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Head and neck squamous cell carcinoma (HNSCC), as a complex and variable

malignancy, poses a significant threat to human health. Since the intricate

association between HPV and HNSCC emerged, its role within the TME has

garnered extensive attention. HPV+HNSCC exhibits distinct immunological

characteristics within the TME, intricately intertwined with mechanisms of

immune evasion. HPV employs multifaceted pathways to intervene in

metabolic regulation within the TME, exerting influence over immune cell

functionality and neoplastic cell genesis. Furthermore, the heightened immune

reactivity exhibited by HPV+HNSCC within the TME augments responses to

immune interventions such as immune checkpoint inhibitors. Therefore, amidst

the current limitations of therapeutic approaches, immunotherapy stands as a

promising strategy to overcome the conventional confines of treating HNSCC.

This article comprehensively outlines the impact of HPV on the inception and

progression of HNSCC while discussing the amalgamation of metabolic

regulation within the TME and immunotherapeutic strategies. By intervening in

the reciprocal interactions between HPV and HNSCC within the TME, the

potential to modulate the efficacy of immune-based treatments becomes

evident. Concurrently, a synthesis of pertinent biomarker development is

summarized. Such endeavors hold paramount significance for personalized

therapeutic approaches and themore effective management of HNSCC patients.
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1 Background

Head and neck squamous cell carcinoma (HNSCC) ranks as the

sixth most common malignant tumor globally, with a mortality rate of

approximately 50% and a 5-year survival rate of only 40%-50% (1, 2). It

predominantly affects the squamous epithelial cells in regions such as

the mouth, nose, pharynx, and larynx. Clinical manifestations

encompass masses, ulcers, hoarseness of voice, and may vary

depending on the location of the occurrence. The etiology of HNSCC

is associated with deleterious lifestyle habits, such as tobacco and alcohol

abuse, as well as infection with human papillomavirus (HPV) (3).

The incidence of HPV+HNSCC is increasing yearly and has

developed into a major pathogenic factor (4). HPV is a spherical

non-enveloped double-stranded DNA virus, and its coding chain

consists of an early transcription region, a late transcription

region, and a non-coding region (5). The early transcription

region encodes seven early proteins, among which E6 and E7

are the main oncogenic proteins. HPV exerts multiple effects

within the tumor microenvironment (TME) of HNSCC. E5/7

suppresses the expression of major histocompatibility complex

class I (MHC-I) on the cell surface, reducing the immune cells’

ability to recognize and attack tumor cells (6, 7). HPV-infected

tumor cells release immune inhibitory factors such as

transforming growth factor-b and interleukin-10 (IL-10),

suppressing the activity and function of surrounding immune

cells (8). Understanding the role of HPV in the TME of HNSCC

can provide vital information for the development of more

effective treatment strategies and preventive measures.

The conventional treatments for HNSCC mainly include

surgical resection, radiotherapy, and chemotherapy (9). HNSCC

often exhibits aggressive growth, making local control challenging

with surgical resection. Radiotherapy and chemotherapy may

cause damage to normal tissues in patients, leading to side

effects. Hence, there exists an urgent imperative for novel and

efficacious therapeutic modalities. Immunotherapy demonstrates

remarkable specificity as it has the ability to activate the host’s

immune system to target tumor cells. This approach circumvents

the toxic side effects associated with conventional treatments and

engenders a sustained anti-tumor immune response.

This article reviews how HPV in the TME affects the

development of HNSCC and the mechanisms of HPV-

immunotherapy interactions, weighs the integration of metabolic

regulation of HPV in the TME with immunotherapeutic strategies,

and summarizes the cl inical applicat ions of relevant

biomarker development.
2 Regulatory mechanisms of HPV in
HNSCC development

2.1 HPV accompanies the
development of HNSCC

2.1.1 E6 protein
One of the primary functions of E6 is to promote cell

proliferation by inhibiting the cell cycle regulatory proteins p53
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and pRb, disrupting the normal cell cycle regulation and leading to

uncontrolled cell proliferation (10, 11). E6 binds to pRb, reducing

its inhibition of the E2F transcription factor, thus propelling the

cell cycle, promoting cell proliferation, and growth (12).

Moreover, E6 is involved in the regulation of signaling pathways

and acts in conjunction with the host cell oncogene ras in HNSCC,

facilitating continuous transcription in cells (13). Another

significant role of E6 is to inhibit apoptosis by interacting with

key proteins in the host cells of HNSCC, disrupting the apoptotic

signaling pathway. It accomplishes this by inhibiting the P300/

CBP complex or through intrinsic apoptosis pathways,

upregulating pro-apoptotic proteins (Bak and Bax) while

inhibiting the anti-apoptotic protein Bcl2 (14). Additionally, E6

can employ the ubiquitin-dependent pathway to degrade p53,

affecting cell apoptosis (15).
2.1.2 E7 protein
The E7 protein specifically binds to the cullin2 ubiquitin ligase

complex, releasing pRb’s inhibitory effect on the cell cycle (16).

This activation leads to the liberation of E2F, promoting gene

expression related to the S phase within the cell, thereby

facilitating unrestricted cell proliferation and transformation.

Additionally, it also induces cell cycle dysregulation by

modulating cyclin-dependent kinases (CDK) or binding

regulatory proteins like p21 and p27, thereby activating CDK2

(13). On the other hand, E7 interferes with several key apoptosis

regulatory pathways within the cell. E7 can disrupt multiple

intracellular signaling pathways, such as PI3K/Akt and Wnt/b-
catenin, altering the balance between apoptotic and survival

signals within the cell (17, 18). Some studies suggest that E7

expression may be linked to the sensitivity of HNSCC to

chemotherapy drugs, leading to drug resistance in tumor cells

(19). Interestingly, E7 induces the degradation of pRb, resulting in

high levels of p16 expression. This inhibition of CDK4/6 and

cyclin D interaction reduces cyclin D levels (20). As a

consequence, this process drives host cells to undergo DNA

repair, paradoxically increasing cancer cells’ responsiveness to

radiotherapy and chemotherapy.
2.1.3 E5 protein
E6/7 as pivotal carcinogenic factors in HPV infection, have been

the focal point of research in HPV+HNSCC. Nevertheless, an

increasing body of research suggests that E5 protein plays a

significant role in the pathobiology of this disease. Its

involvement in regulating host cell signaling, immune evasion,

and cellular transformation mechanisms has garnered

considerable attention. E5 impedes the signal transduction

process of growth factor receptors in keratinocytes, inhibiting

intracellular self-degradation and the growth and differentiation

of keratinocyte cells. Consequently, this leads to malignant

proliferation of epithelial cells, promoting early tumor

development (21). In cervical cancer, E5 induces the more

efficient entry of epidermal growth factor receptor (EGFR) into

cell surfaces, accelerating the signaling of growth factors. Sung

discovered that variations in E5 expression levels in HPV
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+HNSCC are correlated with EGFR expression, and both can serve

as predictive markers for recurrence-free survival (22). However,

further research is necessary to ascertain the specific mechanisms.

Moreover, E5 employs E2F1 to induce elevated expression of

CENPM, enhancing radiation sensitivity during HNSCC cell cycle

redistribution, suggesting the potential clinical advantage of

monitoring CENPM levels (23).

E5 can also inhibit apoptosis, contributing to the survival and

dissemination of tumor cells. It interferes with the aggregation of

Fas-related proteins with the death domain and suppresses Fas

receptor expression, thereby disrupting the formation of death-

inducing signal complexes and inhibiting TNF and FasL-related cell

apoptosis-inducing ligands, decelerating the rate of cellular

apoptosis (24). On another front, E5 employs a myriad of

mechanisms to assist HPV+HNSCC in evading immune system

surveillance and attacks. E5 downregulates the expression and

transport of critical immune receptors such as MHC-I and MHC-

II, influencing antigen presentation and modulating immune

responses (25). Furthermore, E5 interferes with the interferon

(IFN) signaling pathway, inhibiting IFN production and

promoting immune evasion. Studies have reported that E5

achieves this by downregulating STAT1 expression, inhibiting the

transcription of downstream interferon-stimulated genes (ISGs)

(26). Alternatively, it directly inhibits the keratinocyte-specific

expression of IFNk, leading to ISG silencing. Interestingly, E5-

mediated EGFR signaling pathways are implicated in influencing

IFNk expression. Furthermore, E5 induces cellular transformation

and expedites carcinogenesis through the EGFR1 signaling pathway

(PI3K-Akt signaling pathway and MAP kinase pathway) (27).
2.2 Role of HPV in HNSCC TME

In the current field of HNSCC research, the role of TME is

gaining increasing attention. Within the TME, there are intricate

interactions between host cells and HPV, leading to various

processes such as immune evasion, cell migration, epithelial-

mesenchymal transition, and angiogenesis. These interactions,

in turn, profoundly influence the growth, progression, and

treatment response of HNSCC (Figure 1).

During the protracted process of HPV+HNSCC co-

development, a series of multi-tiered and multi-level immune

evasion mechanisms have emerged, encompassing both innate

and adaptive immunity. Cell factors, chemokines, and

complement constituents actively participate in constituting the

organism’s natural immune system, including IFNs, tumor

necrosis factor-alpha, IL-18, among others. HPV’s binding with

p48 affects the formation and signal transduction of

heterotrimeric complexes involving transcriptional activator

STAT1, STAT2, and p48, leading to the disruption of IFN-

stimulated response element binding and nuclear translocation,

thereby inhibiting IFN activation (28). Research has revealed that

HPV16 E6 competes with IL-18 for the IL-18 receptor alpha chain,

suppressing IL-18 expression and IFN-y production, thereby

inhibiting the phagocytic function of local tissue macrophages

and their corresponding natural killer (NK) cell activity (29).
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At the level of acquired immunity, HPV infection affects the

antigen processing and presentation pathways, thereby reducing

the efficiency of tumor antigen presentation to immune cells. HPV

acts upon the MHC-I heavy chain, downregulating certain gene

promoters (such as antigen processing-related transporter 1 and

proteasome subunit low molecular weight peptide 2), leading to

transcriptional activation inhibition. This, in turn, hinders

effective binding of viral antigens to MHC-I peptide-binding

grooves, redirecting them towards the Golgi apparatus and

endoplasmic reticulum for presentation in the keratinocytes,

subsequently decreasing the capture rate of viral antigens (30,

31). On the other hand, E7 interacts with antigenic peptide

transfer proteins, inhibiting the presentation of antigens by

keratinocytes and disrupting cellular immune responses (30).

Langerhans cells (LC) also play a crucial role in bridging innate

and acquired immunity through their antigen-presenting function

(32). LCs located in the basal layer of the epidermis have limited

access to low-level expression of HPV early genes, mainly found in

the upper layers of the epidermis, resulting in a significantly

reduced antigen presentation rate. Furthermore, the interaction

between LCs and specific CD4+ T cells is also hampered by HPV,

resulting in enhanced adaptive cytotoxic T lymphocyte responses.

The increased presence of virus-induced immunosuppressive cells

(such as regulatory T cells and myeloid-derived suppressor cells)

may inhibit the activity of CD8+ T cells, thus avoiding immune

system attacks (33).

Another immune escape pathway involves the binding of

tumor cells’ surface-programmed death ligand-1 (PD-L1) with

immune cells’ programmed cell death protein-1 (PD-1) (34, 35).

Data analysis has revealed an interesting phenomenon, where

highly active B lymphocytes in HPV+HNSCC patients

significantly influence the prognosis (36). Moreover, substantial

differences are observed in the immune cell composition of TME

between positive and negative patients, notably in terms of CD4+

T cell aggregation and infiltration. Hence, analyzing the

differences in patients’ immune cell composition can aid in

selecting more effective immunotherapy strategies and

predicting patient outcomes more accurately.

HPV induces tumor cells to undergo epithelial-mesenchymal

transition, activating transcription factors like ZEB1/2 and Slug,

leading them to transform from adherent epithelial cells into

migratory tumor cells with mesenchymal characteristics, thereby

enhancing their migratory and invasive capabilities (37).

Subsequently, HPV stimulates the release of inflammatory

factors within the TME, further promoting cancer cell

dissemination. The increased formation of neovascularization in

the TME facilitates tumor spread (38). HPV stimulates neointimal

formation by modulating cell signaling pathways, enhancing

vascular endothelial growth factor expression or directly

inhibiting angiogenesis inhibitory factor, which in turn

stimulates neointimal formation. Additionally, HPV can release

chemical and cellular factors, creating a TME that is more

conducive to new blood vessel growth and expansion. Meta-

analysis has revealed that even under high oxygen conditions,

HPV-infected tumor cells still preferentially utilize glucose

metabolism, a phenomenon known as the Warburg effect (39).
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This metabolic adaptation allows tumor cells to gain a growth

advantage in glycolysis and provide more carbon sources for

HNSCC growth.

Indeed, it is important to note that HPV’s effects may vary

among different individuals and tumor types, thus the relative

significance of these mechanisms can vary depending on the

specific context.
3 HNSCC immunotherapy

3.1 Mechanisms of HPV-immunotherapy
interactions

In certain cases, HPV induces tumor cells to express more

immunogenic antigens, thereby enhancing the immune system’s

ability to attack cancer cells, which is considered a potential

advantage for immunotherapy. This advantage may be attributed to

the unique TME formed by HPV, including E6/7, CD4+/8+ T cells,

which bolster immune cell surveillance of tumor cells. HPV16 E6 has
Frontiers in Immunology 04
been found to elicit specific T cell responses and CD8+ T cell responses

in HNSCC patients, optimizing the clinical response to standard

treatments (40). Consequently, recruiting HPV16-specific T cells can

lead to better prognoses and improved patient treatment outcomes.

The quantity of tumor-infiltrating lymphocytes (TILs) is commonly

used to assess adaptive immune responses. Comprehensive analysis of

numerous cases has revealed that HPV+HNSCC patients with high

survival rates often exhibit high expression of TILs, particularly CD8+

T cells (41). Co-stimulatory T cell receptor agonists (such as CD137)

are emerging as a novel approach in HNSCC immunotherapy. They

accelerate antigen-presenting cell capture and processing of the

abundant antigens released upon HPV infection. Studies have shown

that positive patients treated with cetuximab in combination with

urelumab exhibit elevated CD137 levels in NK cells, which is beneficial

for immunotherapy (42). Indeed, novel fusion proteins like CUE-101

hold great promise as potential therapeutic approaches in HNSCC

immunotherapy. CUE-101 can promote antigen presentation, activate

immune responses, and enhance the immune system’s memory effect

on tumor cells. Phase I clinical trials have found that CUE-101 activates

HPV16 E7 tumor-specific T cells, subsequently generating dose-
FIGURE 1

Mechanisms of interaction between HPV and HNSCC in TME and clinical manifestations in patients.
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dependent cytokines that inhibit HNSCC growth (43). E7 presents a

broad prospect for specific immunotherapy, with CUE-101 being used

as a second-line monotherapy for HPV+HNSCC or in combination

with pembrolizumab.

However, HPV infection can also negatively impact

immunotherapy, such as immune evasion or activation of

immune inhibitory pathways, thereby weakening the effectiveness

of immune-based treatments. A fundamental and effective

immunotherapy strategy for HPV+HNSCC involves the use of

anti-PD-1/PD-L1 antibodies (44). The study identified HPV-

specific regulation of signaling pathways, pointing out that

miRNA-mRNA interac t ions in pos i t ive HNSCC are
Frontiers in Immunology 05
interconnected with the PD-1 checkpoint pathway, PD-L1

expression (45). Antibody immunotherapy inhibits tumor growth

and spread by blocking the binding of PD-1 to PD-L1, lifting T-cell

suppression and restoring immune activity. Meta-analyses have

shown that positive patients treated with antibody immunotherapy

experience lower mortality rates compared to negative patients, and

PD-L1 can serve as a predictive marker for immunotherapy

response (46, 47). However, a drawback is that these drugs have

low efficacy in a significant proportion of patients who have failed

chemotherapy, and the low TIL characteristics observed in negative

patients contribute to increased treatment failure rates (48).

Researchers propose that activating the immune system of
TABLE 1 HNSCC markers.

Name Source Role Purpose Literatures

TP53 Serum TP53 mutations lead to loss of tumor suppressor p53 function Early diagnostic and prognostic markers (62)

MPS-1 Serum High sensitivity and specificity Early diagnostic markers (63)

VEGF-C Serum Induces endothelial cell proliferation, migration and survival Transfer marker (64)

CYFRA 21-1 Serum High levels of CYFRA 21-1 suggest the presence of HNSCC Early diagnostic markers (65)

Midkine Serum Midkine promotes tumor-specific functions Prognostic marker (66)

COX-2 Cell COX-2 upregulates fibronectin to promote HNSCC metastasis Predictive marker (67)

EGFR Cell EGFR mediates HNSCC metastasis Prognostic marker (68)

Cyclin D1 Cell Cyclin D1 amplification is associated with HNSCC invasion Prognostic marker (69)

CDK19 Cell Influences gene transcription as a signaling pathway coactivator Predictive markers for relapse (70)

NAT10 Cell NAT10 regulates tumor cell proliferation and migration Prognostic marker (71)

TRIM21 Cell Associated with immune cell infiltration of the primary tumor Prognostic marker (72)

SHOX2 DNA SHOX2 hypermethylation promotes HNSCC invasion and metastasis Prognostic marker (73)

SEPT9 DNA SEPT9 methylation is associated with HNSCC lymph node metastasis Prognostic marker

has-mir-383 miRNA Extensive involvement in tumorigenesis Diagnostic and prognostic markers (74)

has-mir-615 miRNA Specific expression indicates HNSCC development or prognosis Diagnostic and prognostic markers

has-mir-877 miRNA Specific expression indicates HNSCC development or prognosis Diagnostic and prognostic markers

miR-125a miRNA Affects cell growth and differentiation Diagnostic marker (75)

miR-200a miRNA Influence on stress and immune response Diagnostic marker

circPVT1 circRNA Influencing the malignant phenotype of tumor cell lines Prognostic marker (76)

circCORO1C circRNA Influence on tumor progression Prognostic marker

circ_0000199 circRNA High expression increases tumor recurrence and mortality Prognostic marker

circCUX1 circRNA Influence on tumor size and distant metastasis Prognostic marker

circPARD3 circRNA Associated with HNSCC staging Prognostic marker

YRNA sncRNA Associated with advanced cancer staging Biomarker (77)

NR2F6 Regulation of cytokine expression, immunotherapy targets Prognostic marker (78)

CXCR4 Increases metastasis and decreases overall survival Transfer marker (79)

CCR7 Control of immune cell responses to inflammatory stimuli Predictive markers of metastasis (80)
MPS-1, Metallopanstimulin-1; VEGF, Vascular endothelial growth factor ; COX-2, Cyclooxygenase-2; EGFR, Epidermal growth factor receptor; NR2F6, Nuclear receptor subfamily 2, group F,
member 6; CDK, Cyclin dependent kinase; NAT10, N-acetyltransferase 10; TRIM21, Tripartite motif containing 21; CXCR4, CXC chemokine receptor 4; CCR7,CC chemokine receptor 7.
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recurrent HNSCC patients through adoptive transfer of antigen-

specific cells or vaccination may be more effective (49). T cell-

enhancing vaccines can activate host T cells and stimulate the

formation of long-term immune memory, hastening the

recognition and attack of HPV-infected cells and inhibiting

immune evasion. Currently, exploring the use of cytotoxic T-

lymphocyte-associated antigen 4 (CTLA-4) inhibitors to enhance

the immune response to HPV infection is underway (50). This

inhibitor inhibits HPV-induced generation of aberrantly expressed

CTLA-4 binding to CD80/86 and enhances T cell activation and

attack. Additionally, personalized immunotherapy offers patients

more precise and effective treatment outcomes. Chimeric antigen

receptor T cell therapy (CAR-T) activates T cell attack mechanisms

by binding the antigen recognition structure on CAR to specific

antigens present on the surface of HPV-infected cells (51, 52). CAR-

T cell therapy for HPV+HNSCC patients requires careful

monitoring of immune responses and management of adverse

reactions due to the complexity of the patients’ immune status.
3.2 Development of relevant markers

Early diagnosis of HPV+HNSCC patients can prevent tumor

dissemination to lymph nodes and distant organs, thus reducing

psychological burdens and enhancing treatment success rates.

Common diagnostic modalities include p16 protein examination

or HPV DNA testing in tissue samples (53). Certain serum

biomarkers, such as TP53 antibodies and CYFRA 21-1, hold

value in early adjunctive diagnostics (54–56). The tumor

suppressor gene TP53 encodes the p53 protein, crucial for

genomic stability maintenance. In HNSCC patients, p53

mutations alter protein structure, prompting the immune

system to produce antibodies against aberrant p53 protein.

Detection of serum antibody levels aids in the early detection of

abnormal p53 protein expression. Elevated levels of the

cytokeratin complex CYFRA 21-1 in serum result from HNSCC

cell proliferation, thus rendering it one of the markers for early

diagnosis and monitoring. Moreover, EGFR and certain specific

gene or transcriptome characteristics are associated with early

diagnosis of HPV+HNSCC. Immunotherapeutic biomarkers have

the capacity to mirror the immunological status of patients,

anticipate treatment responses, and facilitate the refinement of

therapeutic approaches (57). Presently, biomarker development

predominantly revolves around T-cell functionality, genomics,

and transcriptomics analysis, immune checkpoint expression,

and inflammatory factors (58–61). For instance, the T-cell-

related inflammatory gene expression profile and tumor

mutation burden can predict the response of HNSCC to

pembrolizumab (Table 1) (81).
4 Discussion

Studying the interaction mechanisms between HPV and the

TME in HPV+HNSCC patients holds significant importance for
Frontiers in Immunology 06
cancer pathogenesis and treatment. However, current research in

this area still has some limitations. While the incidence of HPV

+HNSCC is gradually increasing in certain regions, such as the

United States, its relative rarity poses a challenge in acquiring a

sufficient number of clinical specimens for in-depth research and

statistical analysis. The complexity of TME also limits our

understanding of the interactions and regulatory mechanisms of

its various components. Immunotherapy has bridged the gaps left

by conventional treatments, showing promise in promoting

personalized therapies and reducing treatment toxicity. Despite

exploring personalized treatments and associated biomarkers, a

clinically effective approach remains absent. In-depth research on

HPV+HNSCC TME and the identification of biomarkers within the

TME may pave the way for achieving personalized and

effective immunotherapy.
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