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1. Introduction

It is well-known that the Navier-Stokes equations are important in fluid mechanics and turbulence.
In the last decades, the research of the asymptotic properties of the solution for Navier-Stokes equations
has attracted the attention of scholars [1–5]. Especially in the past years, the Navier-Stokes equations
with nonlinear damping have been studied [6–9], where the damping comes from the resistance to the
motion of the flow. It describes various physical situations such as porous media flow, drag or friction
effects and some dissipative mechanisms. In [6], Cai and Jiu considered the following Navier-Stokes
equations with damping:

ut − µ∆u + (u · ∇)u + α|u|β−1u + ∇p = 0, (x, t) ∈ R3 × (0,T ),
divu = 0, (x, t) ∈ R3 × [0,T ),
u|t=0 = u0, x ∈ R3,

|u| → 0, |x| → ∞,

(1.1)

where α|u|β−1u is nonlinear damping and β is damping exponent. For any β ≥ 1, the global weak
solutions of the Navier-Stokes equations with damping α|u|β−1u (α > 0) is obtained, and for any 7

2 ≤

β ≤ 5, the existence and uniqueness of strong solution is proved. Furthermore, the existence and
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uniqueness of strong solution is proved for any 3 ≤ β ≤ 5 in [7], the L2 decay of weak solutions with
β ≥ 10

3 is studied and the optimal upper bounds of the higher-order derivative of the strong solution is
proved in [8]. In recent years, Song et al. researched the following non-autonomous 3D Navier-Stokes
equation with nonlinear damping:

ut − µ∆u + (u · ∇)u + α|u|β−1u + ∇p = f (x, t), x ∈ Ω, t > τ,
divu = 0, x ∈ Ω, t > τ,
u|t=τ = uτ, x ∈ Ω,
|u|∂Ω = 0, t > τ.

(1.2)

The existence of pullback attractors for the 3D Navier-Stokes equations with damping α|u|β−1u (α >
0, 3 ≤ β ≤ 5) were proved in [9]. Furthermore, Baranovskii and Artemov investigated the solvability of
the steady-state flow model for low-concentrated aqueous polymer solutions with a damping term in a
bounded domain under the no-slip boundary condition in [10]. They proved that the obtained solutions
of the original problem converged to a solution of the steady-state damped Navier-Stokes system as
the relaxation viscosity tends to zero.

The research of the 2D g-Navier-Stokes equations is originated from the 3D Navier-Stokes
equations on thin region. Its form is as follows:

∂u
∂t − µ∆u + (u · ∇)u + ∇p = f in Ω,
∇ · (gu) = 0 in Ω,

(1.3)

where g = g(x1, x2) is a suitable smooth real-valued function defined on (x1, x2) ∈ Ω and Ω is
a suitable bounded domain in R2. In [11], by the vertical mean operator, the 2D g-Navier-Stokes
equations are derived from 3D Navier-Stokes equations. We study the 2D g-Navier-Stokes equations
as a small perturbation of the usual Navier-Stokes equations, so we want to understand the Navier-
Stokes equations completely by studying the 2D g-Navier-Stokes equations systematically. Therefore,
the research on the g-Navier-Stokes equations has theoretical basis and practical significance.

There are many studies on g-Navier-Stokes equations [12–18], such as in [12], where Roh showed
the existence of the global attractors for the periodic boundary conditions and proved the semiflows
was robust with respect to g. The existence and uniqueness of solutions of g-Navier-Stokes equations
were proved on R2 for n=2,3 in [13]. Moreover, the existence of global solutions and the global
attractor for the spatial periodic and Dirichlet boundary conditions were proved and the dimension
of the global attractor was estimated in [14]. On the other hand, the global attractor of g-Navier-
Stokes equations with linear dampness on R2 were proved. The estimation of the Hausdorff and Fractal
dimensions were also obtained in [15]. We investigated the existence of pullback attractors for the 2D
non-autonomous g-Navier-Stokes equations on some bounded domains in [16]. D. T. Quyet proved
the existence of pullback attractor in Vg for the continuous process in [17]. Recently, we discussed the
uniform attractor of g-Navier-Stokes equations with weak dampnesss and time delay in [18], and the
corresponding equations have the following forms:

∂u
∂t − ν∆u + (u · ∇)u + αu + ∇p = f (x, t) + h(t, ut) on (τ,∞) ×Ω,
∇ · (gu) = 0 on (τ,∞) × ∂Ω,
u(x, t) = 0 on τ,∞) × ∂Ω,
u(τ, x) = u0(x), x ∈ Ω.

(1.4)
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For the equation with the restriction of the forcing term f belonging to translational compacted
function space, we proved the existence of the uniform attractor by the method of asymptotic
compactness. However, as far as we know, the pullback attractor of g-Navier-Stokes equations with
nonlinear damping α|u|β−1u and time delay h(t, ut) have not been studied, so this is the main motivation
of our research.

In this article, we will study pullback asymptotic behavior of solution for the g-Navier-Stokes
equations which has nonlinear damping and time delay on some bounded domain Ω ⊂ R2, and the
usual form as follows:

∂u
∂t − ν∆u + (u · ∇)u + c|u|β−1u + ∇p = f (x, t) + h(t, ut) in Ω × (0,∞),
∇ · (gu) = 0 in Ω × (0,∞),
u(x, t) = 0 on ∂Ω,
u(x, 0) = u0(x) in Ω,

(1.5)

where p(x, t) ∈ R and u(x, t) ∈ R2 denote the pressure and the velocity respectively, ν > 0 and c|u|β−1u
is nonlinear damping, β is the damping exponent, β ≥ 1 and c > 0 are constant, 0 < m0 ≤ g =
g(x1, x2) ≤ M0, g = g(x1, x2) is a real-valued smooth function. When g = 1, Eq (1.5) become the
usual two dimensional Navier-Stokes equations with nonlinear damping and time delay. f = f (x, t)
is the external force, h(t, ut) is another external force term with time delay, ut is the function defined
by the relation ut(θ) = u(t + θ),∀θ ∈ (−r, 0), r > 0 is constant. For the 2D g-Navier-Stokes equations
can be seen as a small perturbation of the usual Navier-Stokes equations, so the 2D g-Navier-Stokes
equations with nonlinear damping and time delay can be used to describe a certain state of fluid affected
by external resistance and historical status. The nonlinear damping term c|u|β−1u in the balance of linear
momentum realizes an absorption if c < 0 and a nonlinear source if c > 0.

By the Faedo-Galerkin method in [19,20], we investigate the global well-posedness of weak
solutions for 2D non-autonomous g-Navier-Stokes equations with nonlinear damping and time delay
in this article. Then, we prove the existence of pullback attractors using θ-cocycle and the method of
pullback condition (PC). Compared with [18], the methods and conclusions are completely different,
which can be seen as a further study of related issues. On this basis, inspired by [21–23], we can
further use the pullback attractor to construct the invariant measures and statistical solutions of 2D
g-Navier-Stokes equations and study their statistical solution, invariant sample measures and Liouville
type theorem in the future.

The outline of the article is as follows. In the next section, we provide basic definitions and results
we use in this article. In Section 3, we prove the global well-posedness of weak solutions and the
existence of pullback attractors for 2D non-autonomous g-Navier-Stokes equations with nonlinear
damping and time delay. In Section 4, we give some relevant conclusion.

2. Preliminaries

We define L2(g) = (L2(Ω))2 and H1
0(g) = (H1

0(Ω))2, the inner product of L2(g) is (u, v) =
∫
Ω

u · vgdx
and inner product of H1

0(g) is ((u, v)) =
∫
Ω
Σ2

j=1∇u j · ∇v jgdx, corresponding norm is | · | = (·, ·)1/2 and
|| · || = ((·, ·))1/2 respectively.

Let M = {v ∈ (D(Ω))2 : ∇ · gv = 0 in Ω}; Hg = closure o f M in L2(g); Vg = closure o f M in H1
0(g).

Furthermore, Hg is endowed with the inner product and norm of L2(g), Vg is endowed with the inner
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product and norm of H1
0(g), where D(Ω) is the space of C∞ functions which have compact support

contained in Ω, and CHg = C0([−h, 0]; Hg),CVg = C0([−h, 0]; Vg).
Let h : R ×CHg → (L2(Ω))2 satisfies the following assumptions:
(I) ∀ ξ ∈ CHg , t ∈ R→ h(t, ξ) ∈ (L2(Ω))2 is measureable;
(II) ∀ t ∈ R, h(t, 0) = 0;
(III) ∃Lg > 0, such that ∀ t ∈ R,∀ξ, η ∈ CHg , there is |h(t, ξ) − h(t, η)| ≤ Lg||ξ − η||CHg

;
(IV) ∃m0 ≥ 0,Cg > 0,∀m ∈ [0,m0], τ ≤ t, u, v ∈ C0([τ − r, t]; Hg), such that∫ t

τ

ems|h(s, us) − h(s, vs)|2ds ≤ C2
g

∫ t

τ−r
ems|u(s) − v(s)|2ds.

∀ t ∈ [τ,T ], ∀u, v ∈ L2(τ − r,T ; Hg), from (IV), we have∫ t

τ

|h(s, us) − h(s, vs)|2(L2(Ω))2ds ≤ C2
g

∫ t

τ−r
|u(s) − v(s)|2ds.

Since the Poincaré inequality holds on Ω: There exists λ1 > 0 such that∫
Ω
ϕ2gdx ≤ 1

λ1

∫
Ω
|∇ϕ|2gdx, ∀ϕ ∈ H1

0(Ω), (2.1)

then,
|u|2 ≤ 1

λ1
||u||2, ∀u ∈ Vg. (2.2)

The g-Laplacian operator is defined as follows:

−∆gu = −
1
g

(∇ · g∇)u = −∆u −
1
g
∇g · ∇u,

the first equation of (1.5) can be rewritten as follows:

∂u
∂t − ν∆gu + ν∇g

g · ∇u + (u,∇)u + c|u|β−1u + ∇p = f + h(t, ut). (2.3)

A g-orthogonal projection is defined by Pg : L2(g) → Hg and g-Stokes operator with Agu =
−Pg( 1

g (∇ · (g∇u))). Applying the projection Pg to (1.5), ∀v ∈ Vg,∀t > 0, we obtain

d
dt (u, v) + ν((u, v)) + bg(u, u, v) + c(|u|β−1u, v) + ν(Ru, v) = ⟨ f , v⟩ + ⟨h(t, ut), v⟩, (2.4)

u(0) = u0, (2.5)

where bg : Vg ×Vg ×Vg → R, and bg(u, v,w) =
∑2

i, j=1

∫
ui
∂v j

∂x w jgdx, Ru = Pg[ 1
g (∇g · ∇)u], ∀u ∈ Vg. Let

G(u) = PgF(u), F(u) = c|u|β−1u, then the formulations (2.4) and (2.5) are equivalent to the following
equations:

du
dt + νAgu + Bu +G(u) + νRu = f + h, (2.6)

u(0) = u0, (2.7)

where Ag : Vg → V
′

g, ⟨Agu, v⟩ = ((u, v)),∀u, v ∈ Vg, and B(u) = B(u, u) = Pg(u · ∇)u is a bilinear
operator, and B : Vg × Vg → V

′

g with ⟨B(u, v),w⟩ = bg(u, v,w),∀u, v,w ∈ Vg.
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For any u, v ∈ D(Ag), |B(u, v)| ≤ C|u|1/2|Agu|1/2||v||, where C denote positive constants. From [11,12],
we have the following inequality:

|φ|L∞(Ω)2 ≤ C||φ||(1 + ln |Agφ|
2

λ1 ||φ||2
)1/2, ∀φ ∈ D(Ag), (2.8)

|B(u, v)| ≤ |(u · ∇)v| ≤ |u|L∞(Ω)|∇v|, (2.9)

|B(u, v)| ≤ C||u||||v||(1 + ln |Agu|2

λ1 ||u||2
)1/2, (2.10)

||B(u)||V′g ≤ c|u|||u||, ||Ru||V′g ≤
|∇g|∞

m0λ
1/2
1
||u||, ∀u ∈ Vg. (2.11)

From [3,4,16], we have the following concepts and conclusions.
Let Γ be a nonempty set and we define a family {θt}t∈R of mappings θt : Γ→ Γ satisfying
(1) θ0γ = γ for all γ ∈ Γ,
(2) θt(θτγ) = θt+τγ for all γ ∈ Γ, t, τ ∈ R,

then the operators θt are called the shift operators.
Let X be a metric space, for any (γ, x) ∈ Γ× X and t, τ ∈ R+, ϕ : R+ × Γ× X → X is said a θ-cocycle

on X if and only if
(1) ϕ(0, γ, x) = x,
(2) ϕ(t + τ, γ, x) = ϕ(t, θτγ, ϕ(τ, γ, x)), where θt is the shift operators.
If for all (t, γ) ∈ R+ × Γ, we have the mapping ϕ(t, γ, ·) : X → X is continuous, then the θ-cocycle ϕ

is said to be continuous.
Definition 2.1. [3] A family Ã = {A(γ); γ ∈ Γ} ∈ ϕ is said to be pullbackD-attractor if it satisfies

(1) A(γ) is compact for any γ ∈ Γ,
(2) Ã is pullbackD-attracting, i.e.,

lim
t→+∞

dist(ϕ(t, θ−tγ,D(θ−tγ)), A(γ)) = 0 f or all D̃ ∈ D, γ ∈ Γ,

(3) Ã is invariant, i.e.,

ϕ(t, γ, A(γ)) = A(θtγ) f or any (t, γ) ∈ R+ × Γ.

Definition 2.2. [4] Let ϕ be a θ-cocycle on X. A set B0 ⊂ X is said to be uniformly absorbing set for ϕ,
if for any B ∈ B(X) there exists T0 = T0(B) ∈ R+ such that

ϕ(t, γ, B) ⊂ B0 f or all t ≥ T0, γ ∈ Γ.

Theorem 2.1. [4] Let ϕ be a θ-cocycle on X. If ϕ is continuous and possesses a uniformly absorbing
set B0, then ϕ possesses a pullback attractorA = {Aγ}γ∈Γ if and only if it is pullback ω-limit compact.
Definition 2.3. [4] Let ϕ be a θ-cocycle on X. A cocycle ϕ is said to be satisfying pullback condition
if for any γ ∈ Γ, B ∈ B(X) and ε > 0, there exist t0 = t0(γ, B, ε) ≥ 0 and a finite dimensional subspace
X1 of X such that

(1) P(
⋃

t≥t0 ϕ(t, θ−t(γ), B)) is bounded,
(2) ||(I − P)(

⋃
t≥t0 ϕ(t, θ−t(γ), x)|| ≤ ε, ∀x ∈ B,

where P : X → X1 is a bounded projector.
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Theorem 2.2. [4] Let X be a Banach space and let ϕ be a θ-cocycle on X. If ϕ satisfies pullback
condition, then ϕ is pullback ω-limit compact. Moreover, let X is a uniformly convex Banach space,
then ϕ is pullback ω-limit compact if and only if pullback condition holds true.

We denote the metrizable space of function f (s) ∈ X with s ∈ R by L2
loc(R, X), where X is locally

two-power integrable in the Bochner sense. It is equipped with the local two-power mean convergence
topology.
Lemma 2.1. [16] If Hg is Hilbert space and {ωi}i∈N is orthonormal in Hg, let f (x, t) ∈ L2

loc(R; Hg) and
there exists a σ > 0, such that for any t ∈ R,

∫ t

−∞
eσs|| f (x, s)||2Hg

ds < ∞, then,

lim
n→∞

∫ t

−∞

eσs||(I − Pm) f (x, s)||2Hg
ds = 0, ∀ t ∈ R,

where Pm : Hg → span{ω1, . . . , ωn} be an orthogonal projector.

3. Proofs of the main results

In the section, we will prove the well-posedness of the weak solution for 2D g-Navier-Stokes
equations with nonlinear damping and time delay by the Faedo-Galerkin method.
Definition 3.1. Let u0 ∈ Hg, f ∈ L2

Loc(R; V ′g), for any τ ∈ R, u ∈ L∞(τ,T ; Vg) ∩ L2(τ,T ; Vg) ∩
Lβ+1(τ,T ; Lβ+1(Ω)),∀T > τ is called a weak solution of problem (1.5) if it fulfils

d
dt

u(t) + νAgu(t) + B(u(t)) + c|u|β−1u + νR(u(t)) = f (x, t) + h(t, ut) onD′(τ,+∞; V ′g),

u(τ) = u0.

Theorem 3.1. Let β ≥ 1, f ∈ L2
Loc(R; V

′

g), then for every uτ ∈ Vg, the Eq (1.5) exist the only weak
solution u(t) = u(t; τ, uτ) ∈ L∞(τ,T ; Vg) ∩ L2(τ,T ; Vg) ∩ Lβ+1(τ,T ; Lβ+1(Ω)), and u(t) continuously
depends on the initial value in Vg.
Proof. Let {w j} j≥1 be the eigenfunctions of −∆ on Ω with homogeneous Dirichlet boundary conditions,
its corresponding eigenvalues are 0 < λ1 ≤ λ2 ≤ . . . , obviously, {w j} j≥1 ⊂ Vg forms a Hilbert basis
in Hg, given uτ ∈ Vg and f ∈ L2

Loc(R; V
′

g).
For every positive integer n ≥ 1, we structure the Galerkin approximate solutions as un(t) =

un(t; T, uτ). It has the following form:

un(t; T, uτ) =
n∑

j=1

γn, j(t)w j,

where γn, j(t) is determined from the initial values of the following system of nonlinear ordinary
differential equations:

(u
′

n(t),w j) + ν((un(t),w j)) + c(|un(t)|β−1un(t),w j) + b(un(t), un(t),w j) + b(∇g
g , un(t),w j)

= ⟨ f (x, t),w j⟩ + ⟨h(t, ut),w j⟩, t > τ, j = 1, 2, . . . n,

((un(t),w j)) = ((uτ,w j)),

(3.1)

where ⟨·⟩ is dual product of Vg and V
′

g.
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According to the results of the initial value problems of ordinary differential equations, there exists
a unique local solution to problem (3.1). In the following, we prove that the time interval of the solution
can be extended to [τ,∞).

1
2

d
dt |un(t)|22 + ν||un(t)||2 + c|un(t)|β+1

β+1 + b((∇g
g · ∇)un(t), un(t)) = ⟨ f (x, t), un(t)⟩ + ⟨h(t, ut), un(t)⟩. (3.2)

Using Cauchy’s inequality and Young’s inequality, we have

⟨ f (x, t), un(t)⟩ ≤ || f (x, t)||∗ · ||un(t)|| ≤ ν2 ||un||
2 + 1

2ν || f (x, t)||2∗, (3.3)

where || · ||∗ is norm of V
′

g.

⟨h(t, ut), un(t)⟩ ≤ 1
2Cg
|h(t, ut)|2 +

Cg

2λ1
||un(t)||2. (3.4)

We take (3.3) and (3.4) into (3.2) to obtain

1
2

d
dt |un(t)|22 + ν||un(t)||2 + c|un(t)|β+1

β+1 + b((∇g
g · ∇)un(t), un(t))

≤ ν
2 ||un||

2 + 1
2ν || f (x, t)||2∗ +

1
2Cg
|h(t, ut)|2 +

Cg

2λ1
||un(t)||2,

d
dt |un(t)|22 + 2ν||un(t)||2 + 2c|un(t)|β+1

β+1 + 2b((∇g
g · ∇)un(t), un(t))

≤ ν||un||
2 + 1

ν
|| f (x, t)||2∗ +

1
Cg
|h(t, ut)|2 +

Cg

λ1
||un(t)||2,

d
dt |un(t)|22 + (ν − Cg

λ1
)||un(t)||2 + 2c|un(t)|β+1

β+1 + 2b((∇g
g · ∇)un(t), un(t))

≤ 1
ν
|| f (x, t)||2∗ +

1
Cg
|h(t, ut)|2,

(3.5)

that is

d
dt
|un(t)|22 + (ν −

Cg

λ1
)||un(t)||2 + 2c|un(t)|β+1

β+1 ≤
1
ν
|| f (x, t)||2∗ +

1
Cg
|h(t, ut)|2 + 2ν

|∇g|∞
m0λ

1/2
1

||un(t)||2.

d
dt |un(t)|22 + ν(1 −

Cg

νλ1
−

2|∇g|∞
m0λ

1/2
1

)||un(t)||2 + 2c|un(t)|β+1
β+1 ≤

1
ν
|| f (x, t)||2∗ +

1
Cg
|h(t, ut)|2. (3.6)

By integrating (3.6) from τ to t, we can obtain

|un(t)|2 + ν(1 − Cg

νλ1
−

2|∇g|∞
m0λ

1/2
1

)
∫ t

τ
||un(s)||2ds + 2c

∫ t

τ
|un(s)|β+1

β+1ds

≤ |un(τ)|2 + 1
ν

∫ t

τ
|| f (x, s)||2∗ds + 1

Cg

∫ t

τ
|h(s, us)|2ds.

For any T > 0 and β ≥ 1, we have

supτ≤t≤T (|un(t)|2) + ν(1 − Cg

νλ1
−

2|∇g|∞
m0λ

1/2
1

)
∫ t

τ
||un(s)||2ds + 2c

∫ t

τ
|un(s)|β+1

β+1ds

≤ |un(τ)||2 + 1
ν

∫ t

τ
|| f (x, s)||2∗ds + 1

Cg

∫ t

τ
|h(s, us)|2ds ≤ C,

then we can obtain that
{un(t)} is bounded in L∞(τ,T ; Vg), (3.7)

{un(t)} is bounded in L2(τ,T ; Vg), (3.8)
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and {un(t)} is bounded in Lβ+1(τ,T ; Lβ+1(Ω)). So un(t) ∈ L∞(τ,T ; Vg), therefore B(un(t)) ∈ L∞(τ,T ; V
′

g),
|un(t)|β−1un(t) ∈ Lβ+1(τ,T ; Lβ+1(Ω)). As a result,

d
dt
⟨un(t), v⟩ = ⟨ f (x, t) + h(t, ut) − c|un(t)|β−1un(t) − νAun(t) − B(un(t)) − νR(un(t)), v⟩, ∀v ∈ Vg.

Since {u
′

n(t)} is bounded in L2(τ,T ; Vg), then there exists a subsequence in {un(t)}, it still denoted by
{un(t)}, we have un(t) ∈ L2(τ,T ; Vg) and u

′

n(t) ∈ L2(τ,T ; Vg) such that
(i) un(t)→ u(t) is weakly ∗ convergent in L∞(τ,T ; Vg);
(ii) un(t)→ u(t) is weakly convergent in L2(τ,T ; Vg);
(iii) |un(t)|β−1un(t)→ ξ is weakly convergent in Lβ+1(τ,T ; Lβ+1(Ω));
(iv) u

′

n(t)→ u
′

(t) is weakly convergent in L2(τ,T ; Vg);
(v) un(t)→ u(t) is strongly convergent in L2(τ,T ; Hg);
(vi) un(t)→ u(t), a e (x, t) ∈ Ω × [τ,T ].
From Lemma 1.3 of [24], we can see ξ = |u|β−1u, since

⋃
n∈N+S pan{w1,w2, · · · ,wn} is denseness

in Vg, taking the limit n→ ∞ on both sides of (3.1), we can obtain that u is a weak solution of (1.5).
In the following, the solution is proved to be unique and continuously dependent on initial values.

Let u1 and u2 be two weak solutions of (1.5) corresponding to the initial values u1τ, u2τ ∈ Vg, we take
u = u1 − u2, from (2.6) we obtain

1
2

d
dt |u|

2 + ν||u||2 + c(|u1|
β−1u1 − |u2|

β−1u2, u) + ν(Ru, u)

= ⟨B(u2) − B(u1), u⟩ + ⟨h(t, u2t) − h(t, u1t), u⟩.
(3.9)

Using Hölder inequality and Sobolev embedding theorem, we obtain

(|u1|
β−1u1 − |u2|

β−1u2, u) =
∫
Ω

(|u1|
β−1u1 − |u2|

β−1u2)(u1 − u2)dx

≥
∫
Ω

(|u1|
β+1 − |u1|

β|u2| − |u2|
βu1 + |u2|

β+1)dx

=
∫
Ω

(|u1|
β − |u2|

β)(|u1| − |u2|)dx ≥ 0.

(3.10)

We have
|⟨B(u2) − B(u1), u⟩| = |⟨B(u2, u2 − u1) − B(u1 − u2, u1), u⟩|

≤ C1||u2||||u2 − u1||||u|| +C1||u1 − u2||||u1||||u||
= C1||u||2(||u1 + ||u2||)
≤ C1||u||2,

(3.11)

where C1 > 0 is any constant.

|⟨h(t, u2t) − h(t, u1t), u⟩| ≤
∫ t

0
|h(s, u2s) − h(s, u1s)| · |u(s)|ds ≤ Lg||ut||CHg

· |u(t)|

≤
νλ1
4 |u(t)|2 + Lg

2λ1
||ut||

2
CHg
≤ ν4 ||u(t)||2 + Lg

2λ1
||ut||

2
CHg
,

ν|(Ru, u)| ≤ ν ||∇g||∞
m0λ

1/2
1
||u|||u| ≤ ν||∇g||∞

2m0λ
1/2
1

(||u||2 + |u|2) = ξ(||u||2 + |u|2), (3.12)

where ξ = ν||∇g||∞
2m0λ

1/2
1

, so

1
2

d
dt
|u|2 + ν||u||2 ≤ C1||u||2 + ξ(||u||2 + |u|2) +

ν

4
||u(t)||2 +

Lg

2λ1
||ut||

2
CHg
,
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d
dt
|u|2 + (2ν − 2C1 − 2ξ −

ν

2
)||u||2 ≤ 2ξ|u|2 +

Lg

2λ1
||ut||

2
CHg
.

Let 2ν − 2C1 − 2ξ − ν2 > 0, then

|u(t)|2 ≤ 2ξ
∫ t

0
|u(s)|2ds +

Lg

λ1

∫ t

0
||us||

2
CHg

ds.

Since u(s) = 0 for s ≤ 0, we take the maximum in [0, t] for any t ∈ [0,T ], and we obtain

||ut||
2
CHg
≤ (2ξ +

Lg

λ1
)
∫ t

0
||us||

2
cHg

ds.

We can obtain that the uniqueness of the solution holds after applying the Gronwall inequality.
In the following, we will prove the existence of pullback attractor for (1.5). First, we will prove the

existence of pullback absorbing sets.
Lemma 3.1. Let f ∈ L2

loc(R,Hg), | f |2b = supt∈R

∫ t+1

t
| f (s)|2ds < ∞, |h|2b = supt∈R

∫ t+1

t
|h(s, us)|2ds < ∞,

suppose u(x, t) = u(t; τ, uτ) ∈ L∞(τ,T ; Vg) ∩ L2(τ,T ; Vg) ∩ Lβ+1(τ,T ; Lβ+1(Ω)) be a weak solution
of Eq (1.5). Let σ = νλ1, for any t ≥ τ, then

|u(t)|2 ≤ |u0|
2e−σγ0(t−τ) + R2

1,

where R2
1 =

1
σ(1−e−σγ0 ) (| f |

2
b + |h|

2
b) and γ0 =

2ν|∇g|∞
m0λ

1/2
1
− 1 + Cg

νλ1
.

Proof. Let f ∈ L2
loc(R,Hg) and | f |2b = supt∈R

∫ t+1

t
| f (s)|2ds < ∞, |h|2b = supt∈R

∫ t+1

t
|h(s, us)|2ds < ∞. Let

u(x, t) be a weak solution of Eq (1.5), we obtain

1
2

d
dt |u|

2 = ⟨u
′

, u⟩ = ⟨ f + h − νAgu − Bu − c|u|β−1u − νRu, u⟩

= ⟨ f , u⟩ + ⟨h, u⟩ − ν||u||2 − bg(u, u, u) − c|u|β+1
β+1 − ν((

1
g∇g · ∇)u, u),

then,
d
dt
|u|2 + 2ν||u||2 + 2c|u|β+1

β+1 = 2⟨ f , u⟩ + 2⟨h, u⟩ − 2ν((
∇g
g
· ∇)u, u).

So
d
dt |u|

2 + 2ν||u||2 + 2c|u|β+1
β+1 ≤

| f |2

νλ1
+ νλ1|u|2 + 1

Cg
|h(t, ut)|2 +Cg|u|2 + 2ν |∇g|∞

m0λ
1/2
1
||u||2

≤
| f |2

νλ1
+ ν||u||2 + 1

Cg
|h(t, ut)|2 +Cg

||u||2

λ1
+ 2ν |∇g|∞

m0λ
1/2
1
||u||2,

then,
d
dt
|u|2 + (ν −

Cg

λ1
)||u||2 + 2c|u|β+1

β+1 ≤
| f |2

νλ1
+

1
Cg
|h(t, ut)|2 + 2ν

|∇g|∞
m0λ

1/2
1

||u||2.

Hence,
d
dt
|u|2 ≤ νγ0||u||2 +

| f |2

νλ1
+

1
Cg
|h(t, ut)|2,

where γ0 = 2 |∇g|∞
m0λ

1/2
1
− 1 + Cg

νλ1
> 0 for sufficiently small |∇g|∞. So

d
dt
|u|2 ≤ νλ1γ0|u|2 +

| f |2

νλ1
+

1
Cg
|h(t, ut)|2.
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Let σ = νλ1, we have

|u(t)|2 ≤ |u0|
2eσγ0(τ−t) + 1

σ

∫ t

τ
e−σγ0(t−r)| f (r)|2dr + 1

Cg

∫ t

τ
e−σγ0(t−r)|h(r, ur)|2dr

≤ |u0|
2eσγ0(τ−t) + 1

σ
[
∫ t

t−1
e−σγ0(t−r)| f (r)|2dr +

∫ t−1

t−2
e−σγ0(t−r)| f (r)|2dr + · · · ]

+ 1
Cg

[
∫ t

t−1
e−σγ0(t−r)|h(r, ur)|2dr +

∫ t−1

t−2
e−σγ0(t−r)|h(r, ur)|2dr + · · · ]

≤ |u0|
2eσγ0(τ−t) + 1

σ
(1 + e−σγ0 + e−2σγ0 + · · · ) supt∈R

∫ t+1

t
| f (r)|2dr

+ 1
Cg

(1 + e−σγ0 + e−2σγ0 + · · · ) supt∈R

∫ t+1

t
|h(r, ur)|2dr

≤ |u0|
2eσγ0(τ−t) + R2

1,

where R2
1 =

1
σ(1−e−σγ0 ) (| f |

2
b + |h|

2
b).

For any f ∈ L2
loc(R,Hg), | f |2b = | f0|

2
b, we have the uniformly absorbing set

B0 = {u ∈ Hg||u| ≤ 2R2
1 = ρ

2
0}

in Hg.
Lemma 3.2. Let f ∈ L2

loc(R,Hg), | f |2b = supt∈R

∫ t+1

t
| f (s)|2ds < ∞, |h|2b = supt∈R

∫ t+1

t
|h(s, us)|2ds < ∞,

u0(x) ∈ Hg, suppose

u(x, t) ∈ L∞(τ,T ; Vg) ∩ L2(τ,T ; Vg) ∩ Lβ+1(τ,T ; Lβ+1(Ω)), u
′

(x, t) ∈ L2
loc(Rτ; Hg) (∀t > 0)

is a strong solution of (1.5), for any t ≥ τ, then

||u(t)||2 ≤ ||u(τ)||2eγ(τ−t) +
1
ν

(1 − e−γ)−1(| f |2b + |h|
2
b),

where γ = λ(ν −Cg −
2ν|∇g|∞
m0λ

1/2
0

).
Proof. We suppose u(x, t) be a strong solution of (1.5), multiplying (2.6) by Agu and we have

1
2

d
dt
||u||2 + ν|Agu|2 + (Bu, Agu) + (c|u|β−1u, Agu) = ( f , Agu) + (h, Agu) − ν(Ru, Agu).

Then,
1
2

d
dt
||u||2 + ν|Agu|2 + c

∫
Ω

|u|β−1|∇u|2dx +
c(β − 1)

4

∫
Ω

|uβ−3||∇|u|2|2dx

= ( f , Agu) + (h, Agu) − ν(Ru, Agu),

d
dt
||u||2 + 2ν|Agu|2 + 2c

∫
Ω

|u|β−1|∇u|2dx +
c(β − 1)

2

∫
Ω

|uβ−3||∇|u|2|2dx

= 2( f , Agu) + 2(h, Agu) − 2ν(Ru, Agu).

So
d
dt ||u||

2 + 2ν|Agu|2 + 2c
∫
Ω
|u|β−1|∇u|2dx + c(β−1)

2

∫
Ω
|uβ−3||∇|u|2|2dx

≤ 1
ν
| f |2 + ν|Agu|2 + 1

Cg
|h(t, ut)|2 +Cg|Agu|2 + 2ν|∇g|∞

m0
||u|||Agu|

≤ 1
ν
| f |2 + (ν −Cg)|Agu|2 + 1

Cg
|h(t, ut)|2 +

2ν|∇g|∞
m0λ

1/2
0
|Agu|2.
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Since
2c
∫
Ω

|u|β−1|∇u|2dx +
c(β − 1)

2

∫
Ω

|uβ−3||∇|u|2|2dx ≥ 0,

we deduce
d
dt
||u||2 + (ν −Cg −

2ν|∇g|∞
m0λ

1/2
0

)|Agu|2 ≤
1
ν
| f |2 +

1
Cg
|h(t, ut)|2,

d
dt
||u||2 + λ(ν −Cg −

2ν|∇g|∞
m0λ

1/2
0

)||u||2 ≤
1
ν
| f |2 +

1
Cg
|h(t, ut)|2.

Then we have
d
dt
||u||2 + γ||u||2 ≤

1
ν
| f |2 +

1
Cg
|h(t, ut)|2,

where
γ = λ(ν −Cg −

2ν|∇g|∞
m0λ

1/2
0

) > 0.

Using Gronwall’s inequality, we deduce

||u||2 ≤ ||u(τ)||2eγ(τ−t) + 1
ν

∫ t

τ
e−γ(t−r)| f |2dr + 1

Cg

∫ t

τ
e−γ(t−r)|h(r, ur)|2dr

≤ ||u(τ)||2eγ(τ−t) + 1
ν
[
∫ t

t−1
e−γ(t−r)| f |2dr +

∫ t−1

t−2
e−γ(t−r)| f |2dr + · · · ]

+ 1
Cg

[
∫ t

t−1
e−γ(t−r)|h(r, ur)|2dr +

∫ t−1

t−2
e−γ(t−r)|h(r, ur)|2dr + · · · ],

||u||2 ≤ ||u(τ)||2eγ(τ−t) + 1
ν
(1 + e−γ + e−2γ + · · · ) supt∈R

∫ t+1

t
| f |2dr

+ 1
Cg

(1 + e−γ + e−2γ + · · · ) supt∈R

∫ t+1

t
|h(r, ur)|2dr

≤ ||u(τ)||2eγ(τ−t) + 1
ν
(1 − e−γ)−1(| f |2b + |h|

2
b).

Let
B1 =

⋃
f∈Γ

⋃
t>t0+1

ϕ(t0 + 1, f , h, B0),

then B1 is bound and B1 is the uniformly absorbing set in Vg.
Theorem 3.2. Let f ∈ L2

loc(R,Hg), | f |2b = supt∈R

∫ t+1

t
| f (s)|2ds < ∞, |h|2b = supt∈R

∫ t+1

t
|h(s, us)|2ds < ∞,

then the cocycle {ϕ(t, γ, x)} corresponding to Eq (1.5) possesses a compact pullback attractor.
Proof. The following we will prove that cocycle {ϕ(t, γ, x)} satisfies pullback condition in Vg. As (Ag)−1

is continuous compact in Hg, we can use spectral theory, there is a sequence {λ j}
∞
j=1, 0 ≤ λ1 ≤ λ2 ≤

· · · ≤ λi ≤ · · · ≤ λ j → ∞, as j → ∞, and a family of {ω j}
∞
j=1 of D(Ag), they are orthonormal in Hg

and Agω j = λ jω j, ∀ j ∈ N.We suppose Vm = span{ω1, ω2, . . . , ωm} in Vg, Pm : Vg → Vm is orthogonal
projector.

For all u ∈ D(Ag), we set u = Pmu + (I − Pm)u = u1 + u2, and multiply the first equation of (2.6) by
Agu2 in Hg, then we obtain

1
2

d
dt ||u2||

2 + ν|Agu2|
2 + (B(u), Agu2) + (G(u), Agu2) + ν(Ru, Agu2)

= ( f , Agu2) + (h, Agu2).
(3.13)
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We deduce

|(B(u), Agu2)| ≤ |(B(u1, u1 + u2), Agu2)| + |(B(u2, u1 + u2), Agu2)|

≤ cL1/2||u1|||Agu2|(||u1|| + ||u2||) + c|u2|
1/2|Agu2|

3/2(||u1|| + ||u2||)

≤
ν

4
|Agu2|

2 +
c
ν
ρ4

1L +
c
ν3ρ

2
0ρ

4
1, t ≥ t0 + 1,

where |Agu1|
2 ≤ λm||u1||

2 and L = 1 + log λm+1
λ1

, ||F(u)||2 = c2|u|2β−2||u||2 ≤ c2ρ
2β−2
0 ρ2

1 = r2
0.

|(Ru,−∆u2)| ≤
|∇g|∞

m0
||u|| · |Agu2| ≤

|∇g|∞
m0

(
|Agu2|

2

2
+ 2||u||2) ≤

|∇g|∞
m0

(
|Agu2|

2

2
+ 2ρ2

1),

and

( f , Agu2) ≤
2| f |2

ν
+
ν|Agu2|

2

8
,

(G(u), Agu2) ≤
2
ν
||F(u)||2 +

ν

8
|Agu2|

2 ≤
2r2

0

ν
+
ν

8
|Agu2|

2,

(h, Agu) ≤
1

2Cg
|h(t, ut)|2 +

Cg

2
|Agu|2.

From (3.13), we have
d
dt ||u2||

2 + 2ν|Agu2|
2

≤ 2( f , Agu2) + 2(h, Agu2) − 2(B(u), Agu2) − 2(G(u), Agu2) − 2ν(Ru, Agu2)

≤
4| f |2

ν
+
ν|Agu2 |

2

4 + 1
Cg
|h(t, ut)|2 +Cg|Agu|2 + ν2 |Agu2|

2 + 2c
ν
ρ4

1L + 2c
ν3
ρ2

0ρ
4
1 +

2ν|∇g|∞
m0

( |Agu2 |
2

2 + 2ρ2
1)

=
4| f |2

ν
+

3ν|Agu2 |
2

4 + 1
Cg
|h(t, ut)|2 +Cg|Agu|2 + ν|∇g|∞

m0
|Agu2|

2 + 2c
ν
ρ4

1L + 2c
ν3
ρ2

0ρ
4
1 +

4ν|∇g|∞
m0
ρ2

1.

We obtain
d
dt ||u2||

2 + ν(5
4 −

Cg

ν
−
|∇g|∞

m0
)|Agu2|

2 ≤
4| f |2

ν
+ 1

Cg
|h(t, ut)|2 + 2c

ν
ρ4

1L + 2c
ν3
ρ2

0ρ
4
1 +

4ν|∇g|∞
m0
ρ2

1,

d
dt ||u2||

2 + ν(5
4 −

Cg

ν
−
|∇g|∞

m0
)|Agu2|

2 ≤ 2c( 2
cν |(I − Pm) f |2 + 1

ν
ρ4

1L + 1
ν3
ρ2

0ρ
4
1 +

2ν|∇g|∞
cm0
ρ2

1) + 1
Cg
|h(t, ut)|2.

We set ξ = 5
4 −

Cg

ν
−
|∇g|∞

m0
> 0, then

d
dt
||u2||

2 + νλm+1ξ||u2||
2 ≤ 2c(

2
cν
|(I − Pm) f |2 +

1
ν
ρ4

1L +
1
ν3ρ

2
0ρ

4
1 +

2ν|∇g|∞
cm0

ρ2
1) +

1
Cg
|h(t, ut)|2.

By Gronwall lemma, we deduce

||u2||
2 ≤ ||u2(t0 + 1)||2eνλm+1ξ(t0+1−t) +

∫ t

t0+1
eνλm+1ξ(r−t)[2c( 1

cν |(I − Pm) f |2 + 1
ν
ρ4

1L

+ 1
ν3
ρ2

0ρ
4
1 +

2|∇g|∞
cνm0
ρ2

1) + 1
Cg
|h(r, ur)|2]dr

= ||u2(t0 + 1)||2eνλm+1ξ(t0+1−t) + 2c(1
ν
ρ4

1L + 1
ν3
ρ2

0ρ
4
1 +

2|∇g|∞
cνm0
ρ2

1)
∫ t

t0+1
eνλm+1ξ(r−t)dr

+2
ν

∫ t

t0+1
eνλm+1ξ(r−t)|(I − Pm) f |2dr + 1

Cg

∫ t

t0+1
eνλm+1ξ(r−t)|h(r, ur)|2dr

= ||u2(t0 + 1)||2eνλm+1ξ(t0+1−t) + 2c
ν2λm+1ξ

(ρ4
1L + ρ

2
0ρ

4
1
ν2
+

2|∇g|∞
cm0
ρ2

1)

+2
ν

∫ t

t0+1
eνλm+1ξ(r−t)|(I − Pm) f |2dr + 1

Cg

∫ t

t0+1
eνλm+1ξ(r−t)|h(r, ur)|2dr.
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From Lemma 2.1 and (IV), for any ε > 0, when m + 1 sufficiently large, then,

2
ν

∫ t

t0+1
eνλm+1ξ(r−t)|(I − Pm) f |2dr ≤

ε

4
,

1
Cg

∫ t

t0+1
eνλm+1ξ(r−t)|h(r, ur)|2dr ≤

ε

4
,

2c
ν2λm+1ξ

(ρ4
1L +

ρ2
0ρ

4
1

ν2 +
2|∇g|∞

cm0
ρ2

1) ≤
ε

4
.

Let t2 = t0 + 1 + 1

νλm+1ξ ln
3ρ21
ε

, then t ≥ t2, we obtain

||u2(t0 + 1)||2eνλm+1ξ((t0+1)−t) ≤ ρ2
1eνλm+1ξ((t0+1)−t) ≤

ε

4
.

Then ∀t ≥ t2, ||u2(t)||2 ≤ ε, from Theorems 2.1 and 2.2, that is, {ϕ(t, γ, x)} has satisfied pullback
condition in Vg, then the Eq (1.5) possesses a compact pullback attractor.

4. Conclusions

In this article, we show how to deal with the nonlinear dampness c|u|β−1u (β ≥ 1) and time
delay h(t, ut) to obtain the existence of pullback attractor of the 2D g-Navier-Stokes equation.
The calculation process is more complicated due to nonlinear damping and time delay. When
we prove the existence of pullback absorbing sets, we must suppose that h(t, ut) satisfies |h|2b =
supt∈R

∫ t+1

t
|h(s, us)|2ds < ∞, this condition is also required to hold in the process of proving asymptotic

compactness, we find that the pullback absorbing sets exist in Hg when |∇g|∞ >
m0λ

1/2
1

2 (1 + Cg

νλ1
), and

exist in Vg when 0 < |∇g|∞ <
m0λ

1/2
0

2 (ν−Cg). We prove the existence of pullback attractor by the method
of pullback condition when 0 < |∇g|∞ <

m0
4ν (5ν− 4g). The conclusions of this article are innovative and

will further promote the research of 3D Navier-Stokes equations.
Obviously, it is necessary to analyze the connection between Navier-Stokes equations and g-Navier-

Stokes equations. To obtain more research results for the study of g-Navier-Stokes equations in future
research, we may consider that the pullback asymptotic behavior of solutions for 2D g-Navier-Stokes
equations with nonlinear dampness and time delay on the unbounded domain. On the other hand, it
is well-known that the invariant measures and statistical solutions have been proven to be very useful
in the understanding of turbulence in the case of Navier-Stokes equations. The main reason is that
the measurements of several aspects of turbulent flows are actually measurements of time-average
quantities. Using the method in [21,22], we will construct a family of Borel invariant probability
measures on the pullback attractor of 2D nonautonomous g-Navier-Stokes flow in a bounded domain
and investigate the relationship between invariant measures and statistical solutions of this system.
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