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Genome-wide association
mapping for yield-related traits
in soybean (Glycine max) under
well-watered and drought-
stressed conditions

Shengyou Li, Yongqiang Cao, Changling Wang, Chunjuan Yan,
Xugang Sun, Lijun Zhang, Wenbin Wang* and Shuhong Song*

Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
Soybean (Glycine max) productivity is significantly reduced by drought stress.

Breeders are aiming to improve soybean grain yields both under well-watered

(WW) and drought-stressed (DS) conditions, however, little is known about the

genetic architecture of yield-related traits. Here, a panel of 188 soybean

germplasm was used in a genome wide association study (GWAS) to identify

single nucleotide polymorphism (SNP) markers linked to yield-related traits

including pod number per plant (PN), biomass per plant (BM) and seed weight

per plant (SW). The SLAF-seq genotyping was conducted on the population and

three phenotype traits were examined in WW and DS conditions in four

environments. Based on best linear unbiased prediction (BLUP) data and

individual environmental analyses, 39 SNPs were significantly associated with

three soybean traits under two conditions, which were tagged to 26 genomic

regions by linkage disequilibrium (LD) analysis. Of these, six QTLs qPN-WW19.1,

qPN-DS8.8, qBM-WW1, qBM-DS17.4, qSW-WW4 and qSW-DS8 were identified

controlling PN, BM and SW of soybean. There were larger proportions of

favorable haplotypes for locus qPN-WW19.1 and qSW-WW4 rather than qBM-

WW1, qBM-DS17.4, qPN-DS8.8 and qSW-DS8 in both landraces and improved

cultivars. In addition, several putative candidate genes such asGlyma.19G211300,

Glyma.17G057100 and Glyma.04G124800, encoding E3 ubiquitin-protein ligase

BAH1, WRKY transcription factor 11 and protein zinc induced facilitator-like 1,

respectively, were predicted. We propose that the further exploration of these

locus will facilitate accelerating breeding for high-yield soybean cultivars.
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1 Introduction

Soybean (Glycine max) is known as the main source of plant oil

and protein in the world (Cerezini et al., 2016). However, the

sustainability of soybean production is threatened by persistent

droughts with the climatic changes (Chen et al., 2016). Field and

greenhouse experiments have shown significant reduction of 24-

50% in soybean grain yield by drought stress (Frederick et al., 2001).

Reduction of grain yield is maximal while water deficiency happens

during flowering and podding stage, which is due to decreases in

pod number per plant (PN), biomass per plant (BM) and seed

weight per plant (SW) in soybean. Due to carbohydrate deprivation,

drought-induced lower photosynthetic capacity increased pod

abortion and decreased dry matter production after anthesis (Liu

et al., 2004). Thus, Breeding for new soybean cultivars with high SW

as well as PN and BM both under well-watered and drought-

stressed conditions is therefore an important strategy for addressing

this imminent threat to food security.

Selecting genotypes with better genetic gains in soybean can

improve the efficiency of cultivar development programs based on

genomic information of these yield-related traits (Yoosefzadeh

Najafabadi, 2021). The traditional QTL linkage mapping of pod

number per plant (PN) (Sun et al., 2022), biomass per plant (BM)

(Yang, 2021), and seed weight per plant (SW) (Hacisalihoglu et al.,

2018) in soybean, has made some progress, but there are certain

limitations, such as the limited allelic variation in biparental

segregation populations, time consumption for mapping

population construction, and limited mapping resolution (Sehgal

et al., 2016). In contrast to linkage mapping, GWAS exploits

ancestral recombination events in a population, thus providing

higher allelic diversity at the loci, resulting in a better association

between the marker and the target trait (Kaler et al., 2020).

The application of GWAS to complex quantitative traits of

model organisms and crops has increased over the past few years

(Atwell et al., 2010; Chen et al., 2014). In soybean, GWAS has

successfully identified many high-precision loci associated with

yield-related traits. For example, twenty significant SNPs

associated with PN have been identified from 211 germplasm by

GWAS, and three stable QTL regions were on chromosomes 4, 18

and 20 (Bhat et al., 2022). Wang et al. (2023) used a diverse panel,

including 121 wild soybeans, 207 landraces, and 231 improved

cultivars to perform GWAS on BM and identified ten important

loci, encompassing 47 putative candidate genes. Ayalew et al. (2022)

evaluated a germplasm population composed of 541 genotypes and

detected 19 QTLs associated with SW by GWAS, of which two

stable QTLs on chromosomes 9 and 17 were consistently detected

in at least three environments. A large number yield-related loci

have been identified, but the genetic basis for production formation

regulation has not been fully understood as the complexity of its

genetic mechanism, especially under DS conditions.

In this study, we evaluated 188 diverse soybean genotypes under

WW and DS conditions across four environments for three yield-

related traits, including PN, BM and SW. Furthermore, we used the

GWAS approach to analyze genetic loci and key candidate genes

related to these traits under WW and DS conditions, which could
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provide theoretical support for improved yield performance under

WW and DS conditions.
2 Materials and methods

2.1 Plant materials and growth conditions

There are 188 diverse genotypes of soybean used in the current

GWAS study; which include 95 and 48 genotypes originating from

Northeast soybean ecological region and Huanghuaihai region in

China, respectively, and 45 genotypes from the United States,

Korean, Japan, Russia, etc (Table 1). Of thses, 49 germplasm were

landrace, and 139 were improved cultivars. These soybean

germplasm were evaluated under WW and DS conditions by both

field trials and pot-culture experiments.

Field trials were conducted at Fuxin (121.73788E, 42.13649N)

in Liaoning Province, China, in 2018 and 2019 cropping seasons

(hereafter referred as FX2018 and FX2019). The climate of this site

is a typical semi-arid continental climate with an annual

temperature and rainfall of 7.7°C and 450-550 mm, respectively.

Three replicates were performed under WW and DS conditions in a

randomized block design. Each plot consisted of two rows, 0.6 m

apart that were 2 m in length, and the planting density was 165,000

plants per ha. The water supply of WW condition was delivered by

drip irrigation, while that of DS treatment was delivered by

natural precipitation.

The pot-culture experiments were conducted under open field

conditions at Liaoning Academy of Agricultural Sciences, Shenyang

(123.56265E, 41.83179N), Liaoning Province, China, in 2020 and

2021 cropping seasons (hereafter referred as SY2020 and SY2021).

Soybean seeds were planted in plastic pots (30 cm × 30 cm × 25 cm)

with 16.0 kg soil. In a randomized block design, three replications

(pots) contained three plants each. The DS treatment was carried

out throughout the flowering and podding periods of soybean. Soil

moisture content was maintained at 80% of the field’s capacity to

hold water under WW conditions, whereas it was 60% under water

stress conditions. We measured the soil water content every three

days and replenished it as needed.
2.2 Phenotypic evaluations and
descriptive statistics

Data of three yield-related traits were collected at maturity (R8).

In field trials (FX2018 and FX2019), a random sample of 10 plants

from each plot were used to determine the yield-related traits,

including pod number per plant (PN), biomass per plant (BM) and

seed weight per plant (SW). In pot-culture experiments (SY2020

and SY2021), three plants of each pot were used to measure the

above traits.

Phenotypic values under WW and DS conditions in the

FX2018, FX2019, SY2020 and SY2021 environments were used

for analysis. An ANOVA table was used to calculate each trait’s

broad-sense heritability (Zhao et al., 2020). The best linear unbiased
frontiersin.org
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prediction (BLUP) for each phenotypic value across all

environments was calculated using the lmer function in the R

package lme4 (ht tp : / /www.R-project .org/ ) to reduce

environmental variation (Bates et al., 2012). R version 3.5.1 was

used to determine Pearson’s correlation coefficients (r) for WW and

DS conditions separately.
2.3 Genotyping of soybean germplasm

Using a modified CTAB method, DNA from leaves of about 60 d

after germination was extracted (Saghai Maroof et al., 1984). SLAF-

seq technology (Sun et al., 2013) was used to generate molecular

markers in 188 soybean germplasm samples. Our restriction enzymes

of choice were RsaI and HaeIII (NEB, Ipswich, MA, United States)

(http://phytozome.jgi.doe.gov/pz/portal.html). Adenine was added to

the 3’ end of the digested fragments, and the Dual-index was used to

distinguish raw sequencing data from digested fragments (Kozich

et al., 2013). We obtained SLAF tags by digestion of each soybean

germplasm, fragment ligation, PCR amplification, and selection of

target fragments for SLAF libraries (Sun et al., 2013). Following

quality certification, SLAF-seq using the Illumina HiSeqTM 2500

platform (Illumina, Inc., San Diego, CA, United States) was

performed. SLAF libraries were evaluated by comparison them

with rice (Oryza sativa L. ssp. japonica cv. Nipponbare) libraries

(http://rice.plantbiology.msu.edu/), which were constructed and

sequenced using the same procedures.

In order to ensure the quality of the bioinformatics analysis, a

standard protocol was followed in the grouping and genotyping of

SLAF-seq data. We compared the filtered sequencing reads with the

reference genome using the BWA software (http://bio-

bwa.sourceforge.net/) (Li, 2013). In order to classify SLAF makers

into polymorphic, non-polymorphic, and repetitive categories,

allele frequencies and gene sequence differences were taken into

account. SLAF tags were used to identify polymorphic SNP loci

mostly using GATK (McKenna et al., 2010). In addition, to ensure

the reliability of SNPs identified using GATK, SAMtools also was

used to detect SNPs with reference to Li et al. (2009). SNPs that are

reliable for further analysis have been identified by both GATK and

SAMtools. SNPs with minor allele frequencies (MAF) > 0.05 and

marker integrity frequencies > 80% (Zhou et al., 2017) were selected

for further analysis.
2.4 Population structure, clustering and
linkage disequilibrium analysis

Admixture software was used to generate admixture ratios for K

values 1-10 by analyzing population structure 1000 times. Using the

valley value of cross-validation error rates, the optimal number of

subgroups was determined according to cluster results (Fu and

Perry, 2020). Taxonomic and evolutionary relationships between

188 genotypes were assessed using 67,929 SNP markers through

phylogenetic analyses. On the basis of the distance matrix, the

distance between the materials was calculated using SNP markers

from the population. The phylogenetic tree was then constructed
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using Tree Best (v1.9.2) using the neighbor-joining (NJ) method

(Vilella et al., 2009). PopLDdecay software (Zhang et al., 2019) was

used to analyze LD for SNPs within a 1 Mb window.
2.5 Genome-wide association studies

A general linear model (GLM) was used for each SNP and trait

to test for association between them using TASSEL 5.0. The GLM is

based on P + Q matrices, where P is the phenotype matrix and Q is

the population structure matrix. The statistical model for the GLM

is: y = Xb + e. In this case, y is the data of individual environment or

adjusted BLUPs for each trait, X is the known design matrix, b is the

fixed effects vector, and e is the random residues vector. A 1000-

permutation test was run for the GLM analyses. The Bonferroni-

corrected threshold for the p-value was 0.05/67 929 (p=a/n,
a=0.05). For simplicity, p<7.36E-07 was used as the threshold

value. Manhattan plots were used to visualize significant markers,

and quantile-quantile (Q-Q) plots to show important p-value

distributions (expected versus observed p-values on a -log10).
2.6 Candidate gene analysis

Based on the GWAS results, pairwise linkage disequilibrium

measures were calculated between SNPs in the genomic regions

containing significant SNPs. A QTL interval was defined as one

where the squared allele frequency correlation between markers was

higher than 0.4. We scanned the genome regions in Soybase

(www.soybase.org) to identify genes underlying QTLs of interest.
3 Results

3.1 Phenotypic traits evaluation

Three yield-related traits of 188 diverse soybean germplasm was

determined under WW and DS conditions in four environments

(FX2018, FX2019, SY2020 and SY2021) and the BLUP data for these

traits was calculated. The PN, BM and SW under WW and DS

conditions exhibited normal distribution, which was basically the

same in the four environments as well as the BLUP data (Figure 1).

Under WW and DS conditions, as expected, there was significant

positive correlations among these yield-related traits. Table 2 shows

that PN, BM, and SW had extensive phenotypic variation in soybean

germplasm across all four environments. By using BLUP data, the

variation ranges of PN, BM and SW under WW condition (hereafter

referred as PN-WW, BM-WW and SW-WW) were 21.12-134.52,

22.90-93.08 g, and 2.67-41.08 g, respectively, while those under DS

condition (hereafter referred as PN-DS, BM-DS and SW-DS) were

8.66-92.89, 10.93-81.97 g, and 1.18-31.00 g, respectively. The analysis

of variance revealed highly significant differences in genotype,

environment, and genotype-environment interactions for three

yield-related traits. Apart from SW-DS, the effect of environment

was larger than that of genotype for these traits. It appears that these

yield-related traits are quantitative traits controlled by multiple genes
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and easily influenced by environment. The heritability of PN, BM and

SWunderWWcondition was 88%, 86%, and 76%, respectively, while

that under DS condition was 88%, 95%, and 85%, respectively.
3.2 Population structure and
linkage disequilibrium

Seven subgroups were identified based on the cross-validation

error rate and K-values for the 188 genotypes in the Admixture

analysis (Figures 2A, B). Further analysis of genetic differentiation
Frontiers in Plant Science 04
was conducted using NJ-based clustering for samples from

Northeast and Huang-Huai-Hai regions in China as well as other

countries (Figure 2C). According to the phylogenetic tree, there are

seven main clusters; each of these groups corresponded to a major

subgroup of the Admixture analysis, which supports dividing the

population into seven major groups. Further marker-trait

association mapping was performed using the Q matrix at K=7.

In addition, 188 soybean accessions were assessed for genome-wide

LD using a subset of high-quality markers. At a threshold of r2 = 0.3,

the average decay distance of LD was 178.7 kb for all 188 soybean

accessions (Figure 2D).
FIGURE 1

Pearson’s correlation coefficients describing associations of three yield-related traits evaluated under well-watered (WW) and drought-stressed (DS)
conditions in four environments and best linear unbiased prediction (BLUP) data. PN, pod number per plant; BM, biomass per plant; SW, seed weight
per plant. The diagonal line illustrates the distribution of six trait-treatments. The scatter plot is displayed below the diagonal line. Above the diagonal
line are the correlation coefficient and significant deference. *** represents significant difference at p<0.001.
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3.3 GWAS identified significant SNPs
associated with yield-related traits

Using a threshold of 7.36E-07, 122 SNPs were significantly

associated with PN-WW, BM-WW, SW-WW, PN-DS, BM-DS and

SW-DS in the individual environment, which included 40 SNPs in

FX2018, 13 SNPs in FX2019, 41 SNPs in SY2020, and 28 SNPs in

SY2021 (Supplementary Table S1). By using the BLUP data, a total

of 41 SNPs were significantly associated with these traits, as

evidenced by the Manhattan and quantile-quantile plots (Q-Q)

(Figure 3). For the PN, six significant SNP loci were detected on

chromosome 4 and 19 under WW condition, and 12 significant

SNP loci were detected on chromosome 8 under DS condition

(Figure 3A), which explained about 11-18% of the phenotypic

variation (Supplementary Table S1). For the BM, eight significant

SNP loci were detected on chromosome 1, 3, 8 and 15 under WW

condition, and seven significant SNP loci were detected on

chromosome 17 and 18 under DS condition (Figure 3B),

which explained about 11-16% of the phenotypic variation

(Supplementary Table S1). For the SW, five significant SNP loci

were detected on chromosome 1, 4 and 20 under WW condition,

and three significant SNP loci were detected on chromosome 8

under DS condition (Figure 3C), which explained about 13-17% of

the phenotypic variation (Supplementary Table S1).
Frontiers in Plant Science 05
3.4 Haplotype analysis in landraces
and improved cultivars

In total, 39 significant SNPs were detected simultaneously in the

BLUPmodel and in at least one environment (Supplementary Table

S1), which were further used to limit QTL intervals related to the

target trait. In the genomic regions of these significant SNPs, the LD

blocks were determined. Only 26 QTLs were identified for all 39

significant SNPs, distributed on chromosomes 1, 3, 4, 8, 15, 17, 18,

19, and 20 (Table 2). Of these, six QTL qPN-WW19.1, qPN-DS8.8,

qBM-WW1, qBM-DS17.4, qSW-WW4 and qSW-DS8 had at least

three significant SNP loci with significant genetic correlation and

close genetic relationship. During subsequent haplotype analysis,

two or three distinct haplotypes for each QTL were revealed.

QTL qPN-WW19.1 and qPN-DS8.8 that controlled the PN

under WW and DS conditions, were detected in approximate

interval of 245-kb and 495-kb on chromosome 19 and 8,

respectively (Figure 4). For qPN-WW19.1, 91% of landraces and

81% of improved cultivars possessed Hap2, which had greater PN

than Hap1 under WW condition.

Two QTL qBM-WW1 and qBM-DS17.4 that controlled the BM

under WW and DS conditions, were detected in approximate 184-

kb interval on chromosomes 1 and 28-kb interval on chromosomes

17, respectively (Figure 5). For qBM-WW1, only 28% of landraces
TABLE 1 Geographical source of 188 soybean germplasm in this study.

Geographical source Landrace Improved cultivar Total

Northeast, China Heilongjiang 9 21 30

Jilin 13 15 28

Liaoning 9 25 34

InnerMongolia 1 5 6

Huang-Huai-Hai, China Beijing 0 8 8

Hebei 8 6 14

Shandong 2 3 5

Shanxi 3 4 7

Henan 1 3 4

Anhui 0 1 1

Jiangsu 3 3 6

Other country Korea 0 2 2

Japan 0 3 3

Russia 0 2 2

France 0 2 2

Italy 0 1 1

Switzerland 0 1 1

Ukraine 0 1 1

US 0 33 33

Total 49 139 188
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and 31% of improved cultivars were included Hap2, which had

larger BM than Hap1 under WW condition. For qBM-DS17.4, only

6% of landraces and 10% of improved cultivars were included Hap3,

which had larger BM than Hap1 and Hap2 under DS condition.
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Two QTL qSW-WW4 and qSW-DS8 that controlled the SW

underWW and DS conditons, were detected in approximate 212-kb

interval on chromosomes 4 and 12-kb interval on chromosomes 8,

respectively (Figure 6). For qSW-WW4, 93% of landraces and 96%
TABLE 2 Descriptive statistics and variance parameters estimated for three traits studied on 188 soybean germplasms under well-watered (WW) and
drought-stressed (DS) conditions in four environments and BLUP data.

Environment
PN (/plant) BM (g/plant) SW (g/plant)

WW DS WW DS WW DS

FX2018 Mean 57.54 38.29 47.90 25.59 14.04 9.07

Std 23.14 17.39 15.06 10.90 6.69 5.45

CV(%) 40.21 45.41 31.44 42.60 47.63 60.06

Min 16.95 6.74 18.55 6.51 2.28 0.76

Max 119.72 94.80 113.06 75.18 42.29 32.79

H2 0.95 0.98 0.90 0.95 0.98 0.97

FX2019 Mean 56.35 39.32 52.93 29.75 16.23 9.87

Std 22.65 17.51 17.44 14.59 7.61 5.87

CV(%) 40.19 44.54 32.95 49.05 46.87 59.47

Min 15.05 9.03 17.84 2.48 4.57 1.04

Max 116.91 87.87 109.52 96.05 46.10 33.88

H2 0.95 0.96 0.90 0.97 0.95 0.96

SY2020 Mean 70.69 50.68 58.42 33.79 17.68 10.70

Std 27.81 22.79 19.24 15.97 8.34 6.24

CV(%) 39.34 44.96 32.94 47.26 47.19 58.32

Min 21.17 11.09 22.70 8.36 2.34 0.83

Max 162.39 114.31 119.76 98.71 52.86 37.45

H2 0.96 0.96 0.91 0.97 0.97 0.97

SY2021 Mean 65.48 45.64 45.79 31.06 15.71 10.02

Std 24.73 19.67 23.25 17.53 6.61 5.64

CV(%) 37.77 43.09 50.78 56.43 42.07 56.27

Min 22.00 10.03 9.43 6.62 2.34 0.95

Max 143.20 94.05 127.29 106.95 38.57 30.29

H2 0.95 0.95 0.96 0.97 0.95 0.97

BLUP Mean 62.31 41.48 50.58 29.65 15.43 9.93

Std 23.71 17.94 14.93 13.16 6.61 5.49

CV(%) 38.06 43.24 29.52 44.39 42.84 55.33

Min 21.12 8.66 22.90 10.93 2.67 1.18

Max 134.52 92.89 93.08 81.97 41.08 31.00

H2 0.88 0.88 0.86 0.95 0.76 0.85

F value G 228.24*** 294.50*** 104.63*** 306.06*** 258.93*** 338.82***

E 874.98*** 1327.10*** 659.85*** 914.71*** 614.78*** 236.91***

G × E 5.82*** 7.91*** 16.43*** 17.67*** 18.05*** 13.17***
fron
BLUP, best linear unbiased prediction; PN, pod number per plant; BM, biomass per plant; SW, seed weight per plant; G, genotype; E, environment; G×E genotype×environment; H2, broad-sense
heritability. *** represents significant difference at p<0.001.
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of improved cultivars were included Hap2 and Hap3, which had

higher SW than Hap1 under WW condition. For qSW-DS8, 3% of

landraces and 13% of improved cultivars were included Hap2,

which had higher SW than Hap1 under DS condition.
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3.5 Candidate gene analysis in QTL regions

Using the Glycine max reference genome database (https://

www.soybase.org/), we searched for genes associated with yield-
A B

DC

FIGURE 2

Population structure and linkage disequilibrium (LD) analysis of 188 soybean germplasm. (A) Cross validation error rate for 188 samples based on
clustering from 1 to 10; X-axis is K-value 1-10, Y-axis is cross-validation error rate. (B) Colors represent separate groups in clustering analysis when
there are seven subgroups. (C) Phylogenetic tree of 188 soybean germplasm. Red represents the soybean germplasm from Northeast region, China;
Blue represents the soybean germplasm from Huanghuaihai region, China; Green represents the soybean germplasm from other countries.
(D) A plot of genome-wide LD decay for all 188 soybean germplasm. R2 indicates the squared allele frequency correlation between each pair of SNP
markers. On the X-axis is the distance between each pair of markers.
A B C

FIGURE 3

Circular manhattan plot and QQ plot for the best linear unbiased prediction (BLUP) values of pod number per plant (PN) (A), biomass per plant (BM)
(B), and seed weight per plant (SW) (C), under well-watered (WW) and drought-stressed (DS) conditions, respectively. The p-values at the
significance thresholds of 7.36E-07.
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related traits and drought tolerance in QTL regions detected under

WW and DS conditions, respectively (Table 3). In QTL regions of

qSW-WW1, qPN-DS8.3 and qPN-DS8.5, no gene has been found.

A total of 208 genes were identified in the 23 remaining QTL

regions, and the number of genes varied from 1 to 37 in each QTL

region. In this analysis, the number of candidate genes was reduced

to 22 genes using annotations based on functional annotations.

Under WW condition, there were three, three, and two

candidate genes for PN, BM, and SW, respectively. A total of

eight candidate genes were found to be involved in nucleotide

transport and metabolism, transcription, carbohydrate transport

and metabolism, and cell wall biogenesis. For three important QTL

qPN-WW19.1, qBM-WW1 and qSW-WW4, the putative candidate
Frontiers in Plant Science 08
genes were Glyma.19G211300 , Glyma.01G119500 and

Glyma.04G124800, which encoding E3 ubiquitin-protein ligase

BAH1, AMP deaminase, and Protein Zinc induced facilitator-like

1, respectively.

In this study, due to their lack of detection under control

conditions, the QTLs found under DS conditions were considered

drought-responsive. Under DS condition, a total of seven, six and

one candidate genes for PN, BM, and SW, respectively, obtained as

putative ones for drought responsive in soybean. These 14

candidate genes were involved in transcription, signal

transduction mechanisms, secondary metabolites biosynthesis,

transport and catabolism, amino acid transport and metabolism,

and cell cycle control. For three important QTL qPN-DS8.8, qBM-
frontiersin.or
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FIGURE 4

Genome-wide association study results for pod number per plant (PN) under well-watered (WW) and drought-stressed (DS) conditions and the
analysis of the QTLs qPN-WW19.1 and qPN-DS8.8. (A) Manhattan plots for PN under WW and DS conditions. Using the horizontal line as a threshold,
the arrows indicate the location of the main peaks. (B) Locations of four SNP loci on chromosomes 19 and 8 and their LD based on paired R2 values.
(C) 188 soybean germplasm were genotyped by significant SNPs to detect haplotypes. (D) Haplotype differences in PN.
g
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DS17.4 and qSW-DS8, the putative candidate genes were

Glyma.08G269800, Glyma.17G057100 and Glyma.08G020900,

which encoding floral homeotic protein APETALA 1, WRKY

transcription factor 11, and ethylene-responsive transcription

factor CRF2, respectively.
4 Discussion

Three yield-related traits of 188 soybean germplasm were

analyzed under WW and DS conditions in four environments by

the GWAS approach. We investigated the genetic basis of

phenotypic differences in soybean yield traits, which can serve as

a reference for improving soybean molecular breeding under

normal as well as drought conditions.
Frontiers in Plant Science 09
4.1 Yield-related traits analysis

Several complex molecular, physiological, and morphological

factors control the reduction in grain yield and yield-related traits

under drought stress (Mohammadi, 2014; Kadam et al., 2018).

During this experiment, the water deficit was adequate to assess the

genotypes’ ability to cope with drought, since there was a strong

reduction in productivity as well as variations in PN, BM and SW

range among accessions. For GWAS analysis, we used BLUP values

from four environments to eliminate environmental and locational

differences. Both random genetic effects and fixed environments

were considered simultaneously in BLUP. It is possible to improve

the accuracy of BLUP value prediction by predicting values in

different environments and among individuals with different

genotypes (Piepho et al., 2008). There has been extensive use of
A
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C

FIGURE 5

Genome-wide association study results for biomass per plant (BM) under well-watered (WW) and drought-stressed (DS) conditions and the analysis
of the QTLs qBM-WW1 and qBM-DS17.4. (A) Manhattan plots for BM under WW and DS conditions. Using the horizontal line as a threshold, the
arrows indicate the location of the main peaks. (B) Locations of four SNP loci on chromosomes 1 and 17 and their LD based on paired R2 values.
(C) 188 soybean germplasm were genotyped by significant SNPs to detect haplotypes. (D) Haplotype differences in BM.
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this method in QTL mapping, genome-wide association analyses,

and the selection of crops based on genome sequences (Wang et al.,

2016). Using the BLUP data, large phenotypic variations for the PN,

BM and SW can be observed in all the tested materials, especially

under DS condition. For all traits scored under WW condition,

heritability estimates ranged from 0.76 to 0.88, whereas under DS

condition, heritability estimates ranged from 0.85 to 0.95, indicating

that these three traits are highly heritable. Therefore, these traits can

be used by soybean breeders in selection programs to improve yield

and drought tolerance.
4.2 GWAS analysis and gene
prediction of key QTLs

By population structure analysis, all the tested materials were

divided into seven categories, indicating some variation within the
Frontiers in Plant Science 10
populations. Similar results were found in phylogenetic analyses,

suggesting that these analyses can help prevent false positives in

GWAS (Eltaher et al., 2018). LD decayed to half the r2 (0.30) at

178.7 kb, and LD contained a number of significant SNPs,

suggesting that GWAS can be used to identify significant

markers-trait associations (Schwarz et al., 2015). In the Q-Q

diagram analysis results, most points were on the diagonal for all

traits, which explains the population structure well (Paterne

et al., 2021).

We identified 39 significantly SNPs associated with three traits

under WW and DS conditions by BLUP data and individual

environmental analyses. For these traits, no overlapping SNPs

were observed between WW and DS conditions, which indicates

the difficulty of improving soybean yield-related traits

simultaneously under different evaluation conditions. Based on

the LD analysis, only 26 genomic regions was chosen as the QTL

regions with an average of 176-kb intervals.
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FIGURE 6

Genome-wide association study results for seed weight per plant (SW) under well-watered (WW) and drought-stressed (DS) conditions and the
analysis of the QTLs qSW-WW4 and qSW-DS8. (A) Manhattan plots for SW under WW and DS conditions. Using the horizontal line as a threshold, the
arrows indicate the location of the main peaks. (B) Locations of four SNP loci on chromosomes 4 and 8 and their LD based on paired R2 values.
(C) 188 soybean germplasm were genotyped by significant SNPs to detect haplotypes. (D) Haplotype differences in SW.
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TABLE 3 List of candidate genes located within the identified QTLs.

Trait
QTL
name

Significant SNP Chr
QTL

position

No.
of

genes

Candidate
gene
ID

Gene annotation

PN-
WW

qPN-WW4 rs042851 4
32575507-
32592587

0 NA NA

qPN-
WW19.1

rs194311,rs194316,rs194317 19
46284103-
46530081

37 Glyma.19G210900 E3 ubiquitin-protein ligase BAH1

qPN-
WW19.2

rs194339 19
46792316-
47006486

25 Glyma.19G217000 WRKY transcription factor 35

qPN-
WW19.3

rs194352 19
47278155-
47341447

9 Glyma.19G221600 Polygalacturonase

BM-
WW

qBM-WW1 rs012000,rs012001,rs012002 1
41066040-
41250284

5 Glyma.01G119500 AMP deaminase

qBM-WW3 rs030672,rs030673 3
6246003-
6246085

1 Glyma.03G048500 Disease resistance protein

qBM-
WW15

rs151122 15
17027720-
17203787

9 Glyma.15G178700 Eukaryotic translation initiation factor 3

SW-
WW

qSW-WW1 rs012795 1 51274755 NA NA

qSW-WW4 rs041398,rs041399,rs041401 4
16307361-
16520021

8 Glyma.04G124800
Protein ZINC INDUCED FACILITATOR-

LIKE 1

qSW-
WW20

rs202237 20
37043984-
37047052

1 Glyma.20G129100 Protein TIC 21

PN-DS qPN-DS8.1 rs081307 8
23302580-
23778598

17 Glyma.08G258800 Aspartic proteinase-like protein 2

qPN-DS8.2 rs081390 8
24998891-
25197286

3 Glyma.08G261200 Homocysteine S-methyltransferase 1

qPN-DS8.3 rs081420 8
25808374-
26012431

0 NA NA

qPN-DS8.4 rs081438 8
26079563-
26228773

1 Glyma.08G261700 NA

qPN-DS8.5 rs081461,rs081462 8
26498358-
26498365

0 NA NA

qPN-DS8.6 rs081509 8
27277729-
27586943

1 Glyma.08G262500 U-box domain-containing protein 14

qPN-DS8.7 rs081715,rs081722 8
30932153-
31426811

3 Glyma.08G265200 Calcium-binding protein CML21

qPN-DS8.8 rs081921,rs081922,rs081923 8
34768849-
35264470

12 Glyma.08G269800 Floral homeotic protein APETALA 1

qPN-DS8.9 rs082209 8
40748092-
40990195

18 Glyma.08G293300 Transcription factor MYB1R1

BM-DS
qBM-
DS17.1

rs170162 17
3412747-
3466772

1 Glyma.17G045900 Embryogenesis-associated protein EMB8

qBM-
DS17.2

rs170177 17
3870840-
4016954

19 Glyma.17G052200 UBP1-associated proteins 1C

qBM-
DS17.3

rs170185 17
4029241-
4068527

7 Glyma.17G053500 Casein kinase 1-like protein 1

qBM-
DS17.4

rs170193,rs170195,rs170199 17
4294571-
4322918

20 Glyma.17G057100 WRKY transcription factor 11

qBM-
DS17.5

rs173557 17
38770868-
38770949

1 Glyma.17G232500 RNA-binding protein 1

(Continued)
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Six QTL regions containing at least three significant SNP loci

with significant LD tend to co-inherit, which can be useful for

further genetic validation as well as marker-assisted selection.

Among these QTLs, three were consistent with previously

reported soybean QTLs. For example, within the previous

reported QTL interval (Chr19:386234-49312675) controlling PN

(Zhang J. et al., 2015), the present QTL qPN-WW19.1 associated

PN under WW condition was detected in SY2020, FX2021 and

BLUP data. Moreover, one SNP loci (Chr19:46340503) significantly

associate with plant height in soybean was previously reported by

Fang et al. (2017), which was also located within the interval of

qPN-WW19.1 (Chr19: 46284103-46530081). Within the QTL

interval of qPN-WW19.1, a gene Glyma.19G211300, encoding E3

ubiquitin-protein ligase BAH1, was predicted here as the putative

candidate gene. Members of the protein family E3 ubiquitin-protein

ligases play a significant role in the ubiquitin-proteasome pathway

to affect yield (Ge et al., 2016; Lv et al., 2022), such as GW2 in rice

(Choi et al., 2018), ZmGW2 in maize (Kong et al., 2014), and

TaGW2 in wheat (Lv et al., 2022).

The QTL qBM-DS17.4 associated BM under DS condition was

detected in FX2018, SY2020, FX2021 and BLUP data, which located

within the previous reported QTL interval (Chr17:5891979-

4629130) controlling shoot dry weight in soybean (Liang et al.,

2010). Within the QTL interval of qBM-DS17.4, a gene

Glyma.17G057100, encoding WRKY transcription factor 11, was

predicted here as the putative candidate gene. WRKY transcription

factors participate in various physiological and developmental

processes (Rushton et al., 2010), such as seed development

(Lagacã and Matton, 2004), seed dormancy and germination

(Zentella et al., 2007), senescence (Silke and Imre, 2002), and

development (Johnson et al., 2002). Plant hormones, including

abscisic acid (Zhang L. et al., 2015), jasmonic acid (Shimono

et al., 2007) and gibberellin (Zhang L. et al., 2015), are signaled

by WRKY proteins, according to recent findings. WRKY

transcription factors have been demonstrated to confer drought

tolerance in wheat (Gao et al., 2018; El-Esawi et al., 2019) and

soybean (Zhou et al., 2008; Shi et al., 2018).

The QTL qSW-WW4 associated SW under WW condition was

detected in FX2018, SY2020 and BLUP data, which located within

the previous reported QTL interval (Chr17:12310119-32617784)

that evaluated for the SW for a population grown in a low

phosphorus environment (Liang et al., 2010). Within the QTL

interval of qBM-DS17.4, a gene Glyma.04G124800, encoding

Protein Zinc induced facilitator-like 1, was predicted here as the

putative candidate gene. Due to their specialized role in

phytosiderophores efflux and auxin homeostasis, a subset of the
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zinc-induced facilitators are also proven to impart tolerance to

micronutrient deficiencies. In the case of Zn deficiency, crop yield is

affected (Krithika and Balachandar, 2016), while Fe deficiency can

impair several vital functions, such as photosynthesis and

respiration (Marschner, 1995). ZIFL genes contributes to

mobilization of Zn2+ in rhizospheric regions and mobilization of

Fe there by secreting phytosiderophores (Haydon and Cobbett,

2007; Meena et al., 2021)

QTL are considered validated if they are detected in a different

background as it is a true association across many genotypes. In this

study, all QTLs detected except the validated ones can be considered

novel locus that should be tested in another population. For

example, within the QTL interval of qSW-DS8, a gene

Glyma.08G020900, encoding ethylene-responsive transcription

factor CRF2, was predicted here as the putative candidate gene.

In many species, members of the AP2/ERF superfamily regulate

flower and seed development, and thus play a critical role in

regulating seed weight and further controlling seed yield (Jiang

et al., 2020). A subfamily of ERF proteins called cytokinin response

factors (CRFs) contributes to plant growth, development, nitrogen

uptake, and stress resistance (Zong et al., 2021). Recently, the gene

GmCRF4a in soybean has been reported to regulate plant height

and auxin biosynthesis, which would facilitate future molecular

breeding practice to improve soybean architecture (Xu et al., 2022).
4.3 Favorable haplotypes for
soybean breeding

Using the base types of SNP markers and distributions of alleles

associated with a trait, some haplotypes were identified, and

favorable haplotypes were identified based on their phenotypic

values using t-tests. The cultivars with favorable haplotypes in

qPN-WW19.1, qBM-WW1 and qSW-WW4 usually had greater

PN, BM and SW, respectively, under WW condition, while those in

qBM-DS17.4, qPN-DS8.8 and qSW-DS8 also had more desirable

phenotypes, respectively, under DS condition. During soybean

breeding, these important QTLs had been subjected to various

levels of selection, resulting in different proportions of favorable

haplotypes for each locus.

It has been well documented that the development of soybean

breeding has led to a change in agronomic traits. Linear increases in

PN and SW accounted for most of the historical yield improvement

(Morrison et al., 2000; Cui and Yu, 2005; Jin et al., 2010). In this

study, we found larger proportions of favorable haplotypes for locus

qPN-WW19.1 and qSW-WW4 in both landraces and improved
TABLE 3 Continued

Trait
QTL
name

Significant SNP Chr
QTL

position

No.
of

genes

Candidate
gene
ID

Gene annotation

qBM-DS18 rs184014,rs184015 18
37970702-
38400499

8 Glyma.18G164100
1-aminocyclopropane-1-carboxylate oxidase

homolog 12

SW-DS qSW-DS8
rs080050,rs080051,rs080052,

rs080053
8

1692570-
1704747

2 Glyma.08G020900
Ethylene-responsive transcription factor

CRF2
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cultivars, suggesting the selection for these favorable haplotypes by

breeders played an important role during historical yield

improvement. In this study, about 59.04% of the population,

including improved cultivar ‘Liaodou69’ (32.60 g/plant),

‘Liaodou32’ (31.92 g/plant), ‘Liaodou36’ (31.54 g/plant),

‘Liaodou14’ (30.49 g/plant), ‘Zhonghuang35’ (30.03 g/plant), and

‘Tiefeng31’ (28.04 g/plant) carried both superior haplotypes for

locus qPN-WW19.1 and qSW-WW4 and produced greater yields

under WW condition, suggesting that these QTLs had aggregated

by soybean breeding. Although the historical yield improvement

was primarily driven by higher BM (Balboa et al., 2018), we found

less proportions of favorable haplotypes for qBM-WW1, especially

in landraces. Moreover, the proportions of favorable haplotypes for

locus qBM-DS17.4, qPN-DS8.8 and qSW-DS8 were only 23%, 6%

and 3% in landraces, respectively, even though in improved

cultivars those were 18%, 10% and 13%, respectively. It may be

due to the belief that crop improvement has reduced their ability to

cope with future challenges, such as drought (Byrne et al., 2018;

Swarup et al., 2020). Our results implied that these QTLs qBM-

DS17.4, qPN-DS8.8 and qSW-DS8 had not experienced strong

selection during drought tolerant soybean breeding but had

potential for increasing soybean drought tolerance.
5 Conclusion

In this study, we genotyped 188 soybean germplasm using

SLAF-seq technology and evaluated their yield-related traits

under WW and DS conditions. By using BLUP data and

individual environmental analyses in GWAS, a total of 39 SNPs

were significantly associated with three traits under two conditions,

which were tagged to 26 genomic regions by linkage disequilibrium

(LD) analysis. Six locus could play a key role in determining PN,

BM and SW of soybean. The favorable haplotypes for locus qPN-

WW19.1 and qSW-WW4 had experienced strong selection during

historical yield improvement, while those for qBM-WW1, qBM-

DS17.4, qPN-DS8.8 and qSW-DS8 had not been fully utilized,

especially for drought tolerant soybean breeding. It was believed

that the superior haplotypes for these loci should be integrated to

improve yield-related traits. As a result of this study, a better

understanding of the genetic architecture driving high yields will

be gained and the foundation for marker-assisted breeding will be

laid in soybean.
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