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schemes for the nonlinear wave equation with a fractional Laplacian operator. To this end, we first
derive the Hamiltonian form of the equation by using the fractional variational derivative and then
applying the finite difference method to the original equation to obtain a semi-discrete Hamiltonian
system. Furthermore, the scalar auxiliary variable method and extrapolation technique is used
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1. Introduction

The wave equation is significant among the nonlinear evolution equations extensively utilized in
nonlinear mathematical and physical sciences [13]. In recent years, the widespread application of
fractional calculus theory in various physical fields has prompted scholars to introduce the fractional
wave equation to simulate nonlocal physical phenomena [17]. This paper considers the following
fractional nonlinear wave equation [18]

∂2u(x, t)
∂t2 + (−∆x)

α
2 u(x, t) + (−∆y)

α
2 u(x, t) + F

′(
u(x, t)

)
= 0, x = (x, y) ∈ Ω ⊂ R2, t ∈ (0,T ], (1.1)

u(x, 0) = f (x), ut(x, 0) = g(x), x = (x, y) ∈ Ω ⊂ R2, (1.2)

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.20231358


26575

u(x, t) = 0, x ∈ R2 \Ω, t ∈ (0,T ], (1.3)

here 1 < α ≤ 2, (−∆x)
α
2 represents the fractional Laplacian operator with α order for x [15, 16], and

it is equivalent to the Riesz fractional differential operator [28], the nonlinear term F
′(

u(x, t)
)

is the
derivative of a smooth potential energy F(u) with respect to u, f (x), g(x) are smooth functions. The
equation is simplified to the classical wave equation when α = 2. We know that the classical wave
equation can inherit the energy [2], and the fractional Laplacian operator has the same conjugation as
the classical Laplacian operator. Therefore, we can derive the following energy conservation law for
the fractional wave equation [18]

d
dt

∫
Ω

[
u2

t +
(
(−∆x)

α
4 u

)2
+

(
(−∆y)

α
4 u

)2
+ 2F(u)

]
dx = 0. (1.4)

Fractional calculus has gained significant attention recently due to its ability to describe non-local
and memory-dependent phenomena. The concept of fractional order derivatives, extending traditional
integer-order derivatives to non-integer orders, has applications in various fields such as physics,
engineering, biology, and finance. While the theory of fractional calculus is well-established, the
computation of fractional order derivatives poses challenges due to the non-local nature of these
operators. Therefore, numerous numerical algorithms have been developed to approximate fractional
order derivatives efficiently and accurately, such as Obtaining an analytic solution for the fractional
wave equation is generally challenging due to the non-local nature of fractional differential operators.
Consequently, numerous researchers have focused on developing algorithms to solve this equation in
the past decade. For instance, Ran and Zhang [21] introduced a compact-difference scheme for the
equation, which achieves fourth-order accuracy in spatial discretization. In reference [27], scholars
proposed two finite difference schemes to solve the fourth-order strongly damped nonlinear wave
equations. Liu et al. [14] employed spectral methods to tackle the time fractional wave equation.
Unfortunately, these aforementioned numerical schemes do not preserve the energy of the equation
during the solution process.

In recent years, researchers have extensively researched preserving energy for conservative
equations, leading to significant research outcomes. These developed methods, known as
structure-preserving algorithms [5, 10, 11], aim to retain inherent system properties during long-term
calculations and demonstrate improved stability compared to traditional numerical methods [1, 4].
Many structure-preserving methods have also been devised for the fractional wave equation. For
instance, Mac as-D az et al. [17] derived the energy conservation law for the wave equation and
proposed relevant conservative schemes for solving equation (1.1) [19]. Hu constructed a
fully-implicit dissipation-preserving scheme for the wave equation with integral fractional
Laplacian [19]. Additional conservative schemes for the sine-Gordon equation can be found in
references [13, 18]. However, most of these schemes require nonlinear iterative solutions, resulting in
a significant computational burden.

The main work of the paper is to develop an efficient linearly-implicit energy-preserving scheme for
the fractional wave equation. In our approach, we utilize the scalar auxiliary variable method [22–24]
to address the fractional wave equation, establishing an equivalent system to facilitate our analysis.
We then employ a combination of difference methods and the implicit midpoint technique to develop
conservative schemes. To enhance computational efficiency, we introduced a fast solver based on the
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properties of the difference matrices. The constructed scheme demonstrates second-order accuracy in
the time and space direction, balancing accuracy and computational cost.

2. Hamiltonian formulation of the equation

In this section, we first reformulate the fractional nonlinear wave as a canonical Hamiltonian system
based on the following lemmas.

Lemma 2.1. [6] Let α > 0, then for any real functions u, v with boundary conditions (1.3), we have

((−∆)
α
2 u, v) = ((−∆)

α
4 u, (−∆)

α
4 v) = (u, (−∆)

α
2 v). (2.1)

Lemma 2.2. [6] For a functional φ[ρ] with the following form

φ[ρ] =
∫
Ω

f (ρ(η), (−∆)
α
4 ρ(η))dη, (2.2)

where ρ is a smooth function on the Ω, then the variational derivative of F[ρ] is given as follows

δφ

δρ
=
∂ f
∂ρ
+ (−∆)

α
4
∂ f

(−∆)
α
4 ρ
. (2.3)

By setting ut = v, and we can arrange system (1.1) as a first-order system

ut = v, (2.4)

vt = −(−∆x)
α
2 u − (−∆y)

α
2 u − F

′

(u), (2.5)

with the boundary conditions

u(x, t) = 0, v(x, t) = 0, x ∈ Rd \Ω, t ∈ [0,T ]. (2.6)

Taking the inner products of (2.4) and (2.5) with vt, v, respectively, we derive the energy conservation
law as follows

d
dt
H = 0, (2.7)

where

H =
1
2

∫
Ω

[
v2 +

(
(−∆x)

α
4 u

)2
+

(
(−∆y)

α
4 u

)2
+ 2F(u)

]
dx. (2.8)

Based on the fractional variational derivative formula in Lemma 2.2, we obtain the following theorem.

Theorem 2.1. The systems (2.4) and (2.5) is an infinite-dimensional canonical Hamiltonian system(
vt

ut

)
= J−1

(
δH/δv
δH/δu

)
, J =

(
0 1
−1 0

)
,

where the Hamiltonian functionalH is defined by

H =
1
2

∫
Ω

[
v2 +

(
(−∆)

α
4 u

)2
+ 2F(u)

]
dx. (2.9)
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Proof. According to Lemma 2.2, we can deduce

δH

δv
= v, (2.10)

δH

δu
= (−∆x)

α
2 u + (−∆y)

α
2 u + F

′

(u). (2.11)

Then, systems (2.4) and (2.5) can be rewritten as(
vt

ut

)
=

(
0 −1
1 0

) (
δH/δv
δH/δu

)
.

This completes the proof.

3. Semi-discrete Hamiltonian system

This section develops a structure-preserving scheme that can conserve discrete energy exactly to
solve the fractional nonlinear wave equation based on the SAV approach.

Let us consider the system in Ω = (xa, xb) × (ya, yb), and denote the mesh sizes hx = (xb − xa)/N1,
hy = (yb − ya)/N2, N1 and N2 are positive integer. Then, a new vector space is given

P = (p1,1, p2,1, · · · , pN1−1,1, · · · , pN1−1,N2−1)T . (3.1)

Noting that the considered equation has the Dirichlet boundary conditions, therefore,
here pi, j = p(xi, y j) with xi = xa + ihx, i = 1, · · · ,N1 − 1 and y j = ya + jhy, j = 1, · · · ,N2 − 1. Then, we
define some notations

∥P∥∞ = max
i, j
|pi, j|,

(
P,Q

)
= hxhy

N1−1∑
i=1

N2−1∑
j=1

pi, jqi, j, ∥P∥2 =
(
P, P

)
.

and we introduce following operators

δtUn =
Un+1 − Un

τ
, Un+ 1

2 =
Un+1 + Un

2
Ũn+ 1

2 =
3Un − Un−1

2
.

3.1. Structure-preserving spatial discretization

In fact, the fractional Laplacian −(−∆)
α
2 u(x, t) is equivalent to the Riesz fractional derivative, and

can be expressed in terms of the respective Riemann-Liouville fractional derivatives, namely

−(−∆)
α
2 u(x, t) =

∂αu(x, t)
∂|x|α

= −
1

2cosαπ2
[−∞Dαx u(x, t) +x Dα+∞u(x, t)], (3.2)

where −∞Dαx u(x, t) and xDα+∞u(x, t) are the left and right side Riemann-Liouville fractional
derivatives [13], respectively, which are defined as

−∞Dαx u(x, t) =
1

Γ(2 − α)
∂2

∂x2

∫ x

−∞

(x − s)1−αu(s, t)ds, (3.3)
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xDα+∞u(x, t) =
1

Γ(2 − α)
∂2

∂x2

∫ +∞

x
(s − x)1−αu(s, t)ds, (3.4)

where Γ(z) =
∫ ∞

0
xz−1e−x. Next, we present the fractional centered difference method to approximate

the Riesz fractional derivative.

Lemma 3.1. [13] Let u(x) ∈ C5(R) and all derivatives up to order five belong to L1(R). Then,
for 1 < α ≤ 2, we have

∂αu(x)
∂|x|α

= −
1
hα

+∞∑
l=−∞

d(α)
l u(x − lh) + O(h2), (3.5)

where the coefficients d(α)
l := (−1)lΓ(α+1)

Γ( α2−l+1)Γ( α2+l+1) .

Since u(x, t)=0 for x ∈ R \Ω, we can obtain

∂αu(x, t)
∂|x|α

= −
1
hα

−(xa−x)/h∑
l=−(xb−x)/h

d(α)
l u(x − lh, t) + O(h2), (3.6)

and deduce

(−∆)
α
2 un

j =
1
hα

j∑
l=−M+ j

d(α)
l un

j−l + O(h2) =
1
hα

M−1∑
l=1

d(α)
j−lu

n
l + O(h2). (3.7)

According to above discussions, we denote differential matrix Dα as

Dα =


d(α)

0 d(α)
−1 · · · d(α)

−M+2
d(α)

1 d(α)
0 · · · d(α)

−M+3
...

...
. . .

...

d(α)
M−2 d(α)

M−3 · · · d(α)
0

 ,
where Dα is a real-value symmetric positive definite Toeplitz matrix, and we have

(−∆)
α
2 u = DαU.

3.2. Semi-discrete conservative system

Applying the fractional centered difference method to approximate systems (2.4) and (2.5) in space,
we can obtain a semi-discrete system

Ut = V, (3.8)

Vt = −DU − F
′

(U), (3.9)

where D = Iy ⊗ Dαx + Dαy ⊗ Ix, and it is a symmetric positive definite matrix. Then, the semi-discrete
system is reformulated as
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Zt = S −1∇H(Z), (3.10)

where Z = (V,U)T , and

∇H =
(

V
DU + F

′

(U)

)
, S =

(
0 I
−I 0

)
. (3.11)

Theorem 3.1. The constructed scheme is a conservative system and can inherit the energy, namely

d
dt

H(Z) = 0 (3.12)

with

H(Z) =
(
V,V

)
+

(
DU,U

)
+ 2

(
F(U), 1

)
. (3.13)

Proof. We can calculate it directly and obtain

d
dt
H

(
t
)
= ∇H zt = ∇HS −1∇H = 0, (3.14)

where antisymmetry of matrix S −1 is used.

4. A linearly-implicit fully-discrete scheme

4.1. Equivalent system with the SAV approach

In the SAV approach, we introduce a scalar variable W(t) =
√
E(t), where

E =
(
F(U) +C0, 1

)
, (4.1)

where C0 is a positive constant such that F(U)+C0 > 0. Then, the energy function (3.13) is transformed
into a modified formal

H = (V,V) + (DU,U) +W2. (4.2)

Let B(u) = F
′
(U)
√
E(t)

, then, the original systems (2.4) and (2.5) can be written as

Ut = V, (4.3)

Vt = −Du − B(U)W, (4.4)

Wt =
1
2

(B(U),Ut), (4.5)

where (·, ·) represents the discrete L2-inner product.
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Taking the inner products of (4.3) and (4.4) with Vt, V , respectively, and then multiplying (4.5)
with 2W, and summing them together, we can deduce a modified energy conservation law

d
dt

[
(V,V) + (DU,U) +W2

]
= 0. (4.6)

We observe that equivalent systems (4.3) and (4.5) still preserves energy, but the energy is in terms of
the new variables now.

Applying the Crank-Nicolson method for systems (4.3) and (4.5) in time, and utilizing the
extrapolation technique on (4.4), which yield a second-order linearly implicit scheme for the
fractional nonlinear wave equation, namely

Un+1 − Un

τ
= Vn+ 1

2 , (4.7)

Vn+1 − Vn

τ
= DUn+ 1

2 + B̃nWn+ 1
2 , (4.8)

Wn+1 −Wn =
1
2
(
B̃n,Un+1 − Un), (4.9)

where B̃n = B(Ũn+ 1
2 ). The proposed schemes (4.7)–(4.9) is called SAV scheme.

Theorem 4.1. The SAV schemes (4.7)–(4.9) possesses the following discrete total energy conservation
law

Hn = Hn+1, 0 ≤ n ≤ N − 1,

where

Hn =
1
2
(
||Vn||2 − (Un)T DαUn) + ||Wn||2.

Proof. Taking the inner product of (4.7) and (4.8) with Vn+1−Vn

τ
, Un+1−Un

τ
, multiplying (4.9) with Wn+1+Wn

τ
,

and adding them together, we deduce

1
2
(
||Vn+1||2 − (Un+1)T

DαUn+1) + ||Wn+1||2 =
1
2
(
||Vn||2 − (Un)T DαUn) + ||Wn||2 (4.10)

Thus, we have

Hn = Hn+1, 0 ≤ n ≤ N − 1. (4.11)

This ends the proof.

Remark 4.1. The proposed scheme only has second-order accuracy in time and space, which cannot
meet the high-accuracy requirements of numerical simulation algorithms. In references [20, 25],
scholars developed high-order conservative schemes for conservative equations by using the
Runge-Kutta methods. The constructed schemes can conserve the quadratic invariant and arrive at
high accuracy; these methods can also be applied to obtain high-accuracy structure-preserving
schemes for the wave equation. In future research work, we will focus on constructing high-order
accuracy structure-preserving numerical schemes for solving conservation-type differential equations.
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5. A fast solver for the proposed scheme

The SAV scheme is linear implicit and highly efficient in that only decoupled equations with
constant coefficients must be solved at each time step. To demonstrate the linear implicit advantage
with a constant coefficient matrix of the SAV scheme, we first eliminate Vn+1, Wn+1, and can obtain

Un+1 − Un

τ
= Vn +

τ

2

DUn+ 1
2 − B̃nWn −

B̃n

4

(
B̃n,Un+1 − Un

) , (5.1)

which can be further rewritten as(
I −
τ2

4
Dα

)
Un+1 +

τ2

8
B̃n

(
B̃n,Un+1

)
=

(
I +
τ2

4
D
)

Un +
τ2

8
B̃n

(
B

n
,Un

)
−
τ2

2
B̃nWn + τVn. (5.2)

Let Bn denote the the righthand side of (5.2). Multiplying (5.2) with (I− τ
2

4 D)−1, then taking the discrete
inner product with B̃n, we can deduce(

B̃n,Un+1
)
+
τ2

8
χn

(
B̃n,Un+1

)
=

B̃n,

(
I −
τ2

4
D
)−1

Bn

 , (5.3)

where χn =

(
B̃n,

(
I − τ

2

4 D
)−1
B̃n

)
. Hence, we can obtain

(
B̃n,Un+1

)
=

(
B̃n,

(
I − τ

2

4 D
)−1

Bn
)

1 + τ28 χ
n

. (5.4)

Finally, substituting the result into (5.2) will give the solution of Un+1.
To summarize, the manners of the SAV scheme computing the Un+1 are given as

Manners: Compute the Un+1

(1) Compute χn =
(
B̃n, (I − τ

2

4 D)−1B̃n). This can be completed by solving a algebraic system,
which has constant coefficients.
(2) Compute

(
B̃n,Un+1) using (5.4). This requires solving another system

(
I − τ

2

4 D
)−1Bn with

constant coefficients.
(3) With

(
B̃n, (I − τ

2

4 D)−1B̃n), (B̃n,Un+1) and
(
I − τ

2

4 D
)−1Bn known, we can obtain Un+1 from (5.2).

In summary, we only need to solve two linear systems of (5.3) and (5.4) successively with constant
matrix

(
I − τ

2

4 D
)
.

Noting that D is a Toeplitz matrix. Using the special properties of the matrix, we can design a fast
algorithms for the proposed scheme. We consider the following Toeplitz matrix CN

CN =



c0 c1 c2 . . . cN−1

c−1 c0 c1
. . . cN−2

... c−1 c0
. . .

...

c2−N
. . .

. . .
. . . c1

c1−N c2−N . . . . . . c0


.
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Further, we construct a new 2N × 2N circulant matrix C2N with the form

C2N =

(
CN AN

AN CN

)
, AN =



0 c1−N c2−N . . . c−1

cN−1 0 c1−N
. . . c−2

... cN−1 0 . . .
...

c2
. . .

. . .
. . . c1−N

c1 c2 . . . . . . 0


.

Based on this, we can rewrite CNb as

C2N

(
b

0N×1

)
=

(
CNb
ANb

)
.

Then, the FFT technique can be applied to diagonaliz C2N , namely

C2n = F
−1 diag(F b)F ,

with

Fi, j =

[
1
√

2N
e
−2πi(i−1)( j−1)

2N

]
i, j=1,2,...,2N

.

From discussions, we can use the FFT technique to compute the F and implement the proposed linear
scheme efficiently.

6. Numerical examples

In this section, some numerical examples are presented to demonstrate the effectiveness of the
proposed scheme in the conservation of discrete energy for the two-dimensional nonlinear fractional
wave equation. The relative errors of energy are defined as

RHn = |(Hn − H0)/H0|,

where Hn denotes the energy at t = nτ.

6.1. Accuracy tests

In this experiment, we consider the one-dimensional nonlinear fractional wave equation with F(u) =
u − u3, and initial conditions

u(x, 0) =
√

2 sech(λx),

ut(x, 0) =
√

2cλ sech(λx) tanh(λx),

and the boundary condition

u(x, t) = 0, x ∈ R \Ω, t ∈ (0,T ].
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When α = 2, the system reduces to classical nonlinear wave equation, and the analytical solution is
given by

u(x, t) =
√

2 sech(λ(x − ct)),

where λ =
√

1
1−c2 and 1 − c2 > 0. The error in the spatial direction with sufficiently small τ

Serr =


max |u(τ, h) − U(τ, h/2)|, α = 2,

max
∣∣∣∣UN

j (τ, h) − UN
2 j(τ, h/2)

∣∣∣∣, 1 < α < 2,

and the error in the temporal direction with sufficiently small h

Terr =


max |u(τ, h) − U(τ/2, h)|, α = 2,

max
∣∣∣∣UN

j (τ, h) − U2N
j (τ/2, h)

∣∣∣∣, 1 < α < 2.

Without loss of generality, Here we take c=0.1 with α = 1.49, 1.65, 2, and c=0.9 with α = 1.55, 1.79, 2,
and set the space interval Ω = [−20, 20].

Firstly, we choose T = 1 and verify the convergence order in the time and space. Figures 1 and 2
show maximum norm convergence order in space and time respectively with different fractional order α
and initial value. We can find that SAV scheme show about second-order experimental accuracy in time
and space.
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Figure 1. Maximal norm convergence order in time for different α.

AIMS Mathematics Volume 8, Issue 11, 26574–26589.



26584

-4 -3.5 -3 -2.5 -2 -1.5 -1

log(h)

-9

-8

-7

-6

-5

-4

-3

-2

lo
g(

S
er

r)
α=1.49 alpha=1.65 alpha=2 y=2log(h)

(a) c = 0.1

-4 -3.5 -3 -2.5 -2 -1.5 -1

log(h)

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g(

S
er

r)

α=1.55 alpha=1.79 alpha=2 y=2log(h)

(a) c = 0.9
Figure 2. Maximal norm convergence order in space for different α.

In section 3, we demonstrate the SAV scheme only needs to solve decoupled equations with
constant coefficients at each time step, which leads that the scheme is more efficient than the linear
implicit energy-preserving scheme through the invariant energy quadratization (IEQ) method [6].
While the energy-preserving scheme based on the averaged vector field (AVF) method is
fully-implicit and needs nonlinear iterations to obtain the numerical solution, which can
approximately represent the general implicit method regarding the computational cost. In Figure 3,
we choose T = 100 and present comparisons of the computational costs of the three schemes with
different time steps. We can conclude that the SAV scheme significantly reduces the computational
cost. We study the conservative property of the proposed scheme. Here, we run a long-time
simulation till T = 100 and plot the energy deviation in Figure 4, corresponding to different values of
fractional order α. Numerical results show that the SAV scheme can preserve the discrete energy very
well. Therefore, it is preferable to construct linearly implicit schemes through the SAV approach for
large-scale simulations, keeping the system energy preserved exactly. The evolution of solitons with
different α is shown in Figures 5 and 6, and the results show that α has a significant impact on the
waveform of particle evolution.
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Figure 3. Computational cost of SAV, IEQ and AVF scheme with different time step when
c = 0.1.
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Figure 4. The relative energy error with h = 0.1, τ = 0.01 for different order α.

(a) α = 1.49 (b) α = 1.65 (b) α = 2
Figure 5. Evolution of the solitons with c = 0.1 for different α (h = 0.1, τ = 0.01).

(a) α = 1.55 (b) α = 1.79 (b) α = 2
Figure 6. Evolution of the solitons with c = 0.9 for different α (h = 0.1, τ = 0.01).

Example 5.2. We consider the equation with the initial conditions

f (x, y) = 4 tan−1

exp

4 −
√

(x + 3)2 + (y + 7)2

0.436

 , (6.1)

g(x, y) = 4.13 sech

4 −
√

(x + 3)2 + (y + 7)2

0.436

 ,−30 ≤ x ≤ 10,−21 ≤ y ≤ 7. (6.2)
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In this example, we take α = 1.4, 1.7, 1.9, 2 to test our theoretical analysis. The results of Figure 7
show the SAV scheme can conserve the energy very well for different α with h = 0.25, τ = 0.01. The
surface (left) and contours (right) plots of numerical solutions for different α at time T = 5. As α
approaches 2, the shape of the soliton is also similar to that of the classical wave equation.
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Figure 7. The relative energy error with h = 0.25, τ = 0.01 for different order α.
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Figure 8. Surface (left) and contours (right) plots of numerical solutions for different α at
time T = 5, in terms of sin(u/2). Spatial and temporal step sizes are taken as h = 0.25,
τ = 0.01.

7. Conclusions

In this paper, we construct a new difference scheme for solving the fractional wave equation based
on the scalar auxiliary variable approach. The scheme is linearly implicit, can be solved efficiently,
and can conserve the modified energy of the equation. In addition, this method also can be extended to
fractional conservative system equations.
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14. Z. Liu, S. Lü, F. Liu, Fully discrete spectral methods for solving time fractional nonlinear Sine-
gordon equation with smooth and non-smooth solutions, Appl. Math. Comput., 333 (2018), 213–
224. https://doi.org/10.1016/j.amc.2018.03.069

15. N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135–3145.
https://doi.org/10.1103/PhysRevE.62.3135

16. N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–
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