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1. Introduction

Mixture experiment [1,2] is a special type of experiment in which two or more ingredients are mixed
together in proportion and the response of interest depends not on the total amount of the mixture, but
on the proportions of the ingredients. Mixture experiments have a wide range of applications in fields
such as food science, blending gasoline, detergent formulation, pharmaceutical drugs, etc.

Mixture experiments are described by special multi-factor models defined on the regular simplex.
Finding the optimal designs for various mixture models has always been a hot topic in the research of
mixture experiment on the assumption that the errors are homoscedastic. Some excellent reviews of the
developing for mixture models and designs can be found in Chan [3] and Cornell [4]. Recently, Huang
et al. [5] proposed the D- and A-optimal designs for mixture experiments with linear and quadratic
models. Goos et al. [6] investigated the I-optimal design with the Scheffé mixture models. Hao et al. [7]
proposed the R-optimal design with the second-order Scheffé model and got the general expression for
the weights. Ling et al. [8] considered the R-optimal design problem when the levels of the qualitative
factor interact with the mixture factors.
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What is worth attention is that the construction of optimal design for experiment will become more
complicated once the assumption is invalid. Dette and Trampisch [9] derived the D-optimal designs
for the common weighted univariate polynomial regression model with efficiency function. Wiens
and Li [10] studied V-optimal designs for heteroscedastic linear regression when the structure of error
variances does not follow any analytical function. Rodrı́guez et al. [11] and He and Yue [12] derived
the construction of A- and R-optimal designs for Kronecker product and additive regression models
with heteroscedastic errors, using the method of product designs, respectively. He and He [13] gave
the construction of Bayesian Φq- and maximin D-optimal designs for the heteroscedastic multi-factor
linear regression models, where the error variances depend on both the the covariate and unknown
parameter. Some previous results based on the assumption of heteroscedastic errors in multi-factor
models may refer to Wong [14], Montepiedra and Wong [15], Rodrı́guez and Ortiz [16], Graßhoff

et al. [17] and others. The heteroscedastic mixture models have been less deeply studied. Yan
et al. [18] used the method of direct sum design to investigate the construction of D- and A-optimal
design for homogeneous additive mixture models when the efficiency function is exponential structure.
Polynomial model is more useful than homogeneous model in mixture experiment. Optimal designs
not only depend on the model selection, but also depend on the shapes of the efficiency function. The
object of this paper is to study A-optimal designs for mixture polynomial models with two different
efficiency functions using the previous research method. Mixture polynomial model and A-optimal
criterion will be introduced in Section 2. A detailed introduction to the direct sum design can be found
in Section 3. Our main results are shown in Section 4, in which we will apply the direct sum of the A-
optimal designs for sub-mixture models into the investigation of the construction of A-optimal design
for mixture polynomial model on the assumption of heteroscedastic errors under sufficient conditions.
Finally, the conclusions are given in Section 5.

2. Preliminaries

For a p ingredient mixture in which xi(i = 1, · · · , p) represents the proportion of the ith ingredient,
these proportions are non-negative and sum to unity. Clearly, x ≡ (x1, · · · , xp)T belongs to the design
space which is the (p − 1)-dimensional regular simplex:

S p−1 = {(x1, · · · , xp)T ∈ Rp :
p∑

i=1

xi = 1, 0 ≤ xi ≤ 1, i = 1, · · · , p}.

The response at x can be expressed by the mixture polynomial model:

η(x) = θT f (x) + ε/
√
λ(x), (2.1)

where θ = (θ1, · · · , θk)T is k-dimensional vector of unknown parameters, f (x) = ( f1(x), · · · , fk(x))T

is a given vector of regression functions defined on S p−1 and each fi(x) satisfies (i) fi(0) = 0, (ii)
fi(αx) = αhi fi(x) for any positive α, hi is the degree of fi(x). The error ε is random noise with zero mean
and constant variance σ2. We assume all the errors are normal and independent. λ(x), named efficiency
function (Fedorov [19]), is a known, bounded, positive real-valued continuous function defined on
S p−1. The heteroscedastic structure is determined by the efficiency function. If λ(x) = 1 for all x in
S p−1, then model (2.1) is a homoscedastic model.
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Based on the model (2.1), an approximate design can be expressed as a probability distribution

ξ =

(
x1 x2 · · · xn

w1 w2 · · · wn

)
,

where xi ∈ S p−1 are finite support points and their weights ξ(xi) = wi satisfy wi > 0 and
n∑

i=1
wi = 1. The

information contained in a design ξ for the parameter vector θ is measured by its Fisher information
matrix which is given by

M(ξ) =
∫

S p−1

f (x) f T (x)λ(x)ξ(dx).

Optimum experimental designs typically minimize some convex function of the inverse information
matrix. The A-optimality criterion minimize the sum of the length of the axes in the confidence
ellipsoid thereby minimizing the average of all the variances for the estimated parameters. Fedorov [19]
presented the equivalence theorem of optimal design, which provides a methodology to check whether
an arbitrary design ξ is optimal or not. If model (2.1) holds, then a design ξA is A-optimal if and only if

φ(x, ξA) = λ(x) f T (x)M−2(ξA) f (x) ≤ trM−1(ξA), (2.2)

for all x ∈ S p−1. The equality holds if x belongs to the support of ξA. For simple problems, optimal
designs may be determined first by guess work and afterward using the above equivalence theorem
to verify if the candidate design is optimal. For complicated problems, algorithms are available
to find some types of optimal designs sequentially. Recently, Zhang et al. [20] proposed a multi-
stage differential evolution (MDE) algorithm to find the global approximated D-optimal design in an
experimental region with linear or nonlinear constraints.

3. Direct sum design

We first consider two different mixture systems, in which the response variables of interest to the
experimenter are modeled by the following two mixture polynomial models respectively:

η1(x) = βT
1 f (x) + ε/

√
λ1(x), (3.1)

η2(y) = βT
2 g(y) + ε/

√
λ2(y), (3.2)

where the two design spaces are

S p−1 = {x = (x1, · · · , xp)T ∈ Rp : x1 + · · · + xp = 1, 0 ≤ xi ≤ 1, i = 1, · · · , p},

S q−1 = {y = (y1, · · · , yq)T ∈ Rq : y1 + · · · + yq = 1, 0 ≤ y j ≤ 1, j = 1, · · · , q}.

f (x) = ( f1(x), · · · , fk1(x))T is a k1-dimensional given vector of regression functions defined on S p−1

and each fi(x) has degree of hi, h = min(h1, · · · , hk1). Meanwhile, g(y) = (g1(y), · · · , gk2(y))T is a
k2-dimensional vector of regression functions defined on S q−1 and each g j(y) has degree of l j, l =

min(l1, · · · , lk2). βi(i = 1, 2) is a ki-dimensional vector of unknown parameters and λi(·) is an efficiency
function.
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Then, we consider a complex mixture experiment which is expressed by the sum of two sub-mixture
models (3.1) and (3.2)

η(x, y) = (βT
1 ,β

T
2 )

(
f (x)
g(y)

)
+ ε/

√
λ(x, y), (3.3)

where (xT , yT )T = (x1, · · · , xp, y1, · · · , yq)T belongs to the (p + q − 1)-dimensional regular simplex

S p+q−1 = {(x1, · · · , xp, y1, · · · , yq)T ∈ Rp+q :
p∑

i=1

xi +

q∑
j=1

y j = 1, 0 ≤ xi, y j ≤ 1, i = 1, · · · , p, j = 1, · · · , q}.

• If λ1(x) = u(x), λ2(y) = v(y), where u(x) and v(y) are polynomials of x and y respectively, then
the efficiency function in model (5) defined on S p+q−1 is determined by

λ(x, y) = λ1(x) + λ2(y). (3.4)

• If λ1(x) = eu(x), λ2(y) = eu(y), then the efficiency function is determined by

λ(x, y) = λ1(x) · λ2(y). (3.5)

It is worth noting that model (3.3) is defined on S p+q−1 which contains p + q ingredients in different

proportions and the sum of these ingredients is 100%. When
p∑

i=1
xi , 0 or x , 0, f T

(
x

p∑
i=1

xi

)
defined on

S p+q−1 can be equivalent to f T (x) defined on S p−1. When
p∑

i=1
xi = 0 or x = 0, we have f T (0) = 0.

Similarly, gT (0) = 0 when
q∑

j=1
y j = 0 or y = 0.

Let

ξ1 :




x11
...

xp1




x12
...

xp2

 · · ·


x1n1
...

xpn1


ω1 ω2 · · · ωn1

 ,
n1∑
i=1
ωi = 1

and

ξ2 :




y11
...

yq1




y12
...

yq2

 · · ·


y1n2
...

yqn2


ν1 ν2 · · · νn2

 ,
n2∑
j=1
ν j = 1

be the designs for sub-models (3.1) and (3.2), respectively. The direct sum design

ξ = αξ1 ⊕ (1 − α)ξ2 :





x11
...

xp1

0
...

0


· · ·



x1n1
...

xpn1

0
...

0





0
...

0
y11
...

yq1


· · ·



0
...

0
y1n2
...

yqn2


αω1 · · · αωn1 (1 − α)ν1 · · · (1 − α)νn2
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is defined for the complex mixture model (3.3), where 0 ≤ α ≤ 1 and the notation ⊕ stands for the
direct sum.

Lemma 3.1. Let M(ξi)(i = 1, 2) be the information matrices of ξi for sub-models (3.1) and (3.2) with
efficiency function λi(·). Then,

M(ξ) = αM(ξ1) ⊕ (1 − α)M(ξ2)

is the information matrix of the direct sum design ξ = αξ1 ⊕ (1 − α)ξ2 for model (3.3), if the efficiency
function λ(x, y) is defined as (3.4) or (3.5).

4. Main results

Theorem 4.1. Let ξ1 and ξ2 be A-optimal designs for the sub-mixture models (3.1) and (3.2), with
the efficiency functions λ1(x) = u(x) and λ2(y) = v(y) mentioned above, respectively. If the following
condition holds for all (xT , yT )T ∈ S p+q−1, when x , 0 and y , 0:

(
λ1(x) + λ2(y)

)

( p∑

i=1
xi

)2h

λ1

(
x

p∑
i=1

xi

) +

( q∑
j=1

y j

)2l

λ2

(
y

q∑
j=1

y j

)
 ≤ 1, (4.1)

then the direct sum design ξ = α0ξ1 ⊕ (1 − α0)ξ2 is A-optimal for the complex model (3.3) with the
efficiency function (3.4), where

α0 =

(
trM−1(ξ1)

) 1
2(

trM−1(ξ1)
) 1

2 +
(
trM−1(ξ2)

) 1
2

.

Example 4.1. Consider the four-factors polynomial mixture model

η = β1x1 + β2x2 + β12
√

x1x2 + β3x3 + β4x4 + β34x3x4 +
ε

√
2x1 + x2 + x3 + 2x4

,

where (x1, x2, x3, x4)T ∈ S 3. This model could be decomposed into two sub-mixture models as follows:

Model I : η1 = β1x1 + β2x2 + β12
√

x1x2 +
ε

√
2x1 + x2

,

Model II : η2 = β3x3 + β4x4 + +β34x3x4 +
ε

√
x3 + 2x4

.

The A-optimal design for Model I is

ξIA :


(

1
0

) (
0
1

) (
0.5673
0.4327

)
0.2677 0.3307 0.4016

 , trM−1(ξIA) = 16.1191.

The A-optimal design for Model II is

ξIIA :


(

1
0

) (
0
1

) (
0.4602
0.5398

)
0.2990 0.2402 0.4608

 , trM−1(ξIIA) = 49.5712.
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When x , 0 and y , 0, condition (4.1) in this example is equivalent to

X3 + (1 − X)3 + ZX2(1 − X) +
1
Z

(1 − X)2X ≤ 1,

where X = x1 + x2 ∈ (0, 1), 1 − X = x3 + x4, Z =
(x3+2x4)/(x3+x4)
(2x1+x2)/(x1+x2) ∈ (0.5, 2) and it is easy to be confirmed

by Figure 1. By calculating α0 = 0.36315, the direct sum design

ξA = 0.36315ξIA ⊕ 0.63685ξIIA :


1
0
0
0




0
1
0
0




0.5673
0.4327

0
0




0
0
1
0




0
0
0
1




0
0

0.4602
0.5398


0.0972 0.1201 0.1458 0.1904 0.1530 0.2935


is A-optimal for this four-factors mixture model and trM−1(ξA) = 122.2. We can prove that, for all
(x1, x2, x3, x4)T ∈ S 3,

φ(x, ξA) = (2x1 + x2 + x3 + 2x4)



x1

x2
√

x1x2

x3

x4

x3x4


M−2(ξA)(x1, x2,

√
x1x2, x3, x4, x3x4) ≤ 122.2,

the equality holds when (x1, x2, x3, x4) are selected at the six points of ξA. Some values of φ(x, ξA) at
different experiment points are displayed in Table 1.

Figure 1. Plot of the checking condition in (4.1) confirms the A-optimality of the direct sum
design in Example 4.1.
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Table 1. The values of φ(x, ξA) at different experiment points in Example 4.1.

x1 x2 x3 x4 φ(x, ξA) x1 x2 x3 x4 φ(x, ξA)
1 0 0 0 122.2 0.5 0.25 0.25 0 69.2
0 1 0 0 122.2 0.5 0.25 0 0.25 74.1
0 0 1 0 122.2 0.5 0 0.25 0.25 27.9
0 0 0 1 122.2 0.25 0.5 0.25 0 55.9
0.5 0.5 0 0 118.8 0.25 0.5 0 0.25 61.3
0.5 0 0.5 0 68.8 0 0.5 0.25 0.25 39.0
0.5 0 0 0.5 61.1 0.25 0.25 0.5 0 63.0
0 0.5 0.5 0 61.1 0.25 0 0.5 0.25 14.9
0 0.5 0 0.5 68.8 0 0.25 0.5 0.25 17.2
0 0 0.5 0.5 119.3 0.25 0.25 0 0.5 61.4
0.4 0.3 0.2 0.1 60.7 0.25 0 0.25 0.5 20.3
0.5672 0.4327 0 0 122.2 0 0.25 0.25 0.5 23.1
0 0 0.4602 0.5398 122.2 0.25 0.25 0.25 0.25 30.7

Corollary 4.1. For n heteroscedastic mixture polynomial models,

ηi(xi) =
(
fi1(xi), fi2(xi), · · · , fiki(xi)

)

βi1

βi2
...

βiki

 +
ε

√
λi(xi)

= fT
i (xi)βi +

ε
√
λi(xi)

,

where xi = (xi1, xi2, · · · , xipi)
T ∈ S pi−1, i = 1, 2, · · · , n. hi is the lowest degree of the ith sub-mixture

model and the efficiency function λi(xi) is polynomial. Let ξi be A-optimal design for the ith sub-
mixture model. If the following condition holds for all (xT

1 , x
T
2 , · · · , x

T
n )T ∈ S p1+p2+···+pn−1 when xi ,

0(i = 1, 2, · · · , n):

n∑
i=1

λi(xi)
n∑

i=1

( pi∑
j=1

xi j

)2hi

λi

(
xi

pi∑
j=1

xi j

) ≤ 1,

then the direct sum design ξ = α1ξ1 ⊕ α2ξ2 ⊕ · · · ⊕ αnξn is A-optimal for the complex model

η(x1, x2, · · · , xn) =
(
fT
1 (x1), fT

2 (x2), · · · , fT
n (xn)

)

β1

β2
...

βn

 +
ε

√
λ(x1, x2, · · · , xn)

,

with the efficiency function λ(x1, x2, · · · , xn) = λ1(x1) + λ2(x2) + · · · + λn(xn), where

αi =

(
trM−1(ξi)

) 1
2(

trM−1(ξ1)
) 1

2 + · · · +
(
trM−1(ξn)

) 1
2

.
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Theorem 4.2. Let ξ1 and ξ2 be A-optimal designs for the sub-mixture models (3.1) and (3.2), with
the efficiency functions λ1(x) = eu(x) and λ2(y) = ev(y) mentioned above, respectively. If the following
condition holds for all (xT , yT )T ∈ S p+q−1, when x , 0 and y , 0:

λ1(x)λ2(y)


( p∑

i=1
xi

)2h

λ1

(
x

p∑
i=1

xi

) +

( q∑
j=1

y j

)2l

λ2

(
y

q∑
j=1

y j

)
 ≤ 1, (4.2)

then the direct sum design ξ = α0ξ1 ⊕ (1 − α0)ξ2 is A-optimal for model (3.3) with the efficiency
function (3.5), where α0 =

(
trM−1(ξ1)

) 1
2 /

((
trM−1(ξ1)

) 1
2 +

(
trM−1(ξ2)

) 1
2
)
.

Example 4.2. Consider the four-factors polynomial mixture model

η = β1x1 + β2x2 + β12
√

x1x2 + β3x3 + β4x4 + β34x3x4 +
ε√

e2x2
1+x2+3x3+2x2

4

,

where (x1, x2, x3, x4)T ∈ S 3. This model could be decomposed into two sub-mixture models as follows:

Model 1 : η1 = β1x1 + β2x2 + β12
√

x1x2 +
ε√

e2x2
1+x2

,

Model 2 : η2 = β3x3 + β4x4 + +β34x3x4 +
ε√

e3x3+2x2
4

.

The A-optimal design for Model 1 is

ξ1A :


(

1
0

) (
0
1

) (
0.6328
0.3672

)
0.2403 0.3018 0.4579

 , trM−1(ξ1A) = 6.3827.

The A-optimal design for Model 2 is

ξ2A :


(

1
0

) (
0
1

) (
0.4245
0.5755

)
0.2510 0.1944 0.5546

 , trM−1(ξ2A) = 8.6302.

When x , 0 and y , 0, condition (4.2) in this example holds when the following inequality is satisfied,

X2ZX−1 + (1 − X)2ZX ≤ 1,

where X = x1 + x2 ∈ (0, 1), 1 − X = x3 + x4, Z = e
2(

x1
x1+x2

)2+(
x2

x1+x2
)

e
3(

x3
x3+x4

)+2(
x4

x3+x4
)2
∈ (e−

17
8 , e

1
8 ) and it is easy to be

confirmed by Figure 2. By calculating α0 = 0.46236, the direct sum design

ξA = 0.46236ξ1A ⊕ 0.53764ξ2A :


1
0
0
0




0
1
0
0




0.6328
0.3672

0
0




0
0
1
0




0
0
0
1




0
0

0.4245
0.5755


0.1111 0.1395 0.2117 0.1350 0.1045 0.2982
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is A-optimal for this four-factors mixture model and trM−1(ξA) = 29.8565. For all (x1, x2, x3, x4)T ∈ S 3,

e2x2
1+x2+3x3+2x2

4



x1

x2
√

x1x2

x3

x4

x3x4


M−2(ξA)(x1, x2,

√
x1x2, x3, x4, x3x4) ≤ 29.8565,

the equality holds when (x1, x2, x3, x4) are selected at the six points of ξA.
Similar to Corollary 4.1, the conclusion of Theorem 4.2 can also be generalized to n sub-models

and is omitted.

Figure 2. Plot of the checking condition in (4.2) confirms the A-optimality of the direct sum
design in Example 4.2.

5. Conclusions

The method of constructing A-optimal designs for mixture polynomial models with two different
heteroscedastic structures is presented in this paper. It is difficult to obtain the optimal designs for a
complicated mixture model in a direct way. However, it becomes accessible with the assistance of the
construction of optimal design for the corresponding sub-mixture models.

When the heteroscedastic structure is polynomials, the direct sum of A-optimal designs for two sub-
mixture models is A-optimal for the complex mixture model with efficiency function defined as (3.4) if
condition (4.1) is satisfied. When the heteroscedastic structure is exponential functions, the direct sum
of A-optimal designs for two sub-mixture models is A-optimal for the complex mixture model with
efficiency function defined as (3.5) if condition (4.2) holds. The conclusions of Theorems 4.1 and 4.2
can be generalized to n sub-models under very strict conditions. Further research should explore the
generalization of the approaches for more complex efficiency functions.
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Appendix

A.1 Proof of Lemma 3.1.

If Eq (3.4) is hold, then the information matrix of the direct sum design ξ for model (3.3) is
determined by

M(ξ) =

∫
S p+q−1

(
f (x)
g(y)

)
( f T (x), gT (y))λ(x, y)ξ(d(x, y))

=

∫
S p+q−1

(
f (x) f T (x)

(
λ1(x) + λ2(y)

)
f (x)gT (y)

(
λ1(x) + λ2(y)

)
g(y) f T (x)

(
λ1(x) + λ2(y)

)
g(y)gT (y)

(
λ1(x) + λ2(y)

) )
ξ(d(x, y))

=


∫

S p−1

α f (x) f T (x)
(
λ1(x) + λ2(0)

)
ξ1(dx) +

∫
S q−1

(1 − α) f (0) f T (0)
(
λ1(0) + λ2(y)

)
ξ2(dy)∫

S p−1

αg(0) f T (x)
(
λ1(x) + λ2(0)

)
ξ1(dx) +

∫
S q−1

(1 − α)g(y) f T (0)
(
λ1(0) + λ2(y)

)
ξ2(dy)∫

S p−1

α f (x)gT (0)
(
λ1(x) + λ2(0)

)
ξ1(dx) +

∫
S q−1

(1 − α) f (0)gT (y)
(
λ1(0) + λ2(y)

)
ξ2(dy)∫

S p−1

αg(0)gT (0)
(
λ1(x) + λ2(0)

)
ξ1(dx) +

∫
S q−1

(1 − α)g(y)gT (y)
(
λ1(0) + λ2(y)

)
ξ2(dy)
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=

(
αM(ξ1) 0

0 (1 − α)M(ξ2)

)
= αM(ξ1) ⊕ (1 − α)M(ξ2).

If Eq (3.5) is hold, then the information matrix of the direct sum design ξ for model (3.3) is

M(ξ) =

∫
S p+q−1

(
f (x)
g(y)

)
( f T (x), gT (y))λ(x, y)ξ(d(x, y))

=

∫
S p+q−1

(
f (x) f T (x)λ1(x)λ2(y) f (x)gT (y)λ1(x)λ2(y)
g(y) f T (x)λ1(x)λ2(y) g(y)gT (y)λ1(x)λ2(y)

)
ξ(d(x, y))

=


∫

S p−1

α f (x) f T (x)λ1(x)λ2(0)ξ1(dx) +
∫

S q−1

(1 − α) f (0) f T (0)λ1(0)λ2(y)ξ2(dy)∫
S p−1

αg(0) f T (x)λ1(x)λ2(0)ξ1(dx) +
∫

S q−1

(1 − α)g(y) f T (0)λ1(0)λ2(y)ξ2(dy)∫
S p−1

α f (x)gT (0)λ1(x)λ2(0)ξ1(dx) +
∫

S q−1

(1 − α) f (0)gT (y)λ1(0)λ2(y)ξ2(dy)∫
S p−1

αg(0)gT (0)λ1(x)λ2(0)ξ1(dx) +
∫

S q−1

(1 − α)g(y)gT (y)λ1(0)λ2(y)ξ2(dy)


=

(
αM(ξ1) 0

0 (1 − α)M(ξ2)

)
= αM(ξ1) ⊕ (1 − α)M(ξ2).

A.2 Proof of Theorem 4.1.

Let ξ1 and ξ2 are A-optimal designs for model (3.1) and (3.2) respectively, according to the
equivalence theorem (2.2) we find that

λ1(x) f T (x)M−2(ξ1) f (x) ≤ trM−1(ξ1), x ∈ S p−1,

λ2(y)gT (y)M−2(ξ2)g(y) ≤ trM−1(ξ2), y ∈ S q−1.

Assume α0 = a/(a + b), where a =
(
trM−1(ξ1)

) 1
2 , b =

(
trM−1(ξ2)

) 1
2 , then

trM−1(ξ) = tr
( 1
α0

M−1(ξ1) ⊕
1

1 − α0
M−1(ξ2)

)
=

1
α0

trM−1(ξ1) +
1

1 − α0
trM−1(ξ2)

=
a + b

a
· a2 +

a + b
b
· b2 = (a + b)2.

For all (xT , yT )T ∈ S p+q−1, When x , 0 and y , 0,

f (x) ≤ f
( x

p∑
i=1

xi

)
·
( p∑

i=1

xi

)h
, g(y) ≤ g

( y
q∑

j=1
y j

)
·
( q∑

j=1

y j

)l
,

λ1

( x
p∑

i=1
xi

)
f T

( x
p∑

i=1
xi

)
M−2(ξ1) f

( x
p∑

i=1
xi

)
≤ tr(M−1(ξ1)), x ∈ S p+q−1,
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λ2

( y
q∑

j=1
y j

)
gT

( y
q∑

j=1
y j

)
M−2(ξ2)g

( y
q∑

j=1
y j

)
≤ tr(M−1(ξ2)), y ∈ S p+q−1.

If condition (4.1) is satisfied, for the direct sum ξ = α0ξ1 ⊕ (1 − α0)ξ2 ,

λ(x, y)( f T (x), gT (y))M−2(ξ)
(

f (x)
g(y)

)

= λ(x, y)( f T (x), gT (y))
( 1
α2

0

M−2(ξ1) ⊕
1

(1 − α0)2 M−2(ξ2)
) ( f (x)

g(y)

)
=

(
λ1(x) + λ2(y)

)( 1
α2

0

f T (x)M−2(ξ1) f (x) +
1

(1 − α0)2 gT (y)M−2(ξ2)g(y)
)

≤
(
λ1(x) + λ2(y)

)( 1
α2

0

f T
( x

p∑
i=1

xi

)
M−2(ξ1) f

( x
p∑

i=1
xi

)( p∑
i=1

xi

)2h

+
1

(1 − α0)2 gT
( y

q∑
j=1

y j

)
M−2(ξ2)g

( y
q∑

j=1
y j

)( q∑
j=1

y j

)2l
)

≤
(
λ1(x) + λ2(y)

)

trM−1(ξ1)

α2
0

·

( p∑
i=1

xi

)2h

λ1

(
x

p∑
i=1

xi

) +
trM−1(ξ2)
(1 − α0)2 ·

( q∑
j=1

y j

)2l

λ2

(
y

q∑
j=1

y j

)


= (a + b)2(λ1(x) + λ2(y)
)

( p∑

i=1
xi

)2h

λ1

(
x

p∑
i=1

xi

) +

( q∑
j=1

y j

)2l

λ2

(
y

q∑
j=1

y j

)


= (a + b)2 = trM−1(ξ).

When x = 0,

λ(x, y)( f T (x), gT (y))M−2(ξ)( f T (x), gT (y))T =
1

(1 − α0)2λ2(y)gT (y)M−2(ξ2)g(y) ≤ trM−1(ξ).

When y = 0,

λ(x, y)( f T (x), gT (y))M−2(ξ)( f T (x), gT (y))T =
1
α2

0

λ1(x) f T (x)M−2(ξ1) f (x) ≤ trM−1(ξ).

By the equivalence theorem (2.2), the design ξ is A-optimal for model (3.3).
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