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Abstract: The Kolmogorov model is a class of significant ecological models and is initially introduced
to describe the interaction between two species occupying the same ecological habitat. Limit cycle
bifurcation problem is close to Hilbertis 16th problem. In this paper, we focus on investigating
bifurcation of limit cycle for a class of quartic Kolmogorov model with two positive equilibrium points.
Using the singular values method, we obtain the Lyapunov constants for each positive equilibrium
point and investigate their limit cycle bifurcations behavior. Furthermore, based on the analysis of
their Lyapunov constants’ structure and Hopf bifurcation, we give the condition that each one positive
equilibrium point of studied model can bifurcate 5 limit cycles, which include 3 stable limit cycles.
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1. Introduction

The following differential autonomous systems in a planar vector field

ẋ = F(x, y), ẏ = G(x, y) (1)

have been widely studied and a great deal of attentions have been paid to this problem in many
literatures. This activity reflects the breadth of interest in Hilbert’s 16th problem and the fact that
the above systems are often used as mathematical models to describe real-life problems. Hilbert’s 16th
problem is to find the maximum number of limit cycles of system (1).

The predator-prey system, the competition system and the cooperation model are the three most
basic types of systems in mathematical ecology. Theoretically, many natural predator-prey systems
can be discussed and investigated by some kinds of ecological models. The qualitative properties of
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differential systems are often used to describe the characteristics of ecosystems, as they have been
investigated in some literatures, for example, Liénard systems ([2,3,19,21]), Kolmogorov systems ([2–
12, 16–20, 22–26]) and some other differential systems ([13–15]) and so on. The Kolmogorov systems
(introduced by A. Kolmogorov in 1936 [12]), as a class of significant ecological models, were initially
introduced to describe the interaction between two species occupying the same ecological habitat. The
form Kolmogorov models are as follows:{ dx

dt = x f (x, y),
dy
dt = y g(x, y),

(2)

in which f (x, y) and g(x, y) are polynomials in x and y. The variables x and y are often described as the
number of species in two ecological populations, dx

dt and dy
dt represent the growth rates of x and y. Hence,

attention is often restricted to the behavior of orbits in the ‘realistic quadrant’ {(x, y) : x > 0, y > 0}.
Particular significance in applications is the existence of limit cycles and the number of limit cycles that
can occur near positive equilibrium points, because a limit cycle corresponds to an equilibrium state
of the system. The existence and stability of limit cycles are closely related to the positive equilibrium
points. Hence, many references studying Kolmogorov models pay more attention to the limit cycles
problem.

On the qualitative analysis and the bifurcation of limit cycles for cubic planar Kolmogorov systems,
some papers are as follows: Ref. [1] characterized the center conditions for a cubic Kolmogorov
differential system and obtained the condition that the positive equilibrium point can become a fine
focus of order five. Ref. [23,24] studied a class of cubic Kolmogorov systems that can bifurcate three
limit cycles from the positive equilibrium point (1,1). Ref. [4] investigated the limit cycles bifurcation
problem for a class of cubic Kolmogorov system and showed that this class of the Kolmogorov system
could bifurcate five limit cycles including 3 stable cycles. Ref. [22] showed that a class of the cubic
Kolmogorov system could bifurcate 6 limit cycles. Ref. [25] obtained the condition of integrability and
non-linearizability of weak saddles for a cubic Kolmogorov model. Ref. [6] investigated limit cycles
in a class of the quartic Kolmogorov model with three positive equilibrium points. Ref. [7] studied the
three-Dimensional Hopf Bifurcation for a class of the cubic Kolmogorov model. Ref. [19] investigated
the integrability of a class of 3-dimensional Kolmogorov system and provided the phase portraits.

In addition to cubic Kolmogorov systems, there is also a lot of literature on the bifurcation of limit
cycles for some generalized Kolmogorov systems and higher order Kolmogorov systems. For example:
Ref. [10,26] studied a general Kolmogorov model and obtained the condition for the existence and
uniqueness of limit cycles and it classified a series of models. Ref. [8] investigated the bifurcation
of limit cycles for a class of the quartic Kolmogorov model with two symmetrical positive singular
points. Ref. [9] investigated the Hopf bifurcation problem about small amplitude limit cycles and the
local bifurcation of critical periods for a quartic Kolmogrov system at the single positive equilibrium
point (1,1) and proved that the maximum number of small amplitude limit cycles bifurcating from the
equilibrium point (1,1) was 7. Ref. [20] considered the Kolmogorov system of degree 3 in R2 and
R3, and showed it had an equilibrium point in the positive quadrant and octant, and provided sufficient
conditions in order that the equilibrium point will be a Hopf point for the planar case and a zero-Hopf
point for the spatial one, and studied the limit cycles bifurcating from these equilibria using averaging
theory of second and first order.

As far as limit cycles of Kolmogorov models are concerned, many good results have been obtained,
especially in lower degree system by analyzing a sole positive equilibrium point’s state. However,
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results for Simultaneous limit cycles bifurcating from several different equilibrium points’ is less
seen, and perhaps it is difficult to investigate this kind of problem. From an ecological perspective,
investigation about multiple positive equilibrium points is meaningful, the equilibrium point (a, b)
represents that the ratio of the density about predator and prey is a : b, and so it is possible for several
equilibrium points to occur in ecosystem.

In this paper, we study a class of the following quartic Kolmogorov models
dx
dt =

1
6 x(y − 1)(x2 − 24ay − 6A10x + 6A10xy − 7y2 + 30ay2

− 6a) = P(x, y),
dy
dt =

1
3y(3b + 3B10x − x2 + 6x3 + 9by − 6B10xy − 26x2y
− 2y2 − 27by2 + 39xy2 + 3B10xy2 − 16y3 + 15by3) = Q(x, y),

(3)

in which a, b, A10 and B10 ∈ R.

Clearly, model (3) has two positive equilibrium points namely, (1,1) and (2,1). We will focus on the
limit cycles bifurcations of the two positive equilibrium points. By analyzing and proving carefully, we
obtain that each one of the two positive equilibrium points can be a 5th-order fine focus. Furthermore,
we find the condition that each positive equilibrium point can bifurcate five limit cycles, of which three
limit cycles are stable. Our results are concise (especial that in the expressions of focal values) and the
proof about existence of limit cycles is algebraic and symbolic.

This paper includes 4 sections. In Section 2, we introduce the method to compute focal value
offered by [18]. In Section 3, we respectively compute the focal values of the two positive equilibrium
points of model (3) and obtain the condition that they can be two 5th-order fine focuses. In Section 4,
we discuss the bifurcation of limit cycles of model (3) and obtain that each one of the two positive
equilibrium points of model (3) can have five small limit cycles; we give an example that three stable
limit cycles can occur near each positive equilibrium point under a certain condition.

2. A kind of method to calculate focal values

In order to use the algorithm of the singular point value to compute focal values and construct
the Poincaré succession function, we need to give some properties of focal values and singular point
values.

Consider the following system 
dx
dt = δx − y +

∞∑
k=1

Xk(x, y),

dy
dt = x + δy +

∞∑
k=1

Yk(x, y),
(4)

where Xk(x, y),Yk(x, y) are homogeneous polynomials of degree k on x, y. Under the polar coordinates
x = rcosθ, y = rsinθ, system (4) takes the form

dr
dθ
= r

δ +
∑∞

k=2 rk−1φk+1(θ)
1 +
∑∞

k=2 rk−1ψk+1(θ)
. (5)

For sufficiently small h, let

d(h) = r(2π, h) − h , r = r(θ, h) =
∞∑

m=1

v(θ)hm, (6)
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be the Poincaré succession function and the solution of Eq (6) satisfies the initial value condition
r|θ=0 = h. It is evident that

v1(θ) = eδθ > 0, vm(θ) = 0,m = 2, 3, · · · (7)

Lemma 2.1. For system (4) and any positive integer m, among v2m(2π), vk(2π) and vk(π), there exists
expression of the relation

v2m(2π) =
1

1 + v1(π)
[ξ(0)

m (v1(2π) − 1) +
m−1∑
k=1

ξ(k)
m v2k+1(2π)], (8)

where ξ(k)
m are all polynomials of v1(π), v2(π), · · · , vm(π) and v1(2π), v2(2π), · · · , vm(2π) with rational

coefficients.
In addition to indicating that v2m = 0 under the conditions v1(2π) = 1, v2k+1(2π) = 0, k =

1, 2, · · · ,m − 1. Lemma 2.1 plays an important role in construction of Poincaré succession function.

Definition 2.1. For system (4), in the expression (6), if v1(2π) = 1, then the origin is called the rough
focus (strong focus); if v1(2π) = 1, and v2(2π) = v3(2π) = · · · = v2k(2π) = 0, v2k+1(2π) , 0, then the
origin is called the fine focus (weak focus) of order k, and the quantity of v2k+1(2π) is called the kth
focal values at the origin (k = 1, 2, · · · ); if v1(2π) = 1, and for any positive integer k, v2k+1(2π) = 0,
then the origin is called a center.

By means of transformation

z = x + y i,w = x − y i,T = i t, i =
√
−1, (9)

system (4)|δ=0 can be transformed into the following systems
dz
dT = z +

∞∑
k=2

Zk(z,w) = Z(z,w),

dw
dT = −w −

∞∑
k=2

Wk(z,w) = −W(z,w),
(10)

where z,w,T are complex variables and

Zk(z,w) =
∑
α+β=k

aαβzαwβ, Wk(z,w) =
∑
α+β=k

bαβwαzβ.

It is obvious that the coefficients of system (10) satisfy conjugate condition ∀aαβ = bαβ, we call that
system (4)|δ=0 and (10) are concomitant.

Lemma 2.2. (See [16]) For system (10), we can derive successively the terms of the following formal
series

M(z,w) =
∞∑

α+β=0

cαβzαwβ, (11)

such that
∂(MZ)
∂z

−
∂(MW)
∂w

=

∞∑
m=1

(m + 1)µm(zw)k, (12)
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where ckk ∈ R, k = 1, 2, · · · , and to any integer m, µm is determined by following recursion formulas

c0,0 = 1,

when (α = β > 0) or α < 0, or β < 0, cα,β = 0,

else

cα,β =
1

β − α

α+β+2∑
k+ j=3

[(α + 1)ak, j−1 − (β + 1)b j,k−1]cα−k+1,β− j+1, (13)

µm =

2m+2∑
k+ j=3

(ak, j−1 − b j,k−1)cm−k+1,m− j+1. (14)

Lemma 2.3. (See[18]) For systems (5)|δ=0, (10) and any positive integer m, the following assertion
holds

v2m+1(2π) = iπ(µm +

m−1∑
k=1

ξ(k)
m µk), (15)

where ξ(k)
m (k = 1, 2, · · · ,m − 1) be polynomial functions of coefficients of system (10).

3. Focal values of the two positive equilibrium points of model (3)

For the linearized system of model (3), its coefficient matrix in point (x0, y0) is as follows:

A(x0,y0) =

 ∂P(x,y)
∂x

∂P(x,y)
∂y

∂Q(x,y)
∂x

∂Q(x,y)
∂y


(x0,y0)

,

in which
∂P(x,y)
∂x = 1

6 (y − 1)(−6a − 12A10x + 3x2 − 24ay + 12A10xy − 7y2 + 30ay2),
∂P(x,y)
∂y = 1

6 x(18a − 12A10x + x2 + 14y − 108ay + 12A10xy − 21y2 + 90ay2),
∂Q(x,y)
∂x = 1

3y(3B10 − 2x + 18x2 − 6B10y − 52xy + 39y2 + 3B10y2),
∂Q(x,y)
∂y = 1

3 (3b + 3B10x − x2 + 6x3 + 18by − 12B10xy − 52x2y − 6y2

− 81by2 + 117xy2 + 9B10xy2 − 64y3 + 60by3).

For the two positive equilibrium points (1,1) and (2,1) of model (3), their coefficient matrixes of the
linearized system of model (3) become

A(1,1) = A(2,1) =

[
0 −1
1 0

]
.

Clearly, A(1,1) and A(2,1) have the same two eigenvalues ±i. Hence, model (3) can be changed into
the system (4) by making some appropriate transformations.

For convenience, we will respectively compute the focal values of each positive equilibrium point
of model (3).
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3.1. Focal values of the positive equilibrium points (1,1) of model (3)

By means of transformation
x = u + 1, y = v + 1, (16)

model (3) takes the following form
du
dt = −v − uv + 1

6 (u + 1)v(2u + u2 − 14v + 36av + 6A10v + 6A10uv
− 7v2 + 30av2),

dv
dt = u + uv + 1

3 (v + 1)(6u3 − 9u2 + 26uv − 26u2v − 11v2 + 18bv2

+ 3B10v2 + 39uv2 + 3B10uv2 − 16v3 + 15bv3),

(17)

and the equilibrium point (1, 1) of model (3) becomes the origin of (17) correspondingly.
Under the transformation

z = u + i v, w = u − i v, T = i t, i =
√
−1, (18)

system (17) becomes the following complex system{ dz
dT = z + Z2(z,w) + Z3(z,w) + Z4(z,w),
dw
dT = −w −W2(z,w) −W3(z,w) −W4(z,w),

(19)

in which

Z2(z,w) = 1
12 i(22 + 18a + 3A10 + 18ib + 3iB10)w2 + 1

6 (−20 + 7i − 18ia − 3iA10

+ 18b + 3B10)wz + 1
12 i(−36 − 4i + 18a + 3A10 + 18ib + 3iB10)z2,

Z3(z,w) = i
8 [−5 + 18i + (6 + 5i)a + 2A10 − 11b − (1 − i)B10]w3 + 1

24 [74 − 109i
+ (45 − 18i)a − 6iA10 + 99ib + (3 + 9i)B10]w2z − 1

24 [−92 − 123i
+ (45 + 18i)a + 6iA10 + 99ib − (3 − 9i)B10]wz2 + 1

24 [−64 + i
+ (15 + 18i)a + 6iA10 + 33ib − (3 − 3i)B10]z3,

Z4(z,w) = − 1
48 (−14 + 33i + 15a − 3iA10 − 15b + 3iB10)w4 + 1

24 (29 + 45i + 15a
− 30b + 3iB10)w3z + 1

24 (−74 − 3iA10 + 45b)w2z2 − 1
24 (−35 + 45i

+ 15a + 30b + 3iB10)wz3 + 1
16 (2 + 11i + 5a + iA10 + 5b + iB10)z4,

W2(z,w) = 1
12 (4 + 36i − 18ia − 3iA10 − 18b − 3B10)w2 + 1

6 (−20 − 7i + 18ia
+ 3iA10 + 18b + 3B10)wz − 1

12 i(22 + 18a + 3A10 − 18ib − 3iB10)z2,

W3(z,w) = − 1
24 i[1 − 64i + (18 + 15i)a + 6A10 + 33b + (3 − 3i)B10]w3+

1
24 [92 − 123i − (45 − 18i)a + 6iA10 + 99ib + (3 + 9i)B10]w2z
+ 1

24 [74 + 109i + (45 + 18i)a + 6iA10 − 99ib + (3 − 9i)B10]wz2

− 1
8 [18 − 5i + (5 + 6i)a + 2iA10 − 11ib + (1 − i)B10]z3,

W4(z,w) = 1
16 (2 − 11i + 5a − iA10 + 5b − iB10)w4 − 1

24 (−35 − 45i + 15a + 30b
− 3iB10)w3z + 1

24 (−74 + 3iA10 + 45b)w2z2 + 1
24 (29 − 45i + 15a − 30b

− 3iB10)wz3 − 1
48 (−14 − 33i + 15a + 3iA10 − 15b − 3iB10)z4.

Obviously, system (19) belongs to the type of system (10). Then, we can compute the focal values
of the origin of (19) (namely the focal values of the equilibrium point (1, 1) of model (3)) by using the
method of Section 2. According to the recursion formulas (13) and (14) offered by Lemma 2.2, the
following theorem holds. For convenience, here we note that B10 = λ − 6b.
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Theorem 3.1. The first five singular point values at the origin of system (19) are as follows:

µ1 = −
1

36 i(379 − 378a − 54A10 + 135b − 102λ + 108aλ + 18A10λ);
µ2 =

1
9720 iA10 f1 +

1
29160 i f2;

µ3 =
1

41990400 ig2 +
1

4665600 iA10(9A10g3 + g4); µ4 = −
1

226748160000 i(486A4
10g5 + 3A10g6 + g7 + 9A2

10g8 +

81A3
10g9 + 7290A5

10g10 + 3280500A6
10g11);

µ5 = −
1

2203992115200000 i( f3+3A10 f4+27A10 f5λ+27A10 f6λ
2+81A10 f7λ

3+243A10 f8λ
4+2187A10 f9λ

5+

98415A10 f10λ
6 + 98415A10 f11λ

6);
in which fi, gi, (i ∈ {1, 2, · · · 11}) are the expressions about A10, a, λ, their expressions can be obtained
via computing by reader.

According to the relation between model (3) and system (17) and system (19), from Theorem 3.1
and Lemma 2.3, the following theorem is visible.

Theorem 3.2. The simplified expressions of the first five focal values in the equilibrium (1, 1) of
model (3) (or the first five focal values at the origin of system (19)) are as follows:

v3 =
1
36π(379 − 378a − 54A10 + 135b − 102λ + 108aλ + 18A10λ);

v5 = −
1

9720πA10 f1 −
1

29160π f2;
v7 = −

1
41990400πg2 −

1
4665600πA10(9A10g3 + g4);

v9 =
1

226748160000π(486A4
10g5 + 3A10g6 + g7 + 9A2

10g8 + 81A3
10g9 + 7290A5

10g10 + 3280500A6
10g11);

v11 =
1

2203992115200000π( f3+3A10 f4+27A10 f5λ+27A10 f6λ
2+81A10 f7λ

3+243A10 f8λ
4+2187A10 f9λ

5+

98415A10 f10λ
6 + 98415A10 f11λ

6).
From Theorem 3.2, we have the following theorems.

Theorem 3.3. The equilibrium point (1, 1) of model (3) can be a 5th-order fine focus at most.

Proof. According to Definition 2.1, we need to prove that there exits a group of real values about
λ, A10, a, b such that v3 = v5 = v7 = v9 = 0, v11 , 0.

At first, we prove v3 = v5 = v7 = v9 = 0 have real solutions. Let v3 = 0, then we have

b =
1

135
(−379 + 378a + 54A10 + 102λ − 108aλ − 18A10λ). (20)

From the quality of resultant, if f (x, y) = 0, g(x, y) = 0 have solutions, then the resultant of
f (x, y), g(x, y) with respect to x or y will vanish. When computer soft Mathematica 6.0 is used,
f (x, y), g(x, y) with respect to x is shown as Resultant [ f , g, x]. Hence, v3 = v5 = v7 = v9 = 0 hold if
and only if Eq (20) holds and {

r57 = Resultant[v5, v7, A10] = 0,
r59 = Resultant[v5, v9, A10] = 0.

(21)

While Eq (21) hold if and only if

r579 = Resultant[r57, r59, a] = 0. (22)

By computing, we obtain

r579 = Resultant[r57, r59, a] = 2401(53 − 65λ + 10λ2)2(4261 − 1966λ + 200λ2)2g(λ),
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in which g(λ) is a 242 degrees function on λ . It can be seen that Eq (22) has some real solutions such
as λ = 1

20 (65 ±
√

2105) et al. Hence, v3 = v5 = v7 = v9 = 0 have real solutions.
In fact, we can find 13 groups of real number solutions such that v3 = v5 = v7 = v9 = 0, namely

1) A10 ≈ 0.459518722796388637074, a ≈ 0.20757605414524699732908423106,
λ ≈ −187.1523806676270387309, b ≈ −100.90105602889687249731131061;

2) A10 ≈ −51.84584918202522022025, a ≈ 7.9357437035495313851150889631,
b ≈ 7.006788358368472491711, λ ≈ 6.31370574128761387341294162;

3) A10 ≈ 25.494503512525795111362, a ≈ −3.07139640695089280406061269,
b ≈ −1.532179840913880774192, λ ≈ 1.72922556020556141044796397;

4) A10 ≈ −25.070512253424586307122, a ≈ 3.33783060983953401572921236,
b ≈ 3.263720382764871832166, λ ≈ 4.72919037845355221552810321;

5) A10 ≈ −14.449047061417717199600, a ≈ 3.08815966599950902620342510,
b ≈ −0.629369782476961469600, λ ≈ −3.25754589079607174405111000;

6) A10 ≈ 8.111924106836898022434, a ≈ −1.53372638845377554695210010,
b ≈ 0.126446067636650042023, λ ≈ 0.53142294384083763082100010;

7) A10 ≈ 5.621924167862105789322, a ≈ 0.00165824258524943110012000,
b ≈ −0.514536038089562571070, λ ≈ 8.50571390132676346023508968;

8) A10 ≈ 3.0566036738431139791551, a ≈ −0.98949281181308481001231800,
b ≈ 1.3119509650856638974769, λ ≈ 4.97304633639086336473699900;

9) A10 ≈ 6.6897266686712602090401, a ≈ −0.25129280165975847841010671,
b ≈ −1.7878517956323023614398, λ ≈ −14.74192519032294176080864107;

10) A10 ≈ 1.6274879010489748450201, a ≈ 0.18419310366272218518672210,
b ≈ 0.4716932080651445815482, λ ≈ 5.39966835957640020711011671;

11) A10 ≈ 0.1394463380540504608910, a ≈ −0.08831387583182001769245266,
b ≈ 1.6869344282004140469154, λ ≈ 5.80208273810907688645907382;

12) A10 ≈ −8.0555918046326485797027, a ≈ 0.68203278918102018306728290,
b ≈ 0.8147669629127921204300, λ ≈ 3.84321467839847163723015678;

13) A10 ≈ −7.2153236483212033683720, a ≈ 1.12357380119512738273882722,
b ≈ 2.6297408958156117722512, λ ≈ 6.32346437261518950112432918.

Next, we prove v11 , 0 if v3 = v5 = v7 = v9 = 0.
Let r1 = Resultant [v5, v11, A10], r2 = Resultant [v7, v11, A10], r3 =

Resultant [v9, v11, A10], and r12 = Resultant [r1, r2, a], r13 = Resultant [r1, r3, a].
If v3 = v5 = v7 = v9 = v11 = 0, then r123 = Resultant [r12, r13, λ] = 0. In fact, by computing we

obtain r123 = Resultant [r12, r13, λ] = 3076590098860238833065040 · · · , 0.
Hence, v11 , 0 if v3 = v5 = v7 = v9 = 0, then the equilibrium point (1, 1) of model (3) can be a

5th-order fine focus at most.

3.2. Focal values of the positive equilibrium points (2,1) of model (3)

Next, we compute the focal values of the positive equilibrium point (2,1) of model (3). By means
of transformation

x = ũ + 2, y = ṽ + 1, (23)
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model (3) takes the following form:
dũ
dt = −̃v − ũ̃v

2 +
ṽ
6 (̃u + 2)(4ũ + ũ2 − 14̃v + 36ãv + 12A10̃v

+ 6A10ũ̃v − 7̃v2 + 30ãv2),
dṽ
dt = ũ + ũ̃v + 1

3 (̃v + 1)(6ũ3 + 9ũ2 − 26ũ̃v − 26ũ2̃v + 28̃v2

+ 18b̃v2 + 6B10̃v2 + 39ũ̃v2 + 3B10ũ̃v2 − 16̃v3 + 15b̃v3),

(24)

and the equilibrium point (2, 1) of model (3) becomes the origin of system (24) correspondingly. Under
the transformation

z̃ = ũ + i ṽ, w̃ = ũ − i ṽ, T = i t, i =
√
−1, (25)

system (24) becomes its concomitant complex system, i.e.,{ d̃z
dT = z̃ + Z2(̃z, w̃) + Z3(̃z, w̃) + Z4(̃z, w̃),
dw̃
dT = −w̃ −W2(̃z, w̃) −W3(̃z, w̃) −W4(̃z, w̃),

(26)

in which

Z2(̃z, w̃) = 1
24 i(−74 + 33i + 72a + 24A10 + 36ib + 12iB10)w̃2 + 1

6 (37 + 14i
− 36ia − 12iA10 + 18b + 6B10)w̃̃z + 1

24 i(18 + 43i + 72a + 24A10 + 36ib
+ 12iB10)̃z2,

Z3(̃z, w̃) = 1
8 i[−12 − i + (6 + 10i)a + 4A10 − 11b − (2 − i)B10)w̃3 + 1

24 [13 + 26i
+ (90 − 18i)a − 12iA10 + 99ib + (3 + 18i)B10]w̃2̃z − 1

24 [−49 + 12i+
(90 + 18i)a + 12iA10 + 99ib − (3 − 18i)B10]w̃̃z2 + 1

24 [−17 + 22i+
(30 + 18i)a + 12iA10 + 33ib − (3 − 6i)B10]̃z3,

Z4(̃z, w̃) = 1
48 (14 − 33i − 15a + 3iA10 + 15b − 3iB10)w̃4 + 1

24 (29 + 45i + 15a
− 30b + 3iB10)w̃3̃z + 1

24 (−74 − 3iA10 + 45b)w̃2̃z2 − 1
24 (−35 + 45i+

15a + 30b + 3iB10)w̃̃z3 + 1
16 (2 + 11i + 5a + iA10 + 5b + iB10)̃z4,

W2(̃z, w̃) = − 1
24 i(18 − 43i + 72a + 24A10 − 36ib − 12iB10)w̃2 + 1

6 (37 − 14i
+ 36ia + 12iA10 + 18b + 6B10)w̃̃z − 1

24 i(−74 − 33i + 72a + 24A10

− 36ib − 12iB10)̃z2,

W3(̃z, w̃) = − 1
24 i[22 − 17i + (18 + 30i)a + 12A10 + 33b + (6 − 3i)B10]w̃3

+ 1
24 [49 + 12i − (90 − 18i)a + 12iA10 + 99ib + (3 + 18i)B10]w̃2̃z
+ 1

24 [13 − 26i + (90 + 18i)a + 12iA10 − 99ib + (3 − 18i)B10]w̃̃z2

− 1
8 [−1 − 12i + (10 + 6i)a + 4iA10 − 11ib + (1 − 2i)B10]̃z3,

W4(̃z, w̃) = 1
16 (2 − 11i + 5a − iA10 + 5b − iB10)w̃4 − 1

24 (−35 − 45i + 15a + 30b
− 3iB10)w̃3̃z + 1

24 (−74 + 3iA10 + 45b)w̃2̃z2 + 1
24 (29 − 45i + 15a

− 30b − 3iB10)w̃̃z3 − 1
48 (−14 − 33i + 15a + 3iA10 − 15b − 3iB10)̃z4.

Obviously, system (26) belongs to the class of system (10). Next, we begin to compute the focal
values of the origin of system (24) (namely the focal values of the equilibrium point (2, 1) of model (3)).
According to the recursion formulas of Lemma 2.2, we have the following result. For convenience, we
note that B10 = λ1 − 3b − 17

6 .

Theorem 3.4. The first five singular point values at the origin of system (24) are as follows:
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µ̃1 = −
1

12 i(312a + 110A10 + 45b + 8λ1 + 144aλ1 + 48A10λ1);
µ̃2 =

1
4860 i(h1 + λ1h2 + 108λ2

1h3);
µ̃3 =

1
27993600 i(−15240960λ4

1h4 − 1440λ3
1h5 + 12λ2

1h6 + λ1h7 + h8);
µ̃4 = −

1
604661760000 i(−10484051097600λ6

1h9 − 207360λ5
1h10 − 41472λ4

1h11

+ 192λ3
1h12 + 4λ2

1h13 − λ1h14 + h15);
µ̃5 = −

1
7836416409600000 i(6216291333365760000λ8

1h16 + 149299200λ7
1h17 + 1244160

× λ6
1h18 − 6912λ5

1h19 − 1728λ4
1h20 + 48λ3

1h21 + 4λ2
1h22 + λ1h23 + h24);

in which hi, (i ∈ {1, 2, · · · 24}) are the expressions about A10, a.
Considering the relation between model (3) and system (24) and system (26), from Theorem 3.4

and Lemma 2.3, the following theorem is visible.

Theorem 3.5. The first five focal values of the equilibrium point (2, 1) of model (3) (or the first five
focal values at the origin of system (24)) are as follows:

ṽ3 =
1

12π(312a + 110A10 + 45b + 8λ1 + 144aλ1 + 48A10λ1);
ṽ5 = −

1
4860π(h1 + λ1h2 + 108λ2

1h3);
ṽ7 = −

1
27993600π(−15240960λ4

1h4 − 1440λ3
1h5 + 12λ2

1h6 + λ1h7 + h8);
ṽ9 =

1
604661760000π(−10484051097600λ6

1h9 − 207360λ5
1h10 − 41472λ4

1h11

+ 192λ3
1h12 + 4λ2

1h13 − λ1h14 + h15);
ṽ11 =

1
7836416409600000π(6216291333365760000λ8

1h16 + 149299200λ7
1h17 + 1244160

× λ6
1h18 − 6912λ5

1h19 − 1728λ4
1h20 + 48λ3

1h21 + 4λ2
1h22 + λ1h23 + h24).

From Theorem 3.5, we have

Theorem 3.6. The equilibrium point (2, 1) of model (3) can be a 5th-order fine focus at most.

Proof. According to Definition 2.1, we need to prove that there exits a group of real values about
λ1, A10, a, b such that ṽ3 = ṽ5 = ṽ7 = ṽ9 = 0, ṽ11 , 0.

At first, we prove that ṽ3 = ṽ5 = ṽ7 = ṽ9 = 0 have real number solutions.
Let ṽ3 = 0, we have

b = −
2

45
(156a + 55A10 + 4λ1 + 72aλ1 + 24A10λ1). (27)

By using computer soft Mathematica 6.0 to compute, ṽ3 = ṽ5 = ṽ7 = ṽ9 = 0 hold if and only if
Eq (27) holds and {

r̃57 = Resultant [̃v5, ṽ7, A10] = 0,
r̃59 = Resultant [̃v5, ṽ9, A10] = 0.

(28)

While Eq (28) hold if and only if

r̃579 = Resultant[̃r57, r̃59, a] = 0. (29)

By computing, we obtain

r̃579 = Resultant [r57, r59, a] = (3107 + 3210λ1 + 720λ2
1)2(13964 + 10293λ1 + 1800λ2

1)2g̃(λ1),

in which g̃(λ) is a 242 degrees function on λ1. It can be seen that Eq (29) has some real solutions such
as λ1 =

1
240 (−535 ± 9

√
465) et al. Hence, ṽ3 = ṽ5 = ṽ7 = ṽ9 = 0 have real number solutions.
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In fact, we can find 15 groups of real number solutions such that ṽ3 = ṽ5 = ṽ7 = ṽ9 = 0, namely
1) A10 ≈ −4643.3018425501515263, a ≈ 1550.8973397671423233,

b ≈ 1036.3362485482110284, λ1 ≈ −43.0579290316570603;
2) A10 ≈ 0.9959258074047267, a ≈ −0.0496867911910842,

b ≈ −215.6922502839121132, λ1 ≈ 197.5784671350668527;
3) A10 ≈ 17.6221151647949041, a ≈ −5.8674840306887030,

b ≈ −5.1961268584644113, λ1 ≈ 14.0933015765297504;
4) A10 ≈ −22.4133844512194665, a ≈ 7.6232290779662400,

b ≈ −1.4651057037980100, λ1 ≈ 5.1151041647768187;
5) A10 ≈ 6.0154299290528854, a ≈ −3.1637820182235810,

b ≈ −7.3080323729222197, λ1 ≈ −4.1189107630353050;
6) A10 ≈ −5.3540843597677715, a ≈ 2.210452369910683,

b ≈ 1.9959489233153501, λ1 ≈ −2.748983659910321;
7) A10 ≈ −3.2879140223160507, a ≈ 1.636028779039390,

b ≈ 1.4395307705732038, λ1 ≈ −2.489840572873740;
8) A10 ≈ −4.1024413004886361, a ≈ 2.121698633718532,

b ≈ −1.3456036840775022, λ1 ≈ −1.287647593274435;
9) A10 ≈ −2.7095465588712933, a ≈ 1.607999835283884,

b ≈ 0.1502206861914896, λ1 ≈ −1.921623601914863;
10) A10 ≈ 0.0859310460513803, a ≈ 0.219273746634790,

b ≈ 1.1721730119425250, λ1 ≈ −2.988862274797442;
11) A10 ≈ 0.3976086548746663, a ≈ 0.119165192985334,

b ≈ 1.0985939724503711, λ1 ≈ −2.946168239121486;
12) A10 ≈ 0.3522522540516692, a ≈ 0.044767143636023,

b ≈ 0.9813497899428434, λ1 ≈ −3.089686791404887;
13) A10 ≈ 0.5942698666771841, a ≈ 0.294891555364813,

b ≈ 1.1887051809847815, λ1 ≈ −2.669570213107159;
14) A10 ≈ 1.0727163914454935, a ≈ 0.107785966220006,

b ≈ 1.1631832585231690, λ1 ≈ −2.719197614164823;
15) A10 ≈ 1.5505080546244919, a ≈ −1.101693440557772,

b ≈ −2.0337942792540713, λ1 ≈ −3.472776931203230.
Next, we prove ṽ11 , 0 if ṽ3 = ṽ5 = ṽ7 = ṽ9 = 0.
Let

r̃1 = Resultant [̃v5, ṽ11, A10], r̃2 = Resultant [̃v7, ṽ11, A10], r̃3 = Resultant [̃v9, ṽ11, A10],
and r̃12 = Resultant [̃r1, r̃2, a], r̃13 = Resultant [̃r1, r̃3, a].

If ṽ3 = ṽ5 = ṽ7 = ṽ9 = 0, then r̃123 = Resultant [̃r12, r̃13, λ1] = 0. By computing, we obtain:
r̃123 = Resultant [̃r12, r̃13, λ1] = 54655887129325749812881285470922 · · · , 0.

Hence, ṽ11 , 0 if ṽ3 = ṽ5 = ṽ7 = ṽ9 = 0, then the equilibrium point (2, 1) of model (3) can be a
5th-order fine focus at most. Proof end.
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4. The bifurcations of limit cycles of model (3)

After finding focal values of two positive equilibrium points of model (3), we will consider the limit
cycle bifurcation near (1, 1) and (2, 1) of perturbed model (3).

Lemma 4.1. Let J1 be the Jacobin of the function group (v3, v5, v7, v9) with respect to the variables
(a, λ, A10, b), if the equilibrium (1, 1) of model (3) is a 5th-order fine focus, then J1 , 0.

Proof. Suppose that J1 = 0, next we deduce a contradictory result. The Jacobin of the function group
(v3, v5, v7, v9) with respect to the variables (a, λ, A10, b) has the following form

J1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂v3
∂a

∂v3
∂A10

∂v3
∂λ

∂v3
∂b

∂v5
∂a

∂v5
∂A10

∂v5
∂λ

∂v5
∂b

∂v7
∂a

∂v7
∂A10

∂v7
∂λ

∂v7
∂b

∂v9
∂a

∂v9
∂A10

∂v9
∂λ

∂v9
∂b

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Obviously, J1 is a function with respect to the variables (a, λ, A10, b). Because the equilibrium
point (1, 1) of model (3) is a 5th-order fine focus, then v3 = v5 = v7 = v9 = 0. Suppose that J1 = 0,
then the resultant of J1, vi, (i ∈ {3, 5, 7, 9}) with respect to the variable b will become 0.

Let R1 = Resultant [J1, v3, b], R2 = Resultant [J1, v5, b], R3 = Resultant [J1, v7, b], R4 =

Resultant [J1, v9, b], then Ri = 0, i ∈ {1, 2, 3, 4}.
While Ri = 0, i ∈ {1, 2, 3, 4} will deduce that R12 = Resultant [R1,R2, A10] = 0, R13 =

Resultant [R1,R3, A10] = 0, R14 = Resultant [R1,R4, A10] = 0. Similarly, R12 = R13 = R14 = 0
deduce that R23 = Resultant [R12,R13, a] = 0 and R24 = Resultant [R12,R14, a] = 0. In the same way,
R23 = R24 = 0 deduce that R34 = Resultant [R23,R24, λ] = 0. In fact, with help of computer, we obtain
that

R34 = 2423141861632306631749624885799862490490775362310417 · · · , 0.
R34 , 0 pushes J1 , 0. Proof end.
Similarly, we can obtain the following lemma.

Lemma 4.2. Let J2 be the Jacobin of the function group (̃v3, ṽ5, ṽ7, ṽ9) with respect to the variables
(a, λ1, A10, b), if the equilibrium point (2, 1) of model (3) is a 5th-order fine focus, then J2 , 0.

Theorem 4.1. Suppose that (1, 1) is a 5-th order fine focus of system (3), then by small perturbations
of the parameter group (a, λ, A10, b), the point (1, 1) of perturbed model (3) can bifurcate at least 5
small amplitude limit cycles.

Proof. From lemma 4.1, J1 , 0, while (1, 1) is a 5-th order fine focus of system (3), according to the
theory of reference [14], the conclusion of Theorem 4.1 holds. Proof end.

Similarly, we have the following theorem.

Theorem 4.2. Suppose that (2, 1) is a 5-th fine focus of system (3), then by small perturbations of the
parameter group (a, λ1, A10, b), the point (2, 1) of perturbed model (3) can bifurcate at least 5 small
amplitude limit cycles.

Next we will give a case that (1, 1) of the model (3) can bifurcate 5 limit cycles of which 3 limit
cycles are stable.
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Obviously, vi, (i = 3, 5, 7, 9, 11) are functions about (a, λ, A10, b). The course of Theorem 3.3 shows
there exists a group solutions (a, λ, A10, b)=(ã, λ̃, Ã10, b̃) such that vi = 0, i ∈ {3, 5, 7, 9}, v11 , 0. Hence,
we may as well let

v3 = ϵ1, v5 = ϵ2, v7 = ϵ3, v9 = ϵ4, (30)

in which ϵi, i ∈ {1, 2, 3, 4} are a group of arbitrary given real small parameters.
According to existence theorem of implicit function and the result of Lemma 4.1, Eq (30) has a

group of solutions as follows:
a = a(ϵ1, ϵ2, ϵ3, ϵ4),
λ = λ(ϵ1, ϵ2, ϵ3, ϵ4),
A10 = A10(ϵ1, ϵ2, ϵ3, ϵ4),
b = b(ϵ1, ϵ2, ϵ3, ϵ4).

(31)

From (30) and (31), clearly the following theorem holds.

Theorem 4.3. Suppose that (a, λ, A10, b) disturb by way of (31), then v3 = ϵ1, v5 = ϵ2, v7 = ϵ3, v9 = ϵ4,

in which ϵi, i ∈ {1, 2, 3, 4} are a group of arbitrary given real small parameters.

Next, we let ϵi, i ∈ {1, 2, 3, 4} be some special values, we have the following theorem.

Theorem 4.4. Suppose that the coefficients of model (3) disturb via v3 = 21076c5πϵ
8 + o(ϵ9), v5 =

−7645c5πϵ
6 + o(ϵ7), v7 = 1023c5πϵ

4 + o(ϵ5), v9 = −55c5πϵ
2 + o(ϵ3), c5 = v11, then the point (1,1) of

model (3) can bifurcate 5 small limit cycles which are near to circles (x − 1)2 + (y − 1)2 = k2ϵ2, k =
1, 2, 3, 4, 5 in which 3 limit cycles can be stable.

Proof. Suppose that v3 = 21076c5πϵ
8 + o(ϵ9), v5 = −7645c5πϵ

6 + o(ϵ7), v7 = 1023c5πϵ
4 + o(ϵ5), v9 =

−55c5πϵ
2 + o(ϵ3), c5 = v11, then we have

v1(2π, ϵ, δ) = e2πδ = 1 + c0πϵ
10 + o(ϵ11),

v3(2π, ϵ, δ) = c1πϵ
8 + o(ϵ9),

v5(2π, ϵ, δ) = c2πϵ
6 + o(ϵ7),

v7(2π, ϵ, δ) = c3πϵ
4 + o(ϵ5),

v9(2π, ϵ, δ) = c4πϵ
2 + o(ϵ3),

v11(2π, ϵ, δ) = c5 + o(ϵ),

in which
c5 = v11|ϵ=0, and c0 = −14400c5, c1 = 21076c5, c2 = −7645c5, c3 = 1023c5, c4 = −55c5.

At this time, according to (6), Poincaré succession function for the point (1,1) of model (3) is as
follows:

d(ϵh) = r(2π, ϵh) − ϵh
= (v1(2π, ϵ, δ) − 1)ϵh + v2(2π, ϵ, δ)(ϵh)2 + v3(2π, ϵ, δ)(ϵh)3 + . . .

+v11(2π, ϵ, δ)(ϵh)11 + . . .

= πϵ11h[g(h) + ϵhG(h, ϵ)],

in which

g(h) = c0 + c1h2 + c2h4 + c3h6 + c4h8 + j0h10

= c6(h2 − 1)(h2 − 4)(h2 − 9)(h2 − 16)(h2 − 25)
= −14400c5 + 21076c5h2 − 7645c5h4 + 1023c5h6 − 55c5h8 + c5h10,
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and G(h, ϵ) is analytic at (0, 0).
Obviously, g(h) = 0 has 5 simple positive zero points 1, 2, 3, 4, 5. From implicit function theorem,

the number of positive zero points of equation d(ϵh) = 0 is equal to one of g(h) = 0, and these
positive zero points are close to 1, 2, 3, 4, 5 when 0 < |ϵ | ≪ 1. The above analysis shows there are
5 small limit cycles in a small enough neighborhood of (1, 1) of model (3), which are near to circles
(x − 1)2 + (y − 1)2 = k2ϵ2, k = 1, 2, 3, 4, 5.

Obviously, if v11 < 0, then the point (1,1) of model (3) can bifurcate 3 stable cycles which are near
circles (x − 1)2 + (y − 1)2 = k2ϵ2, k = 1, 3, 5. While by analyzing the 13 groups of solutions showed
in the proof course of Theorem 3.3, this kind of solutions exist such as the second group of solution.
Hence, the result of Theorem 4.4 holds. Proof end.
Remark: We can also find the solution such that v3 = v5 = v7 = v9 = 0, v11 > 0 among the 13 groups
of solutions showed in the proof course of Theorem 3.3. Hence, the point (1,1) of model (3) can also
bifurcate 2 stable cycles which are near circles (x − 1)2 + (y − 1)2 = k2ϵ2, k = 2, 4.

Similarly, we can obtain the following theorem.

Theorem 4.5. The point (2,1) of model (3) can bifurcate 3 stable limit cycles under certain condition.

5. Conclusions

The work of this paper focuses on investigating the limit cycle bifurcation of a class of the
quartic Kolmogorov model, which is an interesting and significant ecological model both in theory
and applications. We used the singular values method to compute focal value. First, we give the
relation between focal value and singular point value at the origin, which is necessary for us to
investigate bifurcations of limit cycles. Sceond, we give the singular point values’ recursive formulas
and respectively compute the focal values of the two positive equilibrium points of model (3) and
obtain the condition that they can be two 5th-order fine focuses. Next, we discuss the bifurcation of
limit cycle of model (3) and obtain that each one of the two positive equilibrium points of model (3) can
have five small limit cycles. Then, we show a case that each positive equilibrium point can bifurcate 3
stable limit cycles at most by making use of algebraic and symbolic proof.
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