \pi]$ for distinct vertices $u, v \in V(G)$;
(A4) $C[u, \pi] \neq C[v, \pi]$ for each edge $u v \in E(G)$.
For the purpose of simplicity, two notations $\pi(V(G))=\{\pi(x): x \in V(G)\}$ and $\pi(E(G))=\{\pi(x y)$: $x y \in E(G)\}$ will be used here. We reformulate the definitions of several known distinguishing colorings of graphs occurred in literature.

Definition 1.1. [2,3] Let $\pi: E(G) \rightarrow[1, k]$ be an edge coloring of G. If (A1) holds, then π is called a $v e r t e x$ distinguishing edge k-coloring (k-vdec) of G. The vdec chromatic number of G is the minimum number of k colors required for which G admits a k-vdec, and denoted by $\chi_{s}^{\prime}(G)$.
Definition 1.2. [4] Let $\pi: E(G) \rightarrow[1, k]$ be an edge coloring of G. If (A2) holds, then π is called an adjacent vertex distinguishing edge k-coloring (k-avdec) of G. The avdec chromatic number of G is the minimum number of k colors required for which G admits a k-avdec, and denoted by $\chi_{\text {as }}^{\prime}(G)$.

Definition 1.3. [5] Let $\pi: V(G) \cup E(G) \rightarrow[1, k]$ be a total coloring of G. If (A3) holds, then π is called a vertex distinguishing total k-coloring (k-vdtc) of G. The vdtc chromatic number of G is the minimum number of k colors required for which G admits a k-vdtc, and denoted by $\chi_{s}^{\prime \prime}(G)$.

Definition 1.4. [6] Let $\pi: V(G) \cup E(G) \rightarrow[1, k]$ be a total coloring of G. If (A4) holds, then π is called an adjacent vertex distinguishing total k-coloring (k-avdtc) of G. The avdtc chromatic number of G is the minimum number of k colors required for which G admits a k-avdtc, and denoted by $\chi_{\text {as }}^{\prime \prime}(G)$.

A graph G is called a vdec no-covered graph (resp. a vdtc no-covered graph) if there exists a proper subgraph H of G such that $\chi_{s}^{\prime}(H)>\chi_{s}^{\prime}(G)$ (resp. $\left.\chi_{s}^{\prime \prime}(H)>\chi_{s}^{\prime \prime}(G)\right)$. Similarly, a graph G is called an avdec no-covered graph (resp. an avdtc no-covered graph) if G contains a proper subgraph H with $\chi_{a s}^{\prime}(H)>\chi_{a s}^{\prime}(G)\left(\right.$ resp. $\left.\chi_{a s}^{\prime \prime}(H)>\chi_{a s}^{\prime \prime}(G)\right)$.

The following three lemmas will be used.
Lemma 1.1. [7] For a graph G of order at least three, $\chi_{s}^{\prime}(G) \leq|V(G)|+1$.
Lemma 1.2. [8] For integers $n, m \geq 3, \chi_{s}^{\prime}\left(C_{m}\right)=n$ if and only if either n is odd and $m \in\left[\frac{n^{2}-4 n+5}{2}\right.$, $\left.\frac{n^{2}-n-6}{2}\right] \cup\left\{\frac{n^{2}-n}{2}\right\}$, or n is even and $m \in\left[\frac{n^{2}-3 n-2}{2}, \frac{n^{2}-3 n}{2}\right] \cup\left[\frac{n^{2}-3 n+4}{2}, \frac{n^{2}-n}{2}\right]$.

Lemma 1.3. Let K_{n}, P_{n} and C_{n} be a complete graph, path and cycle on n vertices, respectively; and let $K_{m, n}$ be a complete bipartite graph on $m+n$ vertices. Then
(1) $[4] \chi_{a s}^{\prime}\left(K_{m, n}\right)=n$ for $n>m>0$ and $\chi_{a s}^{\prime}\left(K_{n, n}\right)=n+2$ for $n \geq 2$.
(2) [5] $\chi_{s}^{\prime \prime}\left(K_{m, n}\right)=n+1$ for $n>m \geq 2$, and $\chi_{s}^{\prime \prime}\left(K_{n, n}\right)=n+3$ for $n \geq 3$.
(3) $[9] \chi_{a s}^{\prime \prime}\left(K_{2 m+2}\right)=\chi_{a s}^{\prime \prime}\left(K_{2 m+1}\right)=2 m+3$ for all integers $m \geq 1$.
(4) $[6] \chi_{a s}^{\prime \prime}\left(P_{n}\right)=4$ for $n \geq 4 ; \chi_{a s}^{\prime \prime}\left(C_{n}\right)=4$ for $n \geq 6$.

In 1997, Burris and Schelp [2] studied the vertex distinguishing edge colorings (vdec) on graphs. Independently, as "observability" of a graph, the concept of the vdec was proposed by Černý, Horňák and Soták [3]. This graph coloring has absorbed researchers' intentions. Surprisingly, determining the vdec chromatic numbers of graphs seems to be quite difficult, even for some special graphs. In 2002, Balister, Bollobás and Schelp [10] proved that $k \leq \chi_{s}^{\prime}(G) \leq k+5$ for a graph G with $\Delta(G)=2$, $n_{1}(G) \leq k$ and $n_{2}(G) \leq\binom{ k}{2}$. Zhang, Liu and Wang [4] introduced the adjacent vertex distinguishing edge colorings (avdec) of graphs, a weaker version of a vdec. However, finding avdec chromatic number of graphs is not easy, even for special planar graphs [11]. Three conjectures on graph distinguishing colorings are listed as follows.
Conjecture 1.1. [2] For a graph G of order at least three, if k is the minimal integer such that $\binom{k}{d} \geq n_{d}(G)$ for all d with $\delta(G) \leq d \leq \Delta(G)$, then $\chi_{s}^{\prime}(G)=k$ or $k+1$.
Conjecture 1.2. [4] For a graph G of order at least three, if G is not a cycle on five vertices, then $\chi_{a s}^{\prime}(G) \leq \Delta(G)+2$.
Conjecture 1.3. [6] For a graph G of order at least three, $\chi_{a s}^{\prime \prime}(G) \leq \Delta(G)+3$.
In [10,12-15], some results on Conjecture 1.1 were obtained. Conjecture 1.2 was partially answered in [16] and [17]. A good result on Conjecture 1.2, due to Hatami [18], is that if G has no isolated edges and $\Delta(G)>10^{20}$, then $\chi_{a s}^{\prime}(G) \leq \Delta(G)+300$. Since $\Delta(G) \leq \chi_{a s}^{\prime}(G)$, the Hatami's result implies that $\lim _{\Delta(G) \rightarrow \infty} \frac{\chi_{a s}^{\prime}(G)}{\Delta(G)}=1$. Conjecture 1.3 has been verified for some special graphs in [6] and [19]. It is noticeable, Conjecture 1.2 implies that G is not an avdec no-covered graph if $\chi_{a s}^{\prime}(G)=\Delta(G)+2$; and Conjecture 1.3 implies that G is not an avdtc no-covered graph if $\chi_{a s}^{\prime \prime}(G)=\Delta(G)+3$.

2. Vertex distinguishing edge and total colorings

Theorem 2.1. Each connected graph is a proper subgraph of a vdec no-covered Hamilton graph.
Proof. First of all, we prove the following claim.
Claim. Let G be a Hamilton graph with $\delta(G) \geq 3$. Then G has a vdec no-covered Hamilton graph with $|E(G)|-1$ edges.

The proof of Claim. Suppose that a Hamilton graph G on n vertices admits a k-vdec π with $k=$ $\chi_{s}^{\prime}(G)$. Without loss of generality, $\pi(u v)=1$ for a certain edge $u v$ of a Hamilton cycle of G. By Lemma 1.1, two cases appear as follows:

For $k<n+1$ we take a cycle C_{m} on $m=\binom{n}{2}$ vertices. Clearly, $\chi_{s}^{\prime}\left(C_{m}\right)=n$ by Lemma 1.2. Let ϕ be a n-vdec of C_{m}, and $\phi(x y)=1$ for a certain edge $x y \in E\left(C_{m}\right)$. We construct a new graph G^{*} by deleting two edges $u v$ and $x y$ from G and C_{m} respectively, and then join u with x, v with y together. Next, we define an edge coloring ψ of G^{*} as: $\psi(s t)=\pi(s t)$ if $s t \in(E(G) \backslash\{u v\}) \subset E\left(G^{*}\right) ; \psi(s t)=\phi(s t)$ if
$s t \in\left(E\left(C_{m}\right) \backslash\{x y\}\right) \subset E\left(G^{*}\right)$, and $\psi(u x)=\psi(v y)=1$. It is easy to see that $C(a, \psi) \neq C(b, \psi)$ for distinct vertices $a, b \in V\left(G^{*}\right)$, since degrees $d_{G^{*}}(x) \geq 3$ for $x \in V\left(G^{*}\right) \backslash V\left(C_{m}\right)$. Immediately, $\chi_{s}^{\prime}\left(G^{*}\right) \leq n$, and furthermore $\chi_{s}^{\prime}\left(G^{*}\right)=n$ since G^{*} has $\binom{n}{2}$ vertices of degree two. Notice that $C_{m+n} \subset G^{*}$, and $m+n=\binom{n}{2}+n=\binom{n+1}{2}$ as well as $\chi_{s}^{\prime}\left(C_{m+n}\right)=n+1$ according to Lemma 1.2. Therefore, G^{*} is a vdec no-covered graph.

If $k=n+1$, we take a cycle C_{m} on $m=\binom{n+1}{2}$ vertices, and then we still have a graph H^{*} obtained from G and C_{m} by the same construction as the above one. Clearly, $\chi_{s}^{\prime}\left(H^{*}\right)=n+1$, and H^{*} is vdec no-covered, since H^{*} contains a Hamilton cycle C_{m+n} with $m+n=\binom{n+1}{2}+n>\binom{n+1}{2}$, which means $\chi_{s}^{\prime}\left(C_{m+n}\right)>n+1$. The proof of the claim is finished.

By adding vertices and edges to a given connected graph H, we can obtain a Hamilton graph G with $\delta(G) \geq 3$ and G has a Hamilton cycle containing an edge $u v \notin E(H)$ and $\pi(u v)=1$ under a k-vdec π of G. The theorem follows from the above claim.

The construction of the graph G^{*} in the proof of Theorem 2.1 enables us to obtain the following result:

Corollary 2.1. For given positive integers M and N, there is a vdec no-covered Hamilton graph G having $\Delta(G) \geq M$ and $|V(G)| \geq N$.
Theorem 2.2. There exist Hamilton graphs $H_{0}, H_{1}, \ldots, H_{m}$ with $m \geq 1$ such that H_{i} is a proper subgraph of H_{i-1} and $\chi_{s}^{\prime}\left(H_{i}\right)>\chi_{s}^{\prime}\left(H_{i-1}\right)$ for $i \in[1, m]$.

Proof. For $m=1$, the conclusion is deduced by Theorem 2.1. The case $m \geq 2$ is discussed as follows. Let N be a positive integer, and let $G_{1}, G_{2}, \ldots, G_{m}$ be m vertex-disjoint Hamilton graphs with $\left|G_{i}\right|=$ $N+i-1,2 \leq k_{i}=\chi_{s}^{\prime}\left(G_{i}\right) \leq N, \Delta\left(G_{j-1}\right)<\delta\left(G_{j}\right)$ for $j \in[2, m]$, and $\delta\left(G_{1}\right) \geq 3$. Suppose that π_{i} is a k_{i}-vdec of G_{i} for $i \in[1, m]$. Since $k_{i} \geq 2$, we have two edges $x_{i} y_{i}$ and $u_{i} v_{i}$ of a Hamilton cycle T_{i} of G_{i} with $\pi_{i}\left(x_{i} y_{i}\right)=1$ and $\pi_{i}\left(u_{i} v_{i}\right)=2, i \in[1, m]$. We construct a graph G by means of $G_{1}, G_{2}, \ldots, G_{m}$ in the following two steps.

Step 1. Delete edges $u_{1} v_{1}$ of $G_{1}, u_{m} v_{m}$ of G_{m}, and $x_{i} y_{i}$ and $u_{i} v_{i}$ of G_{i} for $i \in[2, m-1]$, respectively.
Step 2. Join x_{i} with y_{i-1}, y_{i} with x_{i-1}, u_{i} with v_{i-1} and v_{i} with u_{i-1}, respectively, $i \in[3, m-1]$; join u_{2} with v_{1}, v_{2} with u_{1}; and join u_{m} with v_{m-1}, v_{m} with u_{m-1}.

Let C_{n} be a cycle on $n=\binom{N}{2}$ vertices. Suppose that an edge $x_{0} y_{0}$ of C_{n} is labelled as $\pi\left(x_{0} y_{0}\right)=1$ under a N-vdec π of C_{n} from Lemma 1.2. Now, we have a graph H_{0} obtained by joining $x_{0} \in V\left(C_{n}\right)$ with $y_{1} \in V(G), y_{0} \in V\left(C_{n}\right)$ with $x_{1} \in V(G)$, and removing the edge $x_{0} y_{0}$. Clearly, H_{0} is hamiltonian by the above construction. We define an edge coloring θ of H_{0} as: $\theta(w z)=\pi_{i}(w z)$ when $w z \in E\left(G_{i}\right) \backslash\left\{x_{i} y_{i}, u_{i} v_{i}\right\}$ for $i \in[2, m-1] ; \theta\left(x_{i} y_{i-1}\right)=\theta\left(y_{i} x_{i-1}\right)=1$ for $i \in[3, m-1] ; \theta\left(u_{i} v_{i-1}\right)=\theta\left(v_{i} u_{i-1}\right)=2$ for $i \in[2, m]$; $\theta\left(x_{1} y_{0}\right)=\theta\left(y_{1} x_{0}\right)=1$ and $\theta(w z)=\pi(w z)$ when $w z \in E\left(C_{n}\right) \backslash\left\{x_{0} y_{0}\right\} ; \theta\left(u_{m} v_{m-1}\right)=\theta\left(v_{m} u_{m-1}\right)=2$ and $\theta(w z)=\pi_{m}(w z)$ for $w z \in E\left(G_{m}\right) \backslash\left\{u_{m} v_{m}\right\}$. By the choices of C_{n} and $G_{1}, G_{2}, \ldots, G_{m}$, we have $C(w, \theta) \neq C(z, \theta)$ for distinct vertices $w, z \in V\left(H_{0}\right)$ and $\chi_{s}^{\prime}\left(H_{0}\right) \leq N$.

Deleting every edge of $S_{1}=E\left(H_{0}\right) \cap\left(E\left(G_{1}\right) \backslash E\left(T_{1}\right)\right)$ from H_{0} results in a graph H_{1}. Notice that H_{1} is hamiltonian and has $\left|G_{1}\right|+n=N+\binom{N}{2}=\binom{N+1}{2}$ vertices of degree 2 that form a set $X_{1}^{(2)}$, which implies $\chi_{s}^{\prime}\left(H_{1}\right) \geq N+1 \geq 1+\chi_{s}^{\prime}\left(H_{0}\right)$. By Lemm 1.2 we have $\chi_{s}^{\prime}\left(H_{1}\right)=N+1$, since $d_{H_{1}}(z) \geq 3$ for $z \in$ $V\left(H_{1}\right) \backslash X_{1}^{(2)}$. In general, we have Hamilton graphs $H_{i}=H_{i-1}-S_{i}$, where $S_{i}=E\left(H_{i-1}\right) \cap\left(E\left(G_{i}\right) \backslash E\left(T_{i}\right)\right)$ with $\chi_{s}^{\prime}\left(H_{i}\right)=N+i$, since H_{i} has $\left|G_{i}\right|+\binom{N+i-1}{2}=(N+i-1)+\binom{N+i-1}{2}=\binom{N+i}{2}$ vertices of degree 2 that form a set $X_{i}^{(2)}$ such that $d_{H_{i}}(z) \geq 3$ for $z \in V\left(H_{i}\right) \backslash X_{i}^{(2)}, i \in[1, m]$. Continue with this method,
finally, we obtain H_{m} that is a cycle of order $M=\left|G_{m}\right|+\binom{N+m-1}{2}=(N+m-1)+\binom{N+m-1}{2}=\binom{N+m}{2}$ with $\chi_{s}^{\prime \prime}\left(H_{m}\right)=N+m$. The proof is completed.

Theorem 2.3. Each Hamilton graph is a proper subgraph of some vdtc no-covered Hamilton graph.
Proof. By Lemma 1.3, $\chi_{s}^{\prime \prime}\left(K_{n, n-1}\right)=n+1$ and $\chi_{s}^{\prime \prime}\left(K_{n-1, n-1}\right)=n+2$ for $n \geq 4$. Let G be a graph having a Hamilton cycle $C_{m}=x_{1} x_{2} \cdots x_{m} x_{1}$ and let n be so large such that $n-1 \geq \max \{\Delta(G), 7\}$ and $n-5 \geq k=\chi_{s}^{\prime \prime}(G)$. Since $K_{n-1, n-1}=K_{n, n-1}-\{u\}$ is hamiltonian, we have a Hamilton cycle $C_{2 n-2}=u_{1} v_{1} u_{2} v_{2} \cdots u_{n-1} v_{n-1} u_{1}$ of $K_{n-1, n-1}$, where u is adjacent to v_{i} for $i \in[1, n-1]$ in $K_{n, n-1}$. Let $H=C_{4}+\left\{w_{2} w_{4}\right\}$, where $C_{4}=w_{1} w_{2} w_{3} w_{4} w_{1}$.

Let f be a $(n+1)$-vdtc of $K_{n, n-1}$, without loss of generality, $f\left(v_{1} u_{2}\right)=1, f\left(u_{1} v_{1}\right)=2$ and $f\left(u_{1} v_{n-1}\right)=$ 3 ; and let g be a k-vdtc of G. Select an edge $u_{i} v_{i}$ with $2 \leq i \leq n-1$. We can modify the colors of elements of $V(G) \cup E(G)$ under the coloring g such that some edge $x_{j} x_{j+1}$ of C_{m} holds $g\left(x_{j}\right) \neq f\left(v_{i}\right)$, $g\left(x_{j+1}\right) \neq f\left(u_{i}\right), g\left(x_{j} x_{j+1}\right)=f\left(u_{i} v_{i}\right)$ (if $k<f\left(u_{i} v_{i}\right)$, we set $g\left(x_{j} x_{j+1}\right)=f\left(u_{i} v_{i}\right)$ directly). Now, we define a total coloring h of H as: $\left\{h\left(w_{i}\right): i \in[1,4]\right\}=\{n-2, n-1, n, n+1\}$ with $h\left(w_{1}\right) \neq f\left(v_{1}\right), h\left(w_{2}\right) \neq f\left(u_{2}\right)$, $h\left(w_{3}\right) \neq f\left(v_{n-1}\right)$ and $h\left(w_{4}\right) \neq f\left(u_{1}\right) ; h\left(w_{1} w_{2}\right)=1, h\left(w_{2} w_{3}\right)=2, h\left(w_{3} w_{4}\right)=3, h\left(w_{1} w_{4}\right)=4$ and $h\left(w_{2} w_{4}\right)=5$.

We do: (1) delete $w_{1} w_{2}$ of H and $v_{1} u_{2}$ of $K_{n, n-1}$, and join w_{2} with u_{2}, join w_{1} with v_{1}; (2) delete $w_{3} w_{4}$ of H and $u_{1} v_{n-1}$ of $K_{n, n-1}$, and join w_{3} with v_{n-1}, join w_{4} with u_{1}; (3) delete the edge $x_{j} x_{j+1}$ of G and the edge $u_{i} v_{i}$ of $K_{n, n-1}$, and join x_{j} with u_{i}, join x_{j+1} with v_{i}. Through the above measures, we get a connected graph G^{*} and G^{*} has a total coloring θ as folows: $\theta\left(V\left(G^{*}\right)\right)=f\left(V\left(K_{n, n-1}\right)\right) \cup g(V(G)) \cup$ $h(V(H))$,

$$
\begin{aligned}
& \theta\left(E\left(G^{*}\right) \backslash\left\{w_{2} u_{2}, w_{1} v_{1}, w_{3} v_{n-1}, w_{4} u_{1}, x_{j} u_{i}, x_{j+1} v_{i}\right\}\right) \\
= & f\left(E\left(K_{n, n-1}\right) \backslash\left\{v_{1} u_{2}, u_{1} v_{n-1}\right\}\right) \cup g\left(E(G) \backslash\left\{x_{j} x_{j+1}\right\}\right) \cup h\left(E(H) \backslash\left\{w_{1} w_{2}, w_{3} w_{4}\right\}\right),
\end{aligned}
$$

and $\theta\left(w_{2} u_{2}\right)=1, \theta\left(w_{1} v_{1}\right)=1, \theta\left(w_{3} v_{n-1}\right)=3, \theta\left(w_{4} u_{1}\right)=3, \theta\left(x_{j} u_{i}\right)=f\left(u_{i} v_{i}\right)$ and $\theta\left(x_{j+1} v_{i}\right)=f\left(u_{i} v_{i}\right)$. Notice that $C(a, \theta) \neq C(b, \theta)$ for distinct vertices $a, b \in V\left(G^{*}\right)$ according to the definitions of the total colorings f, g, h and θ. We conclude that θ is a $(n+1)$-vdtc of G^{*}. Clearly, $\chi_{s}^{\prime \prime}\left(G^{*}\right) \leq n+1$ and, G^{*} has a Hamilton cycle $u u_{1} v_{1} w_{1} w_{4} w_{2} w_{3} v_{n-1} u_{n-1} \cdots v_{j} x_{j+1} x_{j+2} \cdots x_{m} x_{1} \cdots x_{j} u_{i} v_{i-1} \cdots v_{2} u_{2} u$.

Since G and $K_{n-1, n-1}$ both are the proper subgraphs of G^{*}, the theorem is covered.

3. Adjacent vertex distinguishing edge and total colorings

Theorem 3.1. For given integers $M \geq 3$ and $N \geq 5$, there is a connected graph G with $\Delta \geq M$ and $n \geq N$ vertices such that G contains a proper subgraph H with $\chi_{a s}^{\prime}(H)>\chi_{a s}^{\prime}(G)$.

Proof. First of all, we define the avd-linking operation on two graphs. Suppose that each connected graph G_{i} has a k_{i}-avdec π_{i} with $k_{i}=\chi_{a s}^{\prime}\left(G_{i}\right)$ for $i=1,2$, and furthermore $\pi_{1}\left(u_{1} v_{1}\right)=\pi_{2}\left(u_{2} v_{2}\right)$ for $u_{i} v_{i} \in E\left(G_{i}\right)$, and $C\left(u_{i}, \pi_{i}\right) \neq C\left(v_{3-i}, \pi_{3-i}\right), i=1,2$. We obtain a new graph H^{*} by deleting edges $u_{i} v_{i}$ from G_{i}, and join u_{i} to v_{3-i} for $i=1,2$. Clearly, H^{*} admits a k_{0}-avdec π, where $k_{0}=\max \left\{k_{1}, k_{2}\right\}$, by defining an edge-coloring π as: $\pi(u v)=\pi_{i}(u v)$ for $u v \in E\left(G_{i}\right) \backslash\left\{u_{i} v_{i}\right\}$, and $\pi\left(u_{i} v_{3-i}\right)=\pi_{i}\left(u_{i} v_{i}\right)$ for $i=1,2$.

There are many ways to construct the desired graph G mentioned in this theorem. Here, we take a complete graph $K_{\Delta+1, \Delta}$ with $\Delta \geq M \geq 3$. Clearly, a proper subgraph $K_{\Delta, \Delta} \subset K_{\Delta+1, \Delta}$ holds $\chi_{a s}^{\prime}\left(K_{\Delta, \Delta}\right)=$ $\Delta+2>\Delta+1=\chi_{a s}^{\prime}\left(K_{\Delta+1, \Delta}\right)$.

Let $K_{\Delta+1, \Delta}^{\prime}$ be a copy of $K_{\Delta+1, \Delta}$, and let the edge $u^{\prime} v^{\prime} \in E\left(K_{\Delta+1, \Delta}^{\prime}\right)$ be isomorphic to an edge $u v \in E\left(K_{\Delta+1, \Delta}\right)$. By the avd-linking operation on two graphs $K_{\Delta+1, \Delta}$ and $K_{\Delta+1, \Delta}^{\prime}$, we obtain a connected graph $H_{1}(2(2 \Delta+1))$ that contains two copies of $K_{\Delta, \Delta}$ and has $2(2 \Delta+1)$ vertices. Since $\chi_{a s}^{\prime}\left(H_{1}(2(2 \Delta+\right.$ 1)) $)=\chi_{a s}^{\prime}\left(K_{\Delta+1, \Delta}\right)=\Delta+1$, so $\chi_{a s}^{\prime}\left(K_{\Delta, \Delta}\right)>\chi_{a s}^{\prime}\left(H_{1}(2(2 \Delta+1))\right)$. Consequently, by implementing the avd-linking operation, we take a copy $H_{1}^{\prime}(2(2 \Delta+1))$ of $H_{1}(2(2 \Delta+1))$, and then construct a connected graph $H_{2}\left(2^{2}(2 \Delta+1)\right)$ such that $\chi_{a s}^{\prime}\left(K_{\Delta, \Delta}\right)=\Delta+2>\Delta+1=\chi_{a s}^{\prime}\left(H_{2}\left(2^{2}(2 \Delta+1)\right)\right)$ for a proper subgraph $K_{\Delta, \Delta}$ of $H_{2}\left(2^{2}(2 \Delta+1)\right)$. Go on in this way, we can construct a connected graph $H_{k}\left(2^{k}(2 \Delta+1)\right)$ having a proper subgraph $K_{\Delta, \Delta}$, and furthermore, $\chi_{a s}^{\prime}\left(H_{k}\left(2^{k}(2 \Delta+1)\right)\right)=\Delta+1$ and $2^{k}(2 \Delta+1) \geq N \geq 5$.

An example for illustrating the avd-linking operation used in the proof of Theorem 3.1 is given in Figures 1 and 2.

Figure 1. Two avdec no-covered, 3-regular and hamiltonian graphs G_{0} and H_{0}.

Figure 2. An avdec no-covered, 3-regular and hamiltonian graph obtained by using the avdlinking operation on two graphs G_{0} and H_{0} shown in Figure 1.

Theorem 3.2. Each connected graph is a proper subgraph of an avdec no-covered graph.
Proof. Let the bipartition (X, Y) of vertex set of $K_{n+1, n}$ for $n \geq 3$ be defined as $X=\left\{u_{i}: i \in[1, n+1]\right\}$ and $Y=\left\{v_{i}: i \in[1, n]\right\}$, and let f be a $(n+1)$-avdec of $K_{n+1, n}$ by Lemma 1.3. Suppose that each given connected graph H_{j} has a k_{j}-avdec g_{j} with $k_{j}=\chi_{a s}^{\prime}\left(H_{j}\right) \leq n-2$ and $\Delta\left(H_{j}\right) \leq n-2$ for $j=1,2$.

We delete the edge $u_{1} v_{1}$ from $K_{n+1, n}$, without loss of generality, set $f\left(u_{1} v_{1}\right)=n+1$. Next we join u_{1} with a vertex w_{1} of H_{1}, join v_{1} with a vertex w_{2} of H_{2}, the resultant graph is denoted by G. Notice that $\chi_{a s}^{\prime}(G) \geq n+1$ since $d_{G}\left(v_{i}\right)=n+1$ for $i \in[2, n]$. We define an edge coloring h of G as: $h(x y)=f(x y)$ for $x y \in\left(E\left(K_{n+1, n}\right) \backslash\left\{u_{1} v_{1}\right\}\right) \subset E(G) ; h\left(u_{1} w_{1}\right)=f\left(u_{1} v_{1}\right)$ and $h\left(v_{1} w_{2}\right)=f\left(u_{1} v_{1}\right) ; h(x y)=g_{j}(x y)$ for $x y \in E\left(H_{j}\right), j=1,2$. Furthermore, $\Delta(G)=n+1 \leq \chi_{a s}^{\prime}(G) \leq n+1=\max \left\{\chi_{a s}^{\prime}\left(K_{n+1, n}\right), k_{1}, k_{2}\right\}$. However,
$\chi_{a s}^{\prime}\left(K_{n, n}\right)=n+2>n+1=\chi_{a s}^{\prime}(G)$ since $K_{n, n} \subset G$. The theorem is covered since each given connected graph H_{j} is a proper subgraph of G for $j=1,2$.

Theorem 3.3. There are infinitely many connected 3-regular graphs G on $n(\geq 6)$ vertices that are avdec no-covered, planar and hamiltonian, and furthermore $\chi_{a s}^{\prime}(G)=\chi^{\prime \prime}(G)=4$.

Proof. For the sake of simplicity, we define Property (I) as follows: A graph G has Property (I) if (i) G is connected, 3-regular, planar and hamiltonian; (ii) G is embedded well in the plane; (iii) G has a particular edge $u v$ locating in the bound of the outer-face and a Hamilton cycle of $G, G-\{u v\}$ contains at least a 5 -cycle; and (iv) $\chi_{a s}^{\prime}(G)=4$.

Obviously, a graph having Property (I) is avdec no-covered. Let G_{0} and H_{0} be two vertex-disjoint graphs shown in Figure 1. Clearly, G_{0} and H_{0} both possess Property (I). Let $u_{0} v_{0} \in E\left(G_{0}\right)$ and $x_{0} y_{0} \in$ $E\left(H_{0}\right)$ be the particular edges described in Property (I). And let C_{0} be a Hamilton cycle of G_{0} such that $u_{0} v_{0} \in E\left(C_{0}\right)$ and C_{0}^{\prime} be a Hamilton cycle of H_{0} such that $x_{0} y_{0} \in E\left(C_{0}^{\prime}\right)$. Since $\chi_{a s}^{\prime}\left(G_{0}\right)=4=\chi_{a s}^{\prime}\left(H_{0}\right)$, we have a 4 -avdec π_{0} of G_{0} and a 4 -avdec π_{0}^{\prime} of H_{0} such that $\pi_{0}\left(u_{0} v_{0}\right)=\pi_{0}^{\prime}\left(x_{0} y_{0}\right)$ (we can modify the colors used in π_{0}^{\prime} to achieve the desired requirement, since G_{0} and H_{0} are vertex-disjoint). We construct a graph G_{1} by deleting the edges $u_{0} v_{0}$ and $x_{0} y_{0}$ from G_{0} and H_{0}, respectively, and then join u_{0} with y_{0}, join v_{0} with x_{0}. Clearly, G_{1} has a Hamilton cycle $\left(C_{0}-u_{0} v_{0}\right)+u_{0} y_{0}+\left(C_{0}^{\prime}-x_{0} y_{0}\right)+x_{0} v_{0}$, and has Property (I). We select another graph H_{1} having Property (I), and then construct a graph G_{2} from G_{1} and H_{1} by the above way such that G_{2} has Property (I). Go on in this way, we have graphs G_{m} having Property (I) for all integers $m \geq 1$. Notice that $C\left(s, f_{i}\right) \neq C\left(t, f_{i}\right)$ for every edge $s t \in E\left(G_{i}\right)$ under a 4 -avdec f_{i} of G_{i}, so $[1,4] \backslash C\left(s, f_{i}\right) \neq[1,4] \backslash C\left(t, f_{i}\right), i \geq 1$. We can use one color in [1,4] \C(s, $\left.f_{i}\right)$ to color the vertex s, and use one color in $[1,4] \backslash C\left(t, f_{i}\right)$ to color the vertex t for every edge $s t$ of G_{i}, thus, $\chi^{\prime \prime}\left(G_{i}\right)=4$ for $i \geq 1$, as desired.

For a graph G with $\Delta(G)=3$, let $P=u x_{1} x_{2} \cdots x_{m} v$ be a (u, v)-path of G if $d_{G}(v)=3$ and $d_{G}\left(x_{i}\right)=2$ for $i \in[1, m]$. We call P a $(k, 3 ; m)$-path if $d_{G}(u)=k$ for $k=1,3$.
Lemma 3.1. If $\chi_{a s}^{\prime \prime}(G)=3$, then G contains no proper subgraph H such that $\chi_{a s}^{\prime \prime}(H) \geq 4$.
Proof. Since $\chi_{a s}^{\prime \prime}(G)=3$, we have $\Delta(G) \leq 2$. By Lemma 1.3, G is a path of length at most two, which implies that G has no proper subgraph H with $\chi_{a s}^{\prime \prime}(H) \geq 4$.
Lemma 3.2. Suppose that a graph H has maximum degree $\Delta=3$ and no adjacent Δ-vertices. If each 2-degree vertex is adjacent to two 3-degree vertices in H, then $\chi_{a s}^{\prime \prime}(H)=4$.

Proof. It is trivial for $|V(H)|=4$. For $|V(H)|=5, H=K_{2,3}$ and $\chi_{a s}^{\prime \prime}\left(K_{2,3}\right)=4$. The case $|V(H)| \geq 6$ is considered as follows. Notice that $d_{H}(x) \neq d_{H}(y)$ for every edge $x y$ of H, which means that each proper total coloring of H is also an avdtc, and vice versa. Thereby, we can use the induction on orders of graphs.

Case 1. H has leaves.
Let $N(w)=\left\{w_{1}, w_{2}, w_{3}\right\}$ be the neighborhood of a 3-degree vertex w of H. If w_{1}, w_{2} both are leaves, and w_{3} is adjacent to two 3 -degree vertices w and v. We know that $\chi_{a s}^{\prime \prime}\left(H-\left\{w_{1}, w_{2}, w\right\}\right)=4$ by induction hypothesis. Suppose that $H-\left\{w_{1}, w_{2}, w\right\}$ has a 4-avdtc f such that $f(v)=1, f\left(w_{3} v\right)=2$ and $f\left(w_{3}\right)=3$. We can extend f to a 4-avdtc of H described in Figure 3(a).

If w_{1}, w_{2} both are 2-degree vertices, where w_{1} is adjacent to a 3-degree vertex x, w_{2} is adjacent to a 3-degree vertex y, and w_{3} is a leaf. We have a graph G_{1} obtained by deleting w and all vertices
in $N(w)$, and adding a new vertex u to join x and y respectively. Clearly, G_{1} is a graph holding the hypothesis of the lemma. Let f_{1} be a 4 -avdtc of G_{1} by induction hypothesis. Without loss of generality, $f_{1}(x u)=1, f_{1}(u)=2$ and $f_{1}(u y)=3$. Thereby, we can extend f_{1} to a 4 -avdtc of H, see Figure 3(b).

(a)

(b)

(c)

Figure 3. The first diagram for the proof of Lemma 3.2.

Case 2. H has no leaves.
Subcase 2.1. H has 4 -cycles. $H \neq K_{2,3}$ since $|V(H)| \geq 6$. Let $u_{1} u_{2} u_{3} u_{4}$ be a 4 -cycle of H. Notice that $\delta(H)=2$ and each 2-degree vertex of H is adjacent to two 3-degree vertices. Hence, a local part of H that contains the 4 -cycle $u_{1} u_{2} u_{3} u_{4}$ is shown in Figure 3(c). Let $X=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$. Thereby, a graph G_{2} can be obtained by deleting every vertex of X and add a new vertex w^{\prime} to join u and v, respectively. Clearly, G_{2} is a graph holding the hypothesis of the lemma. By induction hypothesis, G_{2} has a 4-avdtc f_{2} such that $f_{2}\left(u w^{\prime}\right)=1, f_{2}\left(w^{\prime}\right)=2$ and $f_{2}\left(w^{\prime} v\right)=3$. It is not hard to extend f_{2} to a 4-avdtc of H (see Figure 3(c)).

If u is adjacent to u_{6}, refereing Figure 3(c), we have a graph $G_{2}^{\prime}=H-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ having leaves. So $\chi_{a s}^{\prime \prime}\left(G_{2}^{\prime}\right)=4$ by the proof in Case 1 . Then we can extend a 4 -avdtc of G_{2}^{\prime} to a 4 -avdtc of G.

Subcase 2.2. H has no 4 -cycles. If H has the exact four 3-degree vertices, then it is an edgesubdivision of K_{4}, so we are done, see Figure 4(a). We, now, consider that H has at least six 3-degree vertices in the following. H has a subgraph H^{*} with vertex set $V\left(H^{*}\right)=\left\{u, v, w, u_{1}, u_{2}, v_{1}, v_{2}\right\}$ by referring to Figure 4(b). In H, two vertices u, v both have 3-degree, each vertex of $V\left(H^{*}\right) \backslash\{u, v\}$ has 2-degree, where $N\left(u_{1}\right)=\{u, x\}, N\left(u_{2}\right)=\{u, y\}, N\left(v_{1}\right)=\{v, s\}$ and $N\left(v_{2}\right)=\{v, t\}$ (see Figure 4(b)). Now, we have a graph G_{3} obtained by deleting $V\left(H^{*}\right)$ from H and adding a new vertex x_{0} to join x and y, and adding another new vertex s_{0} to join s and t, respectively. So G_{3} has a 4-avdtc f_{3} by induction hypothesis, since G_{3} satisfies the lemma's hypothesis. Without loss of generality, $f_{3}\left(x x_{0}\right)=1$, $f_{3}\left(x_{0}\right)=2, f_{3}\left(x_{0} y\right)=3$. We define a proper total coloring h_{3} of H in the following two steps.

Step 1. (1) Set $h_{3}(z)=f_{3}(z)$ for $z \in\left(V\left(G_{3}\right) \cup E\left(G_{3}\right)\right) \backslash\left\{x x_{0}, x_{0}, x_{0} y, s s_{0}, s_{0}, s_{0} t\right\}$; (2) $h_{3}\left(x u_{1}\right)=1$, $h_{3}\left(u_{1}\right)=2, h_{3}\left(y u_{2}\right)=3, h_{3}\left(u_{2}\right)=2$; (3) $h_{3}\left(u_{1} u\right)=3, h_{3}(u)=4, h_{3}\left(u_{2} u\right)=1$ and $h_{3}(u w)=2$ (see Figure 4(c)).

Figure 4. The second diagram for the proof of Lemma 3.2.

Step 2. To color every element of $S=\left\{s v_{1}, v_{1}, v_{1} v, t v_{2}, v_{2}, v_{2} v, v, v w, w\right\}$, we consider the colors on $s s_{0}, s_{0}, s_{0} t$ under f_{3}. Let $f_{3}\left(s s_{0}\right)=a, f_{3}\left(s_{0}\right)=b, f_{3}\left(s_{0} t\right)=c($ see Figure $4(\mathrm{c}))$.

Step 2.1. $(a, b, c)=(1,2,3)$. Thus, we need to consider two cases $f_{3}(t)=4$ and $f_{3}(t)=1$, respectively.
(i) When $f_{3}(t)=4$, we set $h_{3}\left(s v_{1}\right)=1, h_{3}\left(v_{1}\right)=2, h_{3}\left(v_{1} v\right)=3, h_{3}\left(t v_{2}\right)=3, h_{3}\left(v_{2}\right)=1, h_{3}\left(v_{2} v\right)=2$, $h_{3}(v)=4$ and $h_{3}(v w)=1$ and $h_{3}(w)=3$. Thereby, h_{3} is a desired 4 -avdtc of H.
(ii) If $f_{3}(t)=1$, we set $h_{3}\left(s v_{1}\right)=1, h_{3}\left(v_{1}\right)=2, h_{3}\left(v_{1} v\right)=3, h_{3}\left(t v_{2}\right)=3, h_{3}\left(v_{2}\right)=4, h_{3}\left(v_{2} v\right)=2$, $h_{3}(v)=1$ and $h_{3}(v w)=4$ and $h_{3}(w)=3$. In this situation, h_{3} is a desired 4-avdtc of H.

Step 2.2. $(a, b, c)=(a, 2, c)$ and $(a, b, c) \neq(1,2,3)$, where distinct $a, c \in[1,4] \backslash\{2\}$. The procedure of coloring properly every element of S is very similar to that in Step 2.1. We still obtain a desired 4 -avdtc of H.

Step 2.3. $b \neq 2$. We set $h_{3}\left(s v_{1}\right)=a, h_{3}\left(v_{1}\right)=b, h_{3}\left(t v_{2}\right)=c, h_{3}\left(v_{2}\right)=b, h_{3}(v w)=b, h_{3}(v)=2$ and $h_{3}(w) \in[1,4] \backslash\{2, b, 4\}$ (see Figure 3(c)). For the last two edges $v_{1} v$ and $v_{2} v$, we set $h_{3}\left(v_{1} v\right)=c$ and $h_{3}\left(v_{2} v\right)=a$ if $a, c \in[1,4] \backslash\{2, b\}$; and if $a=2$, without loss of generality, we set $h_{3}\left(v_{1} v\right)=c$ and $h_{3}\left(v_{2} v\right) \in[1,4] \backslash\{2, b, c\}$. Eventually, we can get a desired 4-avdtc of H.

The proof is completed.
Since $\chi_{a s}^{\prime \prime}\left(P_{n}\right)=4$ for $n \geq 4$, it is not hard to get the following result.
Lemma 3.3. Let H be a graph with $\Delta(H)=3$, no adjacent Δ-vertices and $\chi_{a s}^{\prime \prime}(H)=4$. If H has an edge $u v$ with $d_{H}(u)=1$ and $d_{H}(v)=3$, replace the edge $u v$ with a path $P=u x_{1} x_{2} \cdots x_{m} v(m \geq 1)$, where each x_{i} is out of H for $i \in[1, m]$, the resultant graph is denoted by H_{2}, then $\chi_{a s}^{\prime \prime}\left(H_{2}\right)=4$.
Theorem 3.4. For a graph G with $\Delta=3$ and no adjacent Δ-vertices, $\chi_{a s}^{\prime \prime}(G)=4$.
Proof. Obviously, the conclusion holds when $|E(G)|=3$. Next we consider the case that $|E(G)| \geq 4$. If G contains some (3,$3 ; m$)-(u, v)-paths with $m \geq 2$. For every (3,$3 ; m$)-(u, v)-path $P=u x_{1} x_{2} \cdots x_{m} v$ of G, we delete x_{i} for $i \in[1, m]$, and add a new vertex w out of G by joining w with u, v respectively. The resulting graph is denoted as G^{\prime}. If G^{\prime} contains some (1,$3 ; m$)-paths $Q=u y_{1} y_{2} \cdots y_{m} v$ with $m \geq 1$, $d_{G}(u)=1$ and $d_{G}(v)=3$. To each $(1,3 ; m)$-path Q of G^{\prime}, we delete y_{j} for $j \in[1, m]$ and then join u with v. Eventually, we obtain a graph $G^{\prime \prime}$ that contains no adjacent Δ-vertices, and each 2-degree vertex is adjacent to two 3-degree vertices.

According to Lemma 3.2, $\chi_{a s}^{\prime \prime}\left(G^{\prime \prime}\right)=4$, and then $\chi_{a s}^{\prime \prime}\left(G^{\prime}\right)=4$ by Lemma 3.3. Thereby, we can use the induction on orders of G^{\prime} in the following argument.

Let G^{\prime} have a 2-degree vertex w that is adjacent to two 3-degree vertices u, v, after replacing some (3,3;m)-(u,v)-path $P=u x_{1} x_{2} \cdots x_{m} v$ of G with $m \geq 2$ by a path $u w v$.

Case 1. Replace the path $u w v$ by a path $u x_{1} x_{2} v$.
If one of two vertices u, v is in a 4-cycle of G^{\prime}, without loss of generality, G^{\prime} has a 4-cycle $v u_{1} u_{2} u_{3} v$ shown in Figure 5(a). We delete the set $\left\{w, v, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ from G^{\prime}, and then add a new vertex s out of G^{\prime} by joining s with u, u_{5}, respectively. The resulting graph is written as H_{1}. Clearly, H_{1} admits 4 avdtcs by induction hypothesis, since H_{1} has $\Delta\left(H_{1}\right)=3$ and no adjacent Δ-vertices. Next, we substitute by a path $u x_{1} x_{2} v$ the path $u w v$ of G^{\prime} to obtain another graph H_{2}. By means of a 4-avdtc of H_{1}, we can get a desired 4-avdtc of H_{2} shown in Figure 5(a).

Suppose that two vertices u, v are not in any 4-cycle of G^{\prime}. If G^{\prime} is the graph shown in Figure 4(a), we are done. Otherwise, G^{\prime} has a part shown in Figure 5(b) (no dashing lines and black vertices).

We have a graph H_{3} obtained by deleting every vertex of $\left\{u_{1}, u_{2}, u, w, v, v_{1}, v_{2}\right\}$ from G^{\prime} and adding a new vertex x_{0} out of G^{\prime} to join x and y, and adding another new vertex s_{0} out of G^{\prime} to join s and t, respectively. Since H_{3} has $\Delta\left(H_{3}\right)=3$ and no adjacent Δ-vertices that is a 4 -avdtc f_{3} of H_{3} by induction hypothesis. Thus, we construct a graph H_{4} in the way of replacing by a path $u x_{1} x_{2} v$ the path $u w v$ of G^{\prime}, and extend f_{3} to a proper total coloring h_{4} of H_{4}. Clearly, H_{4} has maximum degree 3 and no adjacent Δ-vertices.

Except $h_{4}\left(x_{1}\right)=1, h_{4}\left(x_{1} x_{2}\right)=2$ and $h_{4}\left(x_{2}\right)=3$, each $h_{4}(z)$ for $z \in\left(V\left(H_{4}\right) \cup E\left(H_{4}\right)\right) \backslash\left\{x_{1}, x_{1} x_{2}, x_{2}\right\}$ are determined well based on f_{3} (see Figure 5(b)) such that $h_{4}(u) \neq h_{4}(v)$ since $h_{4}\left(u_{1} u\right)=c$ or d, and $h_{4}(u)=d$ or c, where $d \in[1,4] \backslash\{a, b, c\}$. Notice that $d^{\prime} \in[1,4] \backslash\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. By exhaustion we can select appropriately colors $1,2,3$ such that h_{4} is a 4 -avdtc of H_{4}.

Figure 5. A diagram for the proof of Theorem 3.4.

Case 2. Let H^{\prime} be a graph having maximum degree 3, a (3,3; m)-path $P=u x_{1} x_{2} \cdots x_{m} v$ with $m \geq 2$ and no adjacent Δ-vertices as well as $\chi_{a s}^{\prime \prime}\left(H^{\prime}\right)=4$. Our goal is to construct a new graph G^{*} having maximum degree 3 and no adjacent Δ-vertices by replacing an edge $x_{i} x_{i+1}$ of the path P for some $i \in[1, m-1]$ by a path $x_{i} y x_{i+1}$, where y is a new vertex out of H^{\prime}, and then show $\chi_{a s}^{\prime \prime}\left(G^{*}\right)=4$. Note that G^{*} contains a path (3,$3 ; m$)-path $Q=u x_{1} x_{2} \cdots x_{i} y x_{i+1} \cdots x_{m} v$ with $m \geq 2$ and $\left|G^{*}\right|>|G|$.

Subcase 2.1. For $m=2, H^{\prime}$ contains a $(3,3 ; 2)$-path $u x_{1} x_{2} v$.
Let η_{21} be a 4-avdtc of H^{\prime}. Without loss of generality, $\eta_{21}\left(u x_{1}\right)=2, \eta_{21}\left(x_{1}\right)=1, \eta_{21}\left(x_{1} x_{2}\right)=3$. Hence, $\eta_{21}\left(x_{2}\right) \in\{2,4\}$ and $\eta_{21}\left(x_{2} v\right) \in\{1,2,4\}$, since $C\left(x, \eta_{21}\right) \neq C\left(y, \eta_{21}\right)$ for each edge $x y$ of H^{\prime}. Now, we delete the edge $x_{1} x_{2}$ from H^{\prime} and add a new vertex z out of H^{\prime} and two edges $z x_{1}, z x_{2}$. The resulting graph is denoted as H_{21}. We can define a 4 -avdtc λ_{21} of H_{21} by means of η_{21}. Let $Z=\left\{x_{1} z, z x_{2}, x_{2} v\right\} \cup\left\{z, x_{2}\right\}$. We define $\lambda_{21}(s)=\eta_{21}(s)$ for $s \in\left(V\left(H_{21}\right) \cup E\left(H_{21}\right)\right) \backslash Z ;$ and $\lambda_{21}\left(x_{2}\right)=\eta_{21}\left(x_{2}\right)$, $\lambda_{21}\left(x_{2} v\right)=\eta_{21}\left(x_{2} v\right)$.

If $\eta_{21}\left(x_{2}\right)=2$ and $\eta_{21}\left(x_{2} v\right)=4$, set $\lambda_{21}\left(x_{1} z\right)=4, \lambda_{21}(z)=3$ and $\lambda_{21}\left(z x_{2}\right)=1$.
If $\eta_{21}\left(x_{2}\right)=4$ and $\eta_{21}\left(x_{2} v\right)=2$, define $\lambda_{21}\left(x_{1} z\right)=4, \lambda_{21}(z)=1$ and $\lambda_{21}\left(z x_{2}\right)=3$.
If $\eta_{21}\left(x_{2}\right)=4$ and $\eta_{21}\left(x_{2} v\right)=1$, then let $\lambda_{21}\left(x_{1} z\right)=4, \lambda_{21}(z)=3$ and $\lambda_{21}\left(z x_{2}\right)=2$.
If $\eta_{21}\left(x_{2}\right)=2$ and $\eta_{21}\left(x_{2} v\right)=1$, so $\eta_{21}(v) \in\{3,4\}$. If $\eta_{21}(v)=3$, we reset $\lambda_{21}\left(x_{2}\right)=4$, and let $\lambda_{21}\left(x_{2} z\right)=2, \lambda_{21}(z)=3$ and $\lambda_{21}\left(z x_{1}\right)=4$; if $\eta_{21}(v)=4$, we reset $\lambda_{21}\left(x_{2}\right)=3$, and let $\lambda_{21}\left(x_{2} z\right)=2$, $\lambda_{21}(z)=4$ and $\lambda_{21}\left(z x_{1}\right)=3$. Thereby, λ_{21} is really a 4 -avdtc of H_{21}.

Subcase 2.2. For $m=3$, let $N(u)=\left\{u^{\prime}, u^{\prime \prime}, x_{1}\right\}$ and $N(v)=\left\{x_{3}, v^{\prime}, v^{\prime \prime}\right\}$. Let η_{22} be a 4 -avdtc of H^{\prime}. Without loss of generality, assume that $\eta_{22}\left(u^{\prime} u\right)=2, \eta_{22}\left(u^{\prime \prime} u\right)=3, \eta_{22}(u)=4, \eta_{22}\left(u x_{1}\right)=1$, $\eta_{22}\left(x_{1}\right)=2, \eta_{22}\left(x_{1} x_{2}\right)=3$. So, $\eta_{22}\left(x_{2}\right) \in\{1,4\}$ and $\eta_{22}\left(x_{2} x_{3}\right) \in\{1,2,4\}$. We replace the edge $u x_{1}$ of H^{\prime} by a path $u z x_{1}$, where z is a new vertex out of H^{\prime}, and the resulting graph is denoted as H_{22}. We will extend η_{22} to a 4 -avdtc λ_{22} of H_{22}.

First, we define $\lambda_{22}(s)=\eta_{22}(s)$ for $s \in\left(V\left(H_{22}\right) \cup E\left(H_{22}\right)\right) \backslash Z^{\prime}$, where $Z^{\prime}=\left\{z, z x_{1}, x_{1}, x_{1} x_{2}, x_{2}\right.$,
$\left.x_{2} x_{3}\right\}$. If $\eta_{22}\left(x_{2}\right)=4$ and $\eta_{22}\left(x_{2} x_{3}\right)=2$, we define $\lambda_{22}(z)=2, \lambda_{22}\left(z x_{1}\right)=4, \lambda_{22}\left(x_{1}\right)=1 ; \lambda_{22}(y)=\eta_{22}(y)$ for $y \in\left\{x_{1} x_{2}, x_{2}, x_{2} x_{3}\right\}$.

We have two subcases for colors $\eta_{22}\left(x_{2}\right)$ and $\eta_{22}\left(x_{2} x_{3}\right)$ in the following. (i) If $\eta_{22}\left(x_{3}\right)=2$ and $\eta_{22}\left(x_{3} v\right)=4$, then define $\lambda_{22}(z)=3, \lambda_{22}\left(z x_{1}\right)=4, \lambda_{22}\left(x_{1}\right)=2, \lambda_{22}\left(x_{1} x_{2}\right)=1, \lambda_{22}\left(x_{2}\right)=4$ and $\lambda_{22}\left(x_{2} x_{3}\right)=3$. If $\eta_{22}\left(x_{3}\right)=3$ and $\eta_{22}\left(x_{3} v\right)=2$ (resp. $\eta_{22}\left(x_{3}\right)=2$ and $\eta_{22}\left(x_{3} v\right)=3$), thus, we set $\lambda_{22}(z)=2, \lambda_{22}\left(z x_{1}\right)=4, \lambda_{22}\left(x_{1}\right)=3, \lambda_{22}\left(x_{1} x_{2}\right)=2, \lambda_{22}\left(x_{2}\right)=4$ and $\lambda_{22}\left(x_{2} x_{3}\right)=1$. (ii) If $\eta_{22}\left(x_{2}\right)=1$ and $\eta_{22}\left(x_{3}\right)=2$ or 4 , we can extend η_{22} to a 4 -avdtc λ_{22} of H_{22} by the way similarly to the above one.

Subcase 2.3. For $m \geq 4$, we let $N(u)=\left\{u^{\prime}, u^{\prime \prime}, x_{1}\right\}$ and let η_{23} be a 4 -avdtc of H^{\prime}. Without loss of generality, we assume that $\eta_{23}\left(u^{\prime} u\right)=2, \eta_{23}\left(u^{\prime \prime} u\right)=3, \eta_{23}(u)=4, \eta_{23}\left(u x_{1}\right)=1, \eta_{23}\left(x_{1}\right)=2$, $\eta_{23}\left(x_{1} x_{2}\right)=3$. So, $\eta_{23}\left(x_{2}\right) \in\{1,4\}$ and $\eta_{23}\left(x_{2} x_{3}\right) \in\{1,2,4\}$, since $C\left(x, \eta_{23}\right) \neq C\left(y, \eta_{23}\right)$ for each edge $x y \in E\left(H^{\prime}\right)$.

In order to obtain a new graph H_{23} we replace the edge $u x_{1}$ of H^{\prime} by a path $u z x_{1}$, where z is a new vertex out of H^{\prime}. Next, we extend η_{23} to a 4-avdtc λ_{23} of H_{23}. We set $\lambda_{23}(s)=\eta_{23}(s)$ for $s \in\left(V\left(H_{23}\right) \cup E\left(H_{23}\right)\right) \backslash Z^{\prime \prime}$, where $Z^{\prime \prime}=\left\{z, z x_{1}, x_{1}, x_{1} x_{2}, x_{2}\right\}$. Suppose that $\eta_{23}\left(x_{2}\right)=4, \eta_{23}\left(x_{2} x_{3}\right)=1$ (resp. $\eta_{23}\left(x_{2} x_{3}\right)=2$). If $\eta_{23}\left(x_{3}\right)=2$ and $\eta_{23}\left(x_{3} x_{4}\right)=4$, define $\lambda_{23}(z)=2, \lambda_{23}\left(z x_{1}\right)=3, \lambda_{23}\left(x_{1}\right)=4$, $\lambda_{23}\left(x_{1} x_{2}\right)=2$ and $\lambda_{23}\left(x_{2}\right)=3$. So $C\left(s, \lambda_{23}\right) \neq C\left(t, \lambda_{23}\right)$ for every edge $s t \in E\left(H_{23}\right)$. If $\eta_{23}\left(x_{3}\right)=2$ and $\eta_{23}\left(x_{3} x_{4}\right)=3$ (resp. $\eta_{23}\left(x_{3}\right)=3$ and $\eta_{23}\left(x_{3} x_{4}\right)=4$), which imply $\eta_{23}\left(x_{2} x_{3}\right)=1$ or 4 , so we define $\lambda_{23}(z)=2, \lambda_{23}\left(z x_{1}\right)=4, \lambda_{23}\left(x_{1}\right)=3, \lambda_{23}\left(x_{1} x_{2}\right)=2$, and $\lambda_{23}\left(x_{2}\right)=4$ when $\eta_{23}\left(x_{2} x_{3}\right)=1$, or $\lambda_{23}\left(x_{2}\right)=1$ if $\eta_{23}\left(x_{2} x_{3}\right)=4$.

For the other choices of colors $\eta_{23}\left(u^{\prime} u\right), \eta_{23}\left(u^{\prime \prime} u\right), \eta_{23}(u), \eta_{23}\left(u x_{1}\right), \eta_{23}\left(x_{1}\right)$ and $\eta_{23}\left(x_{1} x_{2}\right)$ under the distinguishing constraint $C\left(s, \eta_{23}\right) \neq C\left(t, \eta_{23}\right)$ for each edge $s t \in E\left(H^{\prime}\right)$, by the above ways we can obtain a 4-avdtc of H_{23}.

Based on the proofs in Case 1 and Case 2 above, we can reconstruct G from G^{\prime} step by step such that $\chi_{a s}^{\prime \prime}(G)=4$. The proof is covered.

Theorem 3.4 implies that a connected graph G with $\Delta=3$ and no adjacent Δ-vertices holds $\chi_{a s}^{\prime \prime}(G)=$ $\chi^{\prime \prime}(G)=4$ and $\chi_{a s}^{\prime}(G)=\chi^{\prime}(G)=3$, and furthermore $\chi(G)=3$ if G contains odd-cycles.
Corollary 3.1. There are infinitely many avdtc no-covered graphs.
Proof. The result follows from Lemmas 3.1, 3.2, 3.3 and Theorem 3.4.

4. Further works

Motivated from the avd-linking operation introduced in the proof of Theorem 3.1, we define the avd-equivalent operation on a graph as below. Let π be a k-avdec of graph G. If there are two edges $u_{1} v_{1}, u_{2} v_{2}$ of G such that $\pi\left(u_{1} v_{1}\right)=\pi\left(u_{2} v_{2}\right), C\left(u_{i}, \pi\right) \neq C\left(v_{3-i}, \pi\right)$ and $u_{i} v_{3-i} \notin E(G)$ for $i=1,2$, then we have an avd-equivalent graph G^{\prime} obtained by deleting $u_{1} v_{1}, u_{2} v_{2}$ from G and join u_{i} to v_{3-i} for $i=1,2$. Clearly, the avd-equivalent graph G^{\prime} has a k-avdec generated from π. Notice that $V(G)=V\left(G^{\prime}\right)$, $|E(G)|=\left|E\left(G^{\prime}\right)\right|$, and $\chi_{a s}^{\prime}\left(G^{\prime}\right) \leq \chi_{a s}^{\prime}(G)$. The avd-equivalent class $\mathcal{G}_{a s}(G)$ is the set of avd-equivalent graphs generated from G. In other words, each $H \in \mathcal{G}_{a s}(G)$ is an avd-equivalent graph of a certain graph of $\mathcal{G}_{a s}(G)$, and $\chi_{a s}^{\prime}(H) \leq \chi_{a s}^{\prime}(G)$. It is noticeable, $\left|\mathcal{G}_{a s}\left(G_{0}\right)\right|=1$, where G_{0} is the graph shown in Figure 1. We want to figure out $\mathcal{G}_{a s}(G)$ for a simple and connected graph G.

Observe that some connected graph G having a proper subgraph H with $\chi_{s}^{\prime}(H)>\chi_{s}^{\prime}(G)$ may hold $|\Delta(G)-\Delta(H)| \geq M$ for given integers $M \geq 1$. However, for cases $\chi_{a s}^{\prime}(H)>\chi_{a s}^{\prime}(G)$ and $\chi_{a s}^{\prime \prime}(H)>$
$\chi_{a s}^{\prime \prime}(G)$, can we say $|\Delta(G)-\Delta(H)| \leq 1$?
In [9], the author point out that no simple graph G having maximum degree three and $\chi_{a s}^{\prime \prime}(G)=6$ has been discovered, although all graphs H of maximum degree three obey $\chi_{a s}^{\prime \prime}(H) \leq 6$. For a graph G with $\Delta(G) \geq 4$, we do not find a proper subgraph H of G such that $\chi_{a s}^{\prime \prime}(G)<\chi_{a s}^{\prime \prime}(H)$. Therefore, we propose:
Conjecture 4.1. (1) Let H be a proper subgraph of G. Then $\chi_{a s}^{\prime}(H) \leq \chi_{a s}^{\prime}(G)+1$ and $\chi_{a s}^{\prime \prime}(H) \leq$ $\chi_{a s}^{\prime \prime}(G)+1$.
(2) Let H be a proper subgraph of G. Then there is no proper subgraph H^{*} of H such that $\chi_{a s}^{\prime}\left(H^{*}\right)>$ $\chi_{a s}^{\prime}(H)>\chi_{a s}^{\prime}(G)$, or $\chi_{a s}^{\prime \prime}\left(H^{*}\right)>\chi_{a s}^{\prime \prime}(H)>\chi_{a s}^{\prime \prime}(G)$.
(3) Let H be a common proper subgraph of two graphs G_{1} and G_{2}. If $\chi_{a s}^{\prime}(H)>\chi_{a s}^{\prime}\left(G_{i}\right)$ for $i=1,2$, then $\chi_{a s}^{\prime}\left(G_{1}\right)=\chi_{a s}^{\prime}\left(G_{2}\right)$.
(4) Let G be a graph having adjacent Δ-vertices and $\Delta=3$. Then G is not avdtc no-covered.

As known, $\chi^{\prime}(G) \leq \chi^{\prime \prime}(G)$ is true in the traditional colorings of graph theory. But we can see $\chi_{a s}^{\prime \prime}\left(C_{5}\right)=4<5=\chi_{a s}^{\prime}\left(C_{5}\right)$ and $\chi_{s}^{\prime \prime}\left(C_{13}\right)=6<7=\chi_{s}^{\prime}\left(C_{13}\right)$. We call G an avdtc no-covering avdec (resp. vdtc no-covering $v d e c$) if $\chi_{a s}^{\prime \prime}(G)<\chi_{a s}^{\prime}(G)$ (resp. $\chi_{s}^{\prime \prime}(G)<\chi_{s}^{\prime}(G)$). It may be interesting to characterize avdtc no-covering avdec graphs or vdtc no-covering vdec graphs.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors would like to thank all the reviewers for their very helpful comments and constructive suggestions. This work was supported by the National Natural Science Foundation of China under Grant Nos. 62072296 and 61662066.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. J. A. Bondy, U. S. R. Murty, Graph theory, London: Springer, 2008.
2. A. C. Burris, R. H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory, 26 (1997), 73-82.
3. J. Ĉerný, M. Horn̂ák, R. Soták, Observability of a graph, Math. Slovaca, 46 (1996), 21-31.
4. Z. F. Zhang, L. Z. Liu, J. F. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett., 15 (2002), 623-626. https://doi.org/10.1016/S0893-9659(02)80015-5
5. Z. F. Zhang, J. W. Li, X. E. Chen, B. Yao, W. J. Wang, P. X. Qiu, $D(\beta)$-vertex-distinguishing total coloring of graphs, Sci. China Ser. A-Math., 49 (2006), 1430-1440.
6. Z. F. Zhang, X. E. Chen, J. W. Li, B. Yao, X. Z. Lu, J. F. Wang, On adjacent-vertexdistinguishing total coloring of graphs, Sci. China Ser. A-Math., 48 (2005), 289-299. https://doi.org/10.1360/03ys0207
7. C. Bazgan, A. Harkat-Benhamdine, H. Li, M. Woźniak, On the vertex-distinguishing proper edge-colorings of graphs, J. Comb. Theory Ser. B, 75 (1999), 288-301. https://doi.org/10.1006/jctb.1998.1884
8. A. C. Burris, Vertex-distinguishing edge-colorings, Memphis State Univ., 1993.
9. J. Hulgan, Concise proofs for adjacent vertex distinguishing total colorings, Discrete Math., 309 (2009), 2548-2550. https://doi.org/10.1016/j.disc.2008.06.002
10. P. N. Balister, B. Bollobás, R. H. Schelp, Vertex distinguishing colorings of graphs with $\Delta(G)=2$, Discrete Math., 252 (2002), 17-29. https://doi.org/10.1016/S0012-365X(01)00287-4
11. W. F. Wang, Y. Q. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim., 19 (2010), 471-485. https://doi.org/10.1007/s10878-008-9178-5
12. S. Akbafi, H. Bidkhori, N. Nosrati, r-Strong edge coloring of graphs, Discrete Math., 306 (2006), 3005-3010. https://doi.org/10.1016/j.disc.2004.12.027
13. P. N. Balister, Vertex-distinguishing edge colorings of random graphs, Random Struct. Algor, 20 (2001), 89-97. https://doi.org/10.1002/rsa. 10002
14. C. Bazgan, A. Harkat-Benhamdine, H. Li, M. Woźniak, A note on the vertex-distinguishing proper coloring of graphs with large minimum degree, Discrete Math., 236 (2001), 37-42. https://doi.org/10.1016/S0012-365X(00)00428-3
15. E. Q. Zhu, C. J. Liu, A note on the vertex-distinguishing proper edge coloring of graphs, Ars Comb., 116 (2014), 93-99.
16. P. N. Balister, E. Györi, J. Lehel, R. H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math., 21 (2007), 237-250. https://doi.org/10.1137/S0895480102414107
17. C. Greenhill, A. Ruciński, Neighbour-distinguishing edge colourings of random regular graphs, Electron J. Comb., 13 (2006), 875-903. https://doi.org/10.37236/1103
18. H. Hatami, $\Delta+300$ is a bound on the adjacent vertex distinguish edge chromatic number, J. Comb. Theory Ser. B, 95 (2005), 246-256. https://doi.org/10.1016/j.jctb.2005.04.002
19. X. E. Chen, Z. F. Zhang, AVDTC numbers of generalized Halin graphs with maximum degree at Least 6, Acta Math. Appl. Sin-E, 24 (2008), 55-58. https://doi.org/10.1007/s10255-005-5222-8

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

