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Introduction

Individual cells within a clonal population can display pronounced phenotypic
differences. In multicellular organisms, such differentiation is controlled by numerous
microenvironmental, positional, and genetic cues. However, even unicellular
Saccharomyces cerevisiae cells show significant levels of cell-to-cell variability. This
variability arises from de novo mutations, gene expression noise and asymmetric
division. Here, I suggest that another contributing factor could be genetic drift in
mitochondrial DNA (mtDNA) heteroplasmy levels. Moreover, because of the activation
of general stress response pathways in cells with insufficient levels of wild type mtDNA,
heteroplasmic cells can withstand certain stresses better than wild type cells. As a result, the
heterogeneity within the heteroplasmic cell population could be a bet-hedging mechanism,
increasing the chances of cell line survival.

Main text

Eukaryotic cells reproduce asexually most of the time. In the species with obligate sexual
reproduction, there are thousands of mitotic divisions per meiotic division. For instance,
human body comprises 3*1013 clonal somatic cells (Sender et al., 2016) that correspond to at
average 13.4 divisions of zygote descendants. The actual number of cell generations is even
higher due to cell turnover. Moreover, certain species have facultative sexual reproduction,
so baker’s yeast cells go through a sexual reproduction phase only once in every
~10,000 generations (Nieuwenhuis and James, 2016). Therefore, a majority of the living
eukaryotic cells have multiple clonal copies of their own.

Clonal cells, despite their genetic identity, can pronouncedly differ from each other by
the phenotype. This is true, even in the case of unicellular organisms, such as baker’s yeast S.
cerevisiae. This is evidenced by differing protein concentrations and stress response
readiness in genetically identical cells (Levy et al., 2012). The driving forces behind this
heterogeneity include gene expression noise, cyclic processes, and asymmetry in cell
divisions (Knorre et al., 2018). Recent research has shown that molecular stochasticity of
5′-UTR scanning by ribosome contributes to yeast population heterogeneity in cell response
to nutrient limitation (Meng et al., 2023). In certain cases, yeast cells suspensions exhibit
phenotypic bistability which is characterised by the coexistence of cells with two
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distinguishable phenotypes in a clonal cell line. For example, introns
mediate bimodal distribution of the yeast ribosomal protein Rps22B
in yeast cells (Lukačišin et al., 2022).

Cellular regulatory systems serve to minimise phenotypic
variation. Therefore, gene promoter regions are subject to
purifying selection pressure which mitigates gene expression
noise (Metzger et al., 2015). Indeed, an elevation in phenotypic
variance means that a growing percentage of cells within a
subpopulation deviates from an optimal phenotype. However, in
some cases there is no single optimal phenotypic value, particularly
when the optimal protein concentration within a cell depends on
fluctuating environmental conditions. In particular, the growth rate
of yeast negatively correlates with its cellular resistance to stress (Ho
and Gasch, 2015). At the same time, a genetically homogeneous
suspension culture of yeast is usually heterogeneous in the rate of
division of individual cells (Arabaciyan et al., 2021) where slow-
dividing cells upregulate general stress-response transcription
factors Msn2p/Msn4p and exhibit a higher trehalose synthase
Tsl1 concentration (Li et al., 2018). The high trehalose synthase

Tsl1p concentration is beneficial during heat stress but associated
with decreased growth rate under normal conditions (Levy et al.,
2012). We have also recently demonstrated that post-diauxic yeast
cells form two subpopulations characterised by high and low
concentrations of mitochondrial ATP-ase inhibitor proteins
(Inh1p and Stf1p). Cells with an elevated inhibitor level
recovered more rapidly from the stationary phase than their low-
level counterparts, at the same time a high concentration of the
inhibitor proteins was deleterious under the conditions of
mitochondrial dysfunction (Galkina et al., 2022). These examples
show that cell culture phenotypic heterogeneity can be detrimental
or adaptive depending on which specific phenotypic properties are
considered.

Eukaryotic cells harbour mitochondria, the cellular organelle
with its own genome; refer to (Janouškovec et al., 2017) for the rare
exceptions. The number of mtDNA molecules in cells varies
depending on conditions, cell type and the previous cell’s history
(Medeiros et al., 2018; Zhang et al., 2021; Galeota-Sprung et al.,
2022). Meanwhile, heteroplasmy, a condition characterised by the

FIGURE 1
Mitochondrial DNA heteroplasmy provides bistability in mitochondrial dysfunction phenotypes. Random mutations and genetic drift generate a
fraction of cells with dysfunctional mitochondria (A). These cells are outcompeted by the cells with low burden of mutant mtDNA under normal
conditions (B), but better survive under certain stresses (C), and wild typemtDNA can repopulate cells again when the stress is relieved. (D)Dotted arrows
indicate the direction of change in mtDNA allele frequencies.
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presence of multiple mtDNA variants within a single cell, may occur
as a result of mutations or cell fusion (Figure). The heteroplasmy is a
common phenomenon. Many human genetic mitochondrial
disorders are linked to the coexistence of a wild type mtDNA
molecule and a variant bearing a deleterious mutation (Wallace
and Chalkia, 2013). Furthermore, heteroplasmy in germline can be
transmitted for several generations (Burgstaller et al., 2018).

Several forces shape mtDNA allele frequency within a cell line
(Rand, 2001). 1) The random sampling of mtDNA during cell
division makes the relative number of two mitochondrial
genotypes drift over generations (Figure). The drift continues
until one of the variants becomes fixed. Given that mtDNA can
replicate under cell cycle arrest (Newlon and Fangman, 1975), a
proportion of different mtDNAs can also change over time in post-
mitotic heteroplasmic cells (Taylor and Turnbull, 2005). 2) At the
same time, dividing cells with a high proportion of the pathogenic
mtDNAmolecules become unable to proliferate and, therefore, they
are outcompeted by other cells with functional mitochondria. As
accumulation of mutant mtDNA in a cell has a threshold effect on a
cell phenotype (Rossignol et al., 2003), pathogenic mtDNA variants
can persist in a cell line at a low proportion for an extended period.
The pathogenicity threshold usually lies in the range 50%–90% of
mutant mtDNA allele frequency; the number depends on cell type
and the nature of mutation (Rossignol et al., 2003). This suggests
that the wild type mtDNA is usually present in a moderate excess in
normal cells. 3) Due to their superior intracellular fitness, certain
deleterious mtDNAs variants can displace wild type variants within
the cell (Gitschlag et al., 2020).

These three factors contribute to the ability of harmful mtDNA
variants to persist in clonal populations along with wild type
mtDNAs. Such populations should sporadically produce cells
with a high proportion of mutant mtDNA and dysfunctional
mitochondria. Indeed, multicellular organisms develop from a
single cell, which experiences a significant genetic bottleneck in
mtDNA quantity. This bottleneck decreases the diversity of mtDNA
variants (Krakauer and Mira, 1999; Zaidi et al., 2019). Despite this,
the proportion of respiration-deficient cells in some tissues increases
with age (Taylor and Turnbull, 2005; Payne et al., 2011; Hipps et al.,
2022).

Eukaryotic cells are equipped with the mechanisms capable of
compensating deleterious effects of mitochondrial dysfunction. In
nematodes, for instance, the depletion of mitochondrial DNA
triggers the expression of mitochondrial chaperones (Nargund
et al., 2012). In addition, mitochondrial dysfunction induces the
general stress response mechanisms, which encompass both
mitochondrial and cytosolic heat-shock response proteins
(Poveda-Huertes et al., 2020). Furthermore, yeast cells with
dysfunctional mitochondria demonstrate a surprising resilience to
certain stress factors, outperforming cells with functional oxidative
phosphorylation. Such yeast cells display enhanced resistance to a
range of stressors, including the protein synthesis inhibitor
cycloheximide (Zhang and Moye-Rowley, 2001), cytoplasm
acidification (Ludovico et al., 2002), mating pheromone-induced

death (Severin and Hyman, 2002), lipophilic cations (Antonenko
et al., 2011), and the prooxidant paraquat (Stenberg et al., 2022). The
resistance to these stressors is facilitated, in part, by the activation of
pleiotropic drug resistance (PDR) transporter genes in yeast cells
without functional mtDNA. These genes encode ABC-transporters
with broad substrate specificity capable of effluxing xenobiotics from
the cytoplasm into the environment (Zhang and Moye-Rowley,
2001).

Taken together, it turns out that, on the one hand, in clonal
populations mitochondrial heteroplasmy causes the sporadic
occurrence of the cells with impaired mitochondrial function;
and mitochondrial dysfunction activates protective mechanisms.
On the other hand, the activation of such a mechanism can be
useful for cells in a wide range of stressful conditions. Importantly, in
a heteroplasmic cell with a high load of mutant mtDNA but
retaining wild-type mtDNA the proportion of full-length wild-
type mtDNA can be increased over several generations in the
absence of stress. Therefore, mitochondrial heteroplasmy can be
a natural way to generate phenotypic bistability in clonal
populations. I suggest that bistability mediated by mitochondrial
heteroplasmy can be a mechanism betting the risk in the fluctuating
environment (Figure 1).
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