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Background: Steroid-induced Osteonecrosis of the Femoral Head (SIONFH) is a
skeletal disease with a high incidence and a poor prognosis. Whole body vibration
therapy (WBVT), a new type of physical training, is known to promote bone
formation. However, it remains unclear whether WBVT has a therapeutic effect
on SIONFH.

Materials and methods: Thirty adult male and female Sprague-Dawley (SD) rats
were selected and randomly assigned to three experimental groups: the control
group, the model group, and the mechanical vibration group, respectively. SIONFH
inductionwas achieved through the combined administration of lipopolysaccharides
(LPS) and methylprednisolone sodium succinate for injection (MPS). The femoral
head samples underwent hematoxylin and eosin (H&E) staining to visualize tissue
structures. Structural parameters of the region of interest (ROI)were compared using
Micro-CT analysis. Immunohistochemistry was employed to assess the expression
levels of Piezo1, BMP2, RUNX2, HIF-1, VEGF, CD31, while immunofluorescence was
used to examine CD31 and Emcn expression levels.

Results: The H&E staining results revealed a notable improvement in the ratio of
empty lacuna in various groups following WBVT intervention. Immunohistochemical
analysis showed that the expression levels of Piezo1, BMP2, RUNX2, HIF-1, VEGF, and
CD31 in the WBVT group exhibited significant differences when compared to the
Model group (p < 0.05). Additionally, immunofluorescence analysis demonstrated
statistically significant differences in CD31 and Emcn expression levels between the
WBVT group and the Model group (p < 0.05).

Conclusion: WBVT upregulates Piezo1 to promote osteogenic differentiation,
potentially by enhancing the HIF-1α/VEGF axis and regulating H-vessel
angiogenesis through the activation of the Piezo1 ion channel. This mechanism
may lead to improved blood flow supply and enhanced osteogenic differentiation
within the femoral head.
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1 Introduction

Steroid-induced Osteonecrosis of the Femoral Head (SIONFH)
is a skeletal disease with a high incidence and a poor prognosis
(LIANG et al., 2023). Its debilitating effects could eventually lead to
articular cartilage collapse and subsequent osteoarthritis (CAO et al.,
2016). High doses of glucocorticoids are recognized to be major risk
factors of SIONFH (IKEUCHI et al., 2015). Over the past decades,
glucocorticoids have been widely used as effective
immunosuppressive and anti-inflammatory medications in
clinical practice. However, numerous studies have demonstrated
that prolonged or excessive use of glucocorticoids could lead to the
destruction of the femoral head’s internal blood supply and disrupt
local nutrition. (MARSTON et al., 2002; YAO et al., 2020). This
leads to the apoptosis of bone cells and the subsequent necrosis of
bone tissue (LIU et al., 2022a). Accordingly, it is crucial and essential
to comprehend the exact pathological mechanisms and develop
effective treatments in order to disrupt the process of SIONFH.

Whole body vibration therapy (WBVT) training is gaining
significant attention as a potential treatment for low levels of bone
mass. The effectiveness of WBVT in treating osteoporosis has been
reported in several studies (KOSTYSHYNet al., 2022a; LIU et al., 2022b).
Our previous research established that WBVT can reduce osteoporosis
by increasing BMD, bone architecture and bone strength (WEI et al.,
2015). There is growing evidence that mechanical stimuli can be used to
direct stem cell differentiation towards a variety of different tissue
lineages (KELLY et al., 2010; LI et al., 2011). For instance, it has been
shown that applying compression (SITTICHOKECHAIWUT et al.,
2010) or tension (SARRAF et al., 2011)can promote osteogenic
differentiation in mesenchymal stem cells (MSCs). Other work has
shown that mechanical stimulation can promote bone growth by
activating Piezo1 ion channels (JIANG et al., 2021a).

Piezo1 protein is a membrane-bound trimeric Ca2+ channel
protein that was initially discovered in 2006 (PRISBY et al., 2008).
Because of its unique structure, it can cling to the cell membrane’s
surface and control the flow of ions inside and outside the membrane
by sensing mechanical stress stimuli. This allows the sensed stress
stimuli to be transformed into electrical impulses for further
transmission (ZENG et al., 2022). In vitro experiment examining
femoral head samples, we found that Piezo1 expressed differently
depending on the location within the femoral head (TENGFEI et al.,
2023). It is discovered that Piezo1, whose expression is upregulated,
encourages osteoblast development and postpones bone resorption
(WU et al., 2021). In addition, it has been found that Piezo1 can be
expressed in vascular endothelial cells (JIANG et al., 2021b; EMIG
et al., 2021). It can sense changes in shear stress caused by blood flow,
thus mediating the conduction of Na2+ and Ca2+ and regulating
vascular tone and vascular development (BEECH, 2018; FANG
et al., 2021; SWAIN et al., 2021).

Therefore, we conducted this study to find out if WBVT may
treat SIONFH by encouraging the expression of Piezo1.

2 Materials and methods

All animal experimental procedures were approved by the
Animal Care and Use Committee of the Animal Center of
Guangzhou University of Chinese Medicine (No. 20220111007).

2.1 Reagents and antibodies

Methylprednisolone was obtained from The First Affiliated
Hospital of Guangzhou University of Chinese Medicine
(registration number:H20170199, Pfizer Manufacturing Belgium
Nv); Lipopolysaccharides (LPS) was obtained from Solarbio
(Beijing, China,L8880). Anti-Piezo1 Antibody (DF12083), anti-
HIF-1α Antibody (AF1009), anti-VEGF Antibody (AF5131); anti-
RUNX2 Antibody (AF5186) anti-BMP2 Antibody (AF5163) and
secondary antibodies were obtained fromAffinity (Jiangsu Province,
China). Anti-Endomucin (SC-65495) was obtained from Santa Cruz
(Paso Robles, CA, United States). Anti-CD31 was obtained from
invitrogen (WD3255103, Waltham, MA, United States). Goat Anti-
Rabbit IgG/SAlexa Fluor 488 (K0034G-AF488) and goat Anti-Rat
IgG/SAlexa Fluor 594 (K0034G-AF488) were obtained from
Solarbio (Beijing, China).

2.2 Animals and experimental grouping

Thirty 3-month-old specific pathogen-free (SPF) Sprague-Dawley
(SD) rats were used in this study. The rats were purchased from the
Animal Center of Guangzhou University of ChineseMedicine (SCXK
2018-0034, Guangzhou, China). Male rats weighed approximately
300 ± 50 g, while female rats weighed approximately 250 ± 50 g. The
rats were divided randomly into three groups: Control group (n = 10),
Model group (n = 10), and WBVT group (n = 10). All rats were
housed under standardized laboratory conditions with the same
temperature and humidity. They were provided with unlimited
access to water and a standard diet.

2.3 Establishment of the SIONFH model
group, control group and WBVT-treated
group

The SIONFH model was constructed following these steps.
Before drug dosing, the rats were weighed. For the first 3 days, a
daily intraperitoneal (i.p.) injection of LPS (10 ug/kg, Sigma-
Aldrich) was administered. Subsequently, an intramuscular (i.m.)
dose of methylprednisolone (MP, 60 mg/kg, Pfizer) was given
weekly for the next 4 weeks. MP was alternately injected into the
left and right gluteus muscles. Starting from the second day after MP
injection, the WBVT group received WBVT sessions twice daily for
10 min each, with a 5-min rest in between (Vibration frequency:
30 Hz, acceleration: 0.2 g) for 4 consecutive weeks. After 4 weeks of
MPmedication, the animals were sacrificed, and femoral heads were
collected for further analysis.

2.4 Micro CT analysis

The microarchitecture of the femoral head’s trabecular bone was
assessed using a high-resolution Micro CT (NEMO Micro CT,
PingSeng Technology, China). After removing soft tissue,
trabecular bone from the metaphyseal regions of the femoral
head was analyzed using the Micro CT machine. Measurements,
including Bone Volume Fraction (BV/TV), Bone Trabecular
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Number (Tb.N), Bone Trabecular Thickness (Tb.Th), and Bone
Trabecular Separation (Tb.Sp), were obtained. The region of interest
(ROI) was specifically defined as the subcortical weight-bearing area
of the femoral head.

2.5 Histological staining

The femoral bone samples were fixed in 10% paraformaldehyde
solution for 48 h and then decalcified using 10% EDTA solution for
4 weeks, with the solution changed every 2 days. Subsequently, some
specimens from each group were embedded in paraffin, and 4 μm
sections were obtained in the coronary position. The sections were
then dewaxed in xylene, rehydrated in graded ethanol, and the
residual water was removed using distilled water for HE staining. HE
staining was used to observe the structural alterations of the femoral
head, as well as to assess the femoral head’s trabecular structure and
the ratio of empty lacuna.

2.6 Immunohistochemical staining

Immunohistochemistry was performed following standard
procedures. Four-micron-thick tissue sections were baked in a
60°C oven for 30 min, deparaffinized in xylene, and rehydrated in
a descending series of ethanol in distilled water for 2 min. After
quenching endogenous peroxidase activity and blocking non-
specific binding, the specimens were incubated overnight at 4°C
with the following primary antibodies: anti-Piezo1 (1:100; Affinity),
anti-RUNX2 (1:100; Affinity), anti-BMP2 (1:100; Affinity), anti-
CD31 (1:200; Abcam), anti-VEGF (1:100; Affinity), and anti-HIF-1α
(1:100; Affinity). The slices were then incubated with secondary
antibodies for 2 h at 37°C. For visual analysis, the product was
stained with diaminobenzidine (DAB) and counterstained with
Mayer’s hematoxylin. Finally, these slices were examined under
an electron microscope for protein expression analysis.

2.7 Immunofluorescence staining

The other specimens were dewaxed in xylene for
immunofluorescence staining. Then, these slices were incubated
with normal goat serum for 2 h to block nonspecific antibody
interference and subsequently incubated overnight at 4°C with
anti-CD31 (1:200; Abcam) and anti-Emcn (1:100; SANTA)
primary antibodies. The slices were then incubated with
secondary antibodies, either Goat Anti-Rabbit IgG/SAlexa Fluor
488 (Solarbio, 1:100) or Goat Anti-Rat IgG/SAlexa Fluor 594
(Solarbio, 1:100), for 2 h at 37°C. Next, these slices were
counterstained with the nuclear marker 4,6-diamino-2-
phenylindole (DAPI). All images were observed using a
fluorescence microscope (Olympus).

2.8 Statistical analysis

The statistical analyses were performed using IBM SPSS
Statistics 20 software. The results were presented as mean ±

standard deviation, and differences with p values <0.05 were
considered statistically significant. Data that satisfied the tests for
normal distribution and homogeneity of variance were analyzed
using ANOVA for multiple comparisons, while data that did not
meet these assumptions were analyzed using nonparametric tests.

3 Results

3.1 WBVT reduces the bone destruction
effect of SIONFH

As shown in Figures 1, 2, Micro CT scans confirmed the
successful construction of the SIONFH rat model in the
experimental group. In comparison to the Control group, the
femoral head of rats in the SIONFH group exhibited surface
structure destruction, resulting in a rough appearance.
Additionally, numerous cavities were observed within the cut
femoral head, indicating the impact of methylprednisolone on
the development of SIONFH. Compared with the blank group,
the rats in the SIONFH group showed a reduction in bone density
and bone parameters BV and BV/TV. However, after whole body
mechanical vibration therapy, improvements were observed in the
roughness of the femoral head surface, and the number of cavities
inside the femoral head decreased when compared to the model
group, as depicted in Figure 1. Additionally, our observations
indicated that gender did not have a significant impact on the
efficacy of WBVT treatment. The quantitative analysis of Micro CT
parameters demonstrated that WBVT had a therapeutic effect on
early steroid-induced Osteonecrosis of the Femoral Head.
Specifically, the femoral head trabeculae, especially in the
subchondral region, showed significant improvement, as depicted
in Figure 2.

3.2 HE staining to assess the curative efficacy
of WBVT for SIONFH

The Model group exhibited significant differences compared to
the blank group, including a considerable area of missing trabeculae
within the femoral head, sparse trabeculae, interrupted continuity,
extensive apoptosis of osteocytes, and a higher number of empty
bone traps. However, following WBVT treatment, notable
improvements were observed. The trabeculae became denser and
more orderly arranged, with fewer defects, enhanced trabecular
thickness, and a reduced number of empty bone lacunae, as
depicted in Figure 3. It is noteworthy to mention that the results
did not indicate significant gender-based differences among rats
within the same group.

3.3 WBVT promotes the expression of
RUNX2, BMP2, CD31, HIF-a, and VEGF by
promoting the expression of Piezo1

The immunohistochemical and quantitative results revealed that
WBVT effectively enhanced the expression of several key factors
within the femoral head. Figure 4 illustrates the increased expression
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levels of Piezo1, RUNX2, BMP2, CD31, VEGF, and HIF-a following
the WBVT treatment.

3.4 Expression levels of H-vessels in the rat
femoral head

CD31 and Emcn were identified as specific markers for
H-vessels vascular endothelial cells, and the vessels co-localized
with both CD31 and Emcn, as depicted in Figure 5. The results
demonstrated that in the femoral head of rats, the expression of
H-vessels in the Model group was significantly lower compared to

the normal group. However, following the intervention of WBVT,
the expression of H-vessels noticeably increased, with a statistically
significant difference observed.

4 Discussion

In this study, we investigated the therapeutic effects of WBVT on
SIONFH rats, analyzing the HE pathological staining and Micro CT
results from the blank group, Model group, and WBVT group. Our
findings revealed thatWBVT effectively treated SIONFH in rats, likely
through its positive impact on blood flow supply in the femoral head

FIGURE 1
Micro CT results reveal the femoral bones of rats in different groups. In (A, D, and G), the images display the femoral bones of rats in the blank
group. (B, E, and H) show the femoral bones of rats in the SIONFH group, while (C, F, and I) depict the femoral bones of SIONFH rats after WBVT
treatment.
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and promotion of osteoblastogenesis. Notably, the expression level of
Piezo1 in the femoral head of WBVT rats exhibited a significant
increase compared to the Model group, indicating that Piezo1 may
play a key role in mediating the stress stimulation induced byWBVT,
thereby facilitating SIONFH self-repairing.

The significance of biomechanical stimulation in enhancing
bone strength has been widely acknowledged for a considerable
period (FERRERI et al., 2011; CHAN et al., 2013; HU et al., 2014).
During mechanical loading, bone marrow mesenchymal stem cells
(BMSC) sense fluid flow in the lacunar-canalicular system and
promote osteogenic gene expression, modify BMSC morphology,
volume, and cytoskeleton structure, and drive BMSC proliferation
and differentiation (WANG et al., 2022). Numerous studies have
explored the use of mechanical stress stimulation as a potential
treatment for osteoporosis (KOSTYSHYN et al., 2022b; FAN et al.,
2023). In a prior study conducted by the authors’ group, it was
discovered that WBVT can effectively promote bone trabeculation,
enhance osteoblast osteodifferentiation, and improve bone strength
in osteoporotic rats (WEI et al., 2015). The effect of mechanical
stimulation on bone tissue depends on many factors, including
vibration frequency, vibration amplitude, and duration. A particular
study revealed that (BECK et al., 2010), WBVT conducted twice a
week has been shown to effectively reduce bone loss in the hip and
spine while also increasing muscle strength in the lower extremities.

Furthermore, in postmenopausal women, combining strength
training with WBVT can lead to improvements in bone density.
From a microscopic perspective, WBVT has demonstrated the
ability to enhance bone microstructure and tissue mechanical
properties by promoting bone anabolic reactions (WUERMSER
et al., 2015; JING et al., 2018).

However, the specific mechanism by which WBVT causes
mechanical stress to stimulate bone formation is not fully
understood. And the key to affecting bone formation is the
ability to mediate osteoblast lifespan and inhibit osteoclast
differentiation (PRISBY et al., 2008; PASQUALINI et al., 2013;
XIE et al., 2016). The mechanosensitive ion channel Piezo1 is a
mechanically stimulated, non-selective cation channel that converts
mechanical stress into electrochemical signals for further
conduction (DOUGUET et al., 2019). It is essential for bone
formation and regulation of bone resorption in postnatal mice
(SUN et al., 2019). And with the increase of mechanical stress
after birth, it has been found that the expression of Piezo1 gradually
increases in mice (ZHOU et al., 2020). Our research further proved
thatWBVT exerts a treatment effect via promoting the expression of
the Piezo1 protein in SIONFH. SUGIMOTO et al. reported that
activation of the Piezo1 protein channel enhances the production of
BMP2, thereby accelerating osteoblast formation while inhibiting
the differentiation of mesenchymal stem cells into adipocytes

FIGURE 2
Micro CT quantitative results, (A) shows the bone volume fraction; (B) shows the number of bone trabeculae; (C) shows the thickness of bone
trabeculae; (D) shows the separation of bone trabeculae, which was found to be statistically significantly different (p < 0.05) after statistical analysis of the
three groups.
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(SUGIMOTO et al., 2017). SONG et al. conducted in vitro
experiments and found that elevated Piezo1 expression induces
the expression of the Runx-2 gene in osteoblasts (SONG et al.,
2020). In human bone marrow mesenchymal stem cells, the
silencing of Piezo1 using lentivirus resulted in a significant
decrease in the expression of proteins associated with
osteogenesis, such as RUNX2, OPN, and Osteocalcin. This
indicates that inhibiting Piezo1 hinders the differentiation of
human bone marrow mesenchymal stem cells into osteoblasts
(SUN et al., 2019). Our research findings align with the
aforementioned conclusions. We observed that the protein
expressions of osteogenesis-related markers, including BMP2 and
RUNX2, were upregulated following the treatment of WBVT. Based
on these results, we can confidently conclude that WBVT has the

potential to promote osteogenic differentiation through the
activation of the Piezo1 protein.

Blood flow disruption is one of important causes of SIONFH.
And current research have not yet shown whether vibration
mediates Piezo1 expression to impact angiogenesis. When
researchers knocked out Piezo1 on mouse endothelial cells, they
observed that the mice failed to form blood vessels during
embryonic development, resulting in embryonic death (XU et al.,
2022). In contrast, in a mouse hindlimb ischemia model, normal
mice had significantly better recovery of blood flow after ischemia
than Piezo1 knockout mice (KANG et al., 2019). The above findings
suggest that Piezo1 expression is vital in providing adequate
nutrition for blood vessels, promoting structural reorganization
of damaged blood vessels, and playing a crucial role in regulating

FIGURE 3
The results of HE staining. (A): Compared to the Control group, the model group exhibited a noteworthy occurrence of osteoblast apoptosis, along
with sparse bone trabeculae and interrupted continuity within the femoral head. However, these detrimental effects exhibited significant improvement
with WBVT treatment. (B): The ratio of empty lacuna within the femoral head at various groups.
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vascular structure and embryonic development. Based on our
results, we observed that the expression levels of HIF-a and
VEGF at the femoral head of rats in the Model group were
significantly lower compared to those in the blank
group. However, following WBVT intervention, the levels of
HIF-a and VEGF were improved. Additionally, significant
neovascularization was observed in the blank group, as indicated
by the MVD results. To quantitatively assess microvessel density, we
utilized immunohistochemical staining techniques, specifically
targeting markers of vascular endothelial cells, such as CD31
(NOWAK-SLIWINSKA et al., 2018). The model group of rats
showed a considerable decrease in microvessel density compared
to the control group. However, after the intervention of WBVT,
there was a significant improvement in microvessel density. These
findings strongly suggest that Piezo1 is capable of sensing the
mechanical stress stimulation caused by WBVT, leading to an
improvement in blood flow supply to the femoral head.

HIF-a plays a central role as the most important transcription
factor family in regulating the cellular response to hypoxia
(SEMENZA, 2012). It primarily influences the secretion of
vasoactive factors like VEGF (Vascular Endothelial Growth Factor)

by mediating the cellular perception of oxygen fluctuations, which in
turn regulates the process of neovascularization. Recent studies have
revealed an association between decreased expression of HIF-1a and
VEGF and glucocorticoid-induced femoral head necrosis. Increasing
the level of HIF-1a has been shown to facilitate the repair of
SIONFH(WEINSTEIN et al., 2017). VEGF serves as a downstream
target gene of HIF-1a and holds a critical role not only as the most
significant regulator of vascular development but also as a key factor in
angiogenesis, the process of forming new blood vessels (HOEBEN
et al., 2004). Recent studies have found that (KUSUMBE et al., 2014),
there is a coupling between H-vessels angiogenesis and osteogenesis,
and previous studies have demonstrated a strong association with the
onset and regression of osteoporosis. H-vessels is (KUSUMBE et al.,
2014) recently discovered special vascular subtype, which is widely
distributed in the epiphysis and femoral head, is mainly characterized
by high expression of CD31/EMCN (called H-vessels vascular
endothelial cells), which has a significant correlation with bone
volume and bone strength (GAO, F, et al., 2020; WANG, L, et al.,
2017). Simultaneously, H-vessels vascular endothelial cells are
surrounded by a large number of osteoprogenitor cells, which
promote bone formation by producing specific factors. Animal

FIGURE 4
In (A), the immunohistochemical results of Piezo1, RUNX2, BMP2, CD31, HIF-a, and VEGF are presented. Additionally, (B–G) display the
corresponding quantitative immunohistochemical results. In comparison to the model group, both the blank and WBVT groups exhibited significantly
higher expression levels of Piezo1, RUNX2, BMP2, CD31, HIF-a, and VEGF. These differences were statistically significant (p < 0.05).
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studies have found that (PENG, Y, et al., 2020), the development of
osteoporosis is linked to a decrease in H-vessels. Meanwhile, some
scholars have also isolated H-vessels vascular endothelial cells in the
human femoral head (GAO et al., 2020). Based on this, we formulated
the bold hypothesis that H-vessels angiogenesis could enhance blood
supply to the femoral head and consequently facilitate the repair of
femoral head necrosis. Subsequently, we conducted experiments to
verify this hypothesis. In our study, the number of type H-vessels
(CD31 and EMCN) was dramatically enhanced in the WBVT group
with a striated distribution, but significantly decreased in the model
group with sparse and punctate distribution. The results indicate that
WBVT intervention can promote H-vessels angiogenesis. And
Piezo1 is a key pathway for sensing WBVT stimulation, thus
suggesting that WBVT regulates H-vessels angiogenesis probably
through Piezo1 sensing mechanical stress stimulation, improving
the cellular perception of oxygen changes and affecting the
expression of HIF-1a/VEGF axis, thus improving blood flow
supply at the femoral head and promoting osteogenic
differentiation within the femoral head.

In conclusion, our study demonstrates for the first time that
WBVT upregulates Piezo1 to promote osteogenic differentiation.
Piezo1 appears to play a crucial role in transmitting stress stimuli
and promoting osteogenic differentiation. Simultaneously, WBVT
may activate the Piezo1 ion channel to promote the HIF-1a/VEGF
axis, thereby regulating H-vessels angiogenesis, improving blood
flow supply, and fostering osteogenic differentiation within the
femoral head. Nevertheless, further research is necessary to fully
understand the underlying mechanism.

WBVT promotes the HIF-1a/VEGF axis by influencing the
expression of the Piezo1 pathway, which in turn regulates

H-vessels angiogenesis, improves blood flow supply to the
femoral head, and enhances osteogenic differentiation within the
femoral head. Consequently, WBVT may effectively prevent the
pathological process of hormonal femoral osteonecrosis.
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FIGURE 5
(A) shows the expression of CD31 and Emcn in the rat femoral head. (B) shows the quantitative Immunofluorescence results. Model group was
significantly lower than that in the blank and WBVT groups, and both were statistically significant (p < 0.05)
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