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Abstract: The dynamic model of mobile wheelchair technology requires developing and 

implementing an intelligent control system to improve protection, increasing performance efficiency, 

and creating precise maneuvering in indoor and outdoor spaces. This work aims to design a robust 

tracking control algorithm based on a reference model for operating the kinematic model of powered 

wheelchairs under the variation of system parameters and unknown disturbance signals. The control 

algorithm was implemented using the pole placement method in combination with the sliding mode 

control (PP-SMC) approach. The design also adopted a neural network approach to eliminate system 

uncertainties from perturbations. The designed method utilized the sinewave signal as an essential 

input signal to the reference model. The stability of a closed-loop control system was achieved by 

adopting the Goa reaching law. The performance of the proposed tracking control system was 

evaluated in three scenarios under different conditions. These included assessing the tracking under 

normal operation conditions, considering the tracking performance by changing the dynamic system’s 

parameters and evaluating the control system in the presence of uncertainties and external disturbances. 

The findings demonstrated that the proposed control method efficiently tracked the reference signal 

within a small error based on mean absolute error (MAE) measurements, where the range of MAE was 

between 0.08 and 0.12 in the presence of uncertainties or perturbations. 
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1. Introduction 

Many people with physical mobility impairments, such as spinal and multiple sclerosis, need to 

use intelligent wheelchairs for various activities in their surroundings [1–3]. Conventional wheelchairs 

may meet the specific needs of some patients, but most patients, however, need to use innovative chairs 

with advanced technologies that use smart devices and consider various safety measures [4]. Recent 

decades have seen significant advances in developing control technologies for autonomous and semi-

autonomous wheelchairs. These developments have been characterized by improving comfort, safety 

and driving in an ideal way while avoiding obstacles in different conditions, depending on the 

supervisory control based on the sensory systems and the user’s intention. These developments also 

included using smartphones, developing navigation algorithms, hands-free driving and sharing users’ 

locations to improve system performance conditions [3,4]. 

In general, driving-level control technologies of mobile wheelchairs have been divided into two 

categories. The supervisory category operates the mobile wheelchairs to perform intelligent tasks, such 

as avoiding obstacles and following a given path, and are essential to optimum performance [5]. The 

low-level category needs to be developed to raise the level of fine motion control. This is because this 

level of control deals with many variables that need to design numerical algorithms for the designed 

systems. Therefore, this kind of research needs to develop efficient algorithms that deal with system 

uncertainties and external perturbations [6]. Nevertheless, there has been a lack of emphasis among 

researchers on the specific category of low-level control. 

Various low-level control techniques have been proposed for driving smart wheelchairs, including 

proportional-derivative (PD) controller, fuzzy logic control (FLC), sliding mode control (SMC) [7], 

adaptive neural network of nonsingular terminal sliding mode control [8], quasi linear parameter 

varying control [9], H-infinity [10], Lagrangien method with FLC [11], and backstepping control with 

a proportional-integral-derivative (PID) controller [12]. However, the majority of these haven’t 

considered the motorized wheelchair to be a multivariate system. The challenge of setting the control 

design into action for a multivariate system can be difficult because of the interactions between the 

various inputs and outputs of the system. The problems inherently present in a multivariate system can 

frequently be resolved using separation techniques, which are very effective solutions. These methods 

attempt to alleviate the complexity of the problem of multivariate control by breaking it down into 

several separate numerical control issues. Nevertheless, there has yet to be a lot of research done 

looking at how durable systems are when subjected to the influence of uncertainty and external 

perturbations. 

Recently, a model reference control method for a semi-autonomous powered wheelchair has been 

proposed and evaluated in different condition states. This method adopted quasi-linear closed-loop 

behavior as a control loop to achieve robustness. To mitigate modeling uncertainties, the technique 

also compensated for non-linear dynamics associated with a veer rate [13]. A digital control and 

encoding method was also introduced to obtain real-time robustness tracking in smart wheelchairs. 

The method utilized PID with an open-loop controller to vary the speed in different proposed surfaces. 

Experimental results demonstrated that this method was effective in proposed surfaces using different 

speeds [14]. Another method conducted by Seki and Tanohata [15] implemented an FLC algorithm 

based on a torque scheme to drive a wheelchair on a disturbance road. In this approach, the algorithm 

was developed by incorporating human input torque and driving velocity. The effectiveness of this 

method was evaluated utilizing a real-time experimental test, and the results depicted that this control 

method was robust on driving on disturbance roads. Despite the evaluations made on these methods, 

they face several challenges in appropriately addressing the changing parameters of the system and 
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effectively mitigating the impact of noise. 

The neural network approach is one of the control tools that have been developed recently to 

control linear and nonlinear systems. This is done by providing it with many effective characteristics, 

such as the ability to generalize through experience for many planned and nonlinear inputs. This 

approach provided the ability to devise different ways to overcome noise and multivariate interactions. 

Neural networks have demonstrated efficacy in addressing complicated control operations by 

designing structures for those networks used in solving arithmetic sequences [16]. For instance, Aly 

et al. [17] developed a tracking control algorithm for the upper-limb exoskeleton using an adaptive 

neural backstepping in the presence of external disturbance and model uncertainty. The Lyapunov 

stability was obtained to achieve the system parameter convergence while evaluating the designed 

algorithm. The findings from the simulation study indicated that the proposed methodology effectively 

monitored and mitigated disturbances and uncertainties in the model. The control method for the upper-

limb exoskeleton, as presented by the authors in reference [8], involved the utilization of an adaptive 

neural network based on fixed-time tracking. This approach incorporated an integral nonsingular 

terminal sliding mode. The method was evaluated using MATLAB simulink tools (The MathWorks 

Inc., Natick, USA), and the results show that the technique was effective in the presence of external 

disturbance and model uncertainty. However, the upper proposed methods were only in silico evaluated 

and updated, so this kind of control law is still complicated. 

This paper addresses a number of challenging issues associated with the trajectory tracking 

control of mobile wheelchairs. This is related to stability and tracking performance, where precise 

trajectory monitoring is essential for advancing autonomy guidance. Therefore, this work aims to 

design an efficient method to track the reference trajectory in the presence of disturbances or system 

parameter variation. The proposed technique employed the neural pole placement sliding mode control 

(PP-SMC) method to achieve the system robustness. The stability analysis was studied, and the 

numerical evaluation approach was conducted using MATLAB simulink tools to demonstrate the 

system’s performance. To our knowledge, this is the first study in which the placement method 

combined with a neural sliding mode that adopted the Gao reaching law has been employed to control 

the low-level dynamic model of mobile wheelchairs. 

2. Materials and methods 

2.1. Dynamical model 

As shown in Figure 1, the nonlinear dynamic system model of the mobile wheelchair can be 

described in the form of cartesian coordinates ( &w wy ) and the mobile orientation (  ) [18]. In this 

model, the center of mass is denoted by ( H ), and the distance between H and the central point of the 

virtual axis (G ) is denoted by ( l ). As a result, the updated kinematic model can be illustrated as: 
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is the input vector, ( )t  is the system disturbance, 

( )
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is the model output of linear velocity (v(t)) and angular velocity (ω(t)). 

The dynamic output model is calculated based on the following equations: 

( ) ( )
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here &r l   are right and left of angular velocities, D is the distance between the wheels, and R is 

the right and left wheel radius. 

By using the Euler-Lagrangian approach [19], the dynamic model in (1) can be expressed as 

follows: 

( ) ( )( ) ( ) ( ) ,

( ) ( ),

t a a t bu t t

y t c t

   



= + + +

=
      (3) 

where, a   is the system parameter variation, ( )t   is the system disturbance and a, b and c are 

matrices with compatible dimensioning. 

 

Figure 1. Kinematic controlled model. 

2.2. Controller design 

Consider the dynamic model in (3) is without uncertainty and disturbance is given as: 

( ) ( ) ( ),

( ) ( ),

t a t bu t

y t c t

 



= +

=
         (4) 

and we assume that the correspondence reference model is given by: 

( ) ( ) ( ),k kq t a q t b r t= +          (5) 

where 
nq R  is the vector that representing the states of the reference model, ir R  is an input 
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vector for reference model and ( &k ka b ) are compatibly dimensioned matrices. 

2.2.1. Pole placement method 

For the sake of implementing this strategy, we are assuming that the pairs (a&b) and ( &k ka b ) 

are able to be controlled, thus demonstrating stability of the reference model. This implies that the 

eigenvalues of ka  are located within the open unit disc. In order to develop the algorithm, we take 

into account the tractability of the model referenced in (5) by the model presented in (4). Therefore, 

this requires to determine the ( &k ka b ) based on the following non-proofing theorem [20]: 

Theorem 1. For any system a c = , where is 
*n ma R  matrix and mc   is a vector, there exists 

a solution    crank a rank a=  if and only if ( )1ca m n +  is an augmented matrix. 

Based on that we can write:    k br kb a aank ran− =  ;    kb b brank rank=  , then the 

previous theorem has the significant conclusion that K   and G   have matrices with compatible 

dimensions in such a way as: 

,

,

k

k

a a bk

b bg

= −

=
          (6) 

where  1 2 n, ,k k k k=  , w represents the state feedback matrix generated with the pole placement 

method or Ackerman’s formula to achieve asymptotically stable behavior in closed-loop dynamic 

systems. 

The term g  represents the feedforward steady-state gain, which may be determined by finding 

the inverse of the triple components ( ( ), ,c a bk b+ ) as the following:  

Consider that the proposed state feedback law is formulated as follows: 

( ) ( ) ( )u t k t gr t= + ,        (7) 

the obtained state equation for the closed-loop system is as follows: 

( )( ) ( ) ( ),

( ) ( ).

t a bk t bgr t

y t c t

 



= + +

=
        (8) 

To obtain g, we assume that the reference input ( )r t =   and the steady state output can be written 

as: 

( )lim .ss
t

y y t
→

 =           (9)

 

For the constant   at 0t  , the closed-loop state equation that involves an equilibrium state can 

satisfy the following condition: 

( ) ( )( ) 0,sst a bk t bg = + +  =        (10) 

( )
1

( ) .ss t c a bk bg
−

= +          (11) 

The steady-state output can be obtained using the following: 
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( )
1
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From (9) we can write: 

( )
1
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−

 = +           (13) 

As a result, the feedforward gain can be obtained as: 
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In this study, we define the trajectory error as: 
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By substituting (4) and (5) in (15), we can write: 

( ) ( )( ) ( ) ( ) ( ) .k ke t a t bu t a q t b r t = + − +       (16) 

By adding and subtracting the term ( )ka t we can get: 

( ) ( ) ( )( ) ( ) ( ) ( ),k k k ke t a t a t a t bu t a q t b r t   = + − + − −      (17) 

( ) ( ) ( ) ( ) ( ) ( ).k k ke t a e t a a t bu t b r t  = + − + −       (18) 

2.2.2. SMC method 

In this study we employed the SMC method and chose the following switch function [21,22]: 

( ) ( )

( ) ( )
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s t e t
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=

=
         (19) 

By substituting (18) in (19) we can get: 

( ) ( ) ( ) ( )( )( ) ( )k k ks t a e t a a t bu t b r t = + − + − .     (20) 

To achieve a robust stability, we proposed to adopt a Gao reaching law [21] as: 

( ) ( ) ( )( )( ) ,s t s t sign s t = − +        (21) 

where, 0  , 0   and ( )( )sign s t  is the signum function given by: 

( )( )
( )

( )

1, 0,

1, 0.

s t
sign s t

s t

+ 
= 

− 
 

By equivalating (20) to (21) we can get: 

( ) ( )( )( ) ( ) ( ) ( )( )( ) ( )k k ks t sign s t a e t a a t bu t b r t   − + = + − + − .   (22) 
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Solving (22) in terms of ( )u t we can write: 

( ) ( )
( ) ( ) ( )

( ) ( )( )
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.     (23) 

The model presented in (4) can be rewritten as follows when there is uncertainty in either the 

disturbances or the system parameters: 

( ) ( )( ) ( ) ( ) ,

( ) ( ).
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The control algorithm in (24) can be written as: 
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The control algorithm ( ( )tu t  ) in (25) can be constructed as equivalent ( )( )eqvu t  and corrective 

( )( )corru t  parts as: 

( ) ( ) ( )eqv corru t u t u t= + ,        (26) 

where, 
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( ) ( ) ( ) ( )( )( )1
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−

= + .     (28) 

2.2.3. Neural networks control method 

Neural networks method has proposed to adjust the values varying of the system parameters and 

disturbances by estimating both equivalent and corrective laws [23]. In this method, the equivalent 

neural network keeps the system states on the ( ) 0s t = , while the corrective neural network is trained 

to retune all states back to the proposed sliding surface. To eliminate any chattering, we proposed to 

replace the ( )( )( )sign s t function with 

( )( ) ( )( )1 1
s t s t

e e
− −

= − + . 

The estimated the equivalent control law is given by: 

( )( ) ( )( ) ,

1 1
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m n
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i j
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= =
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The estimated corrective control law as is given by: 

( )( ) ( )
1

( ) .
n

corr c j j

j

u t k s t e t 
=

 
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 
 .       (30) 

To obtain a robust estimation, the following cost functions were proposed: 

2 20.5 ( ) ( )* ( ) 0.5 ( )eqv eqv eqv eqvJ u t u t u t u t= + + ,      (31) 

20.5 ( )s t = .         (32) 

Based on (31), the weight updating law to reduce J can be written as: 

( ) ( ) ( )( ) ( )( )20.5i i u uJ k s t k s t s t u y t    = −   = − ,    (33) 

( ) ( )( ) ( )( ) ( )( ) ( )( )

,
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2 20.25 ( ) 1

j i
j i

i i i
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s t s t s t u t s t y t F



   

−  =


         =  −  − ，

   (34) 

where 0  , also based on (32), the weight updating law to reduce Z can be written as: 

( )( )j j
j

J s t e t  


 = − = −


,       (35) 

where 0  , k in (14) can be calculated based on the updated vector  as: 

( )
1

Tk b 
−

= ,        (36) 

where, 0   . In both equivalent and corrective control laws, a three-layer feedforward neural 

network is employed. Figure 2 depicts the block diagram of the proposed control system where the 

overall control algorithm ( ( )tu t ) represents the summation of the neural output structure with the 

function g in (14). 

 

Figure 2. Block diagram of the proposed control system. 
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3. Simulation protocols and setting of the controller parameters 

To evaluate the effectiveness of the proposed control method, we proposed to utilize various 

scenarios through the application of the MATLAB simulink software tools. In the first scenario, the 

control algorithm was examined under nominal conditions to track the desired trajectory. Here, the 

wheelchair motion started from the initial point. For the second scenario, we suggested to manipulate 

the system parameters while monitoring the dynamic system in order to follow the intended trajectory. 

Subsequently, uncertainties and external disturbances were introduced to the dynamic system and 

monitoring the performance of the controller to trace the desired trajectory. In all scenarios, we 

proposed the following reference signal to be tracked: 

( ) ( )2 2sin 2 .r t = + +          (37) 

In addition, mean absolute error (MAE) was also used to measure the error difference between 

actual and reference trajectory as: 

1
,

n

i ii
MAE y x n

=
= −         (38) 

where, iy  is the actual trajectory and ix  is reference trajectory. Table 1 shows the gain values and 

online training gains that were assigned to the parameters for the proposed control algorithm. 

Table 1. The gain values of control algorithm. 

Parameter Value 

g  -34.35 

k  [0.067, -0.135] 

𝜉 [0.152, -2.5] 

𝑘𝑢 3.4 

𝑘𝑐 0.67 

𝜏𝛽 0.14 

𝜀𝛽 0.77 

Training gains 

𝐻1,2 0.22 

𝐻1,1 0.46 

4. Simulation results 

The responses of system stability for the dynamic model was obtained using the unit step input 

signal with the initial condition response  1 1 . Figure 3 is representing the unforced states of the 

dynamic system model. 
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Figure 3. States responses of dynamic model. 

4.1. The performance observed under nominal conditions 

The results of the simulation of the movable wheelchair on the x-axis and y-axis under normal 

conditions are depicted in Figures 4 and 5. According to the figures, the proposed system successfully 

achieved high tracking performance while maintaining a low error rate between the reference trajectory 

and the actual trajectory. The findings also showed that the control algorithm was able to track the 

reference trajectory with the value of 0.08MAE = , as shown in Figure 5. The proposed technique 

also demonstrated that the system stability and robustness were achieved quickly. This is evidence of 

the simplicity of the proposed control algorithm. This simplicity makes the proposed control algorithm 

suitable for tiny systems with minimal processing demands. 

 

Figure 4. Tracking performance under nominal conditions. 
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Figure 5. MAE between actual and reference under nominal conditions. 

4.2. The performance observed under system parameters variations 

In this section, system performance is evaluated by varying the parameters of the dynamic system 

during the wheelchair motion. Figure 6 depicts the position tracking along the x-axis and y-axis. The 

simulation results demonstrate that the controller is capable of managing the parameters varying within 

an appropriate period of time. In addition, the distance error that occurs for the controllers when 

comparing the reference trajectory to the actual trajectory is depicted in Figure 7. By applying the 

proposed strategy, we were able to achieve MAE values that were lower, resulting to 0.10MAE = . 

 

Figure 6. Tracking performance observed under system parameters variations. 
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Figure 7. MAE between actual and reference trajectory under system parameters variations. 

4.3. The performance observed under uncertainties and external disturbances 

In part, the performance of the robustness control system is assessed by introducing uncertainties 

and external disturbances into the dynamic system. The position tracking in the x-axis and y-axis under 

the influence of this condition is depicted in Figure 8. This figure shows that the proposed control 

system was able to track the reference trajectory in presence of uncertainties and external disturbances. 

Similarly, the MAE criterion was utilized to compare between the actual and the reference trajectory. 

Figure 9 depicts the disparity in distance between the reference trajectory and the actual trajectory for 

the controllers, with the recorded value 0.12.MAE =  

 

Figure 8. The performance observed under external disturbances. 
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Figure 9. MAE between actual and reference trajectory under external disturbances. 

5. Discussion 

Numerous techniques for optimal mobile-powered wheelchair use have been developed over the 

past 20 years [4,24,25]. As a result, there is a growing demand for developing dynamic models and 

control systems that meet the needs for enhancing self-efficacy and safety. Enhancing the performance 

of these models can be achieved by improving robust control algorithms [26,27]. Recently, nonlinear 

control approaches and computational Artificial Intelligence (AI) tools such as neural networks 

constitute a potentially fruitful strategy for managing electromechanical actuators. However, the 

properties of dynamical systems can change, and there may also be external perturbations, which 

makes it difficult to create efficient algorithms [28]. In this work, a novel control method is developed 

and evaluated to track the nonlinear motion of wheelchairs precisely. A sliding neural network 

approach is integrated with the method of PP-SMC to eliminate the uncertainties of dynamic system 

parameters and disturbances. The findings conducted through simulink demonstrated that the 

suggested system could precisely track the desired trajectory, as shown in Figures 4–9. 

The primary challenge encountered in controlling these dynamic systems is the mitigation of 

disturbances and addressing the parameter variation. Consequently, numerous control systems are 

engineered to mitigate these issues. Our study employed a new technique that utilized the neural 

network approach to reduce the effects of disturbance and parameter variation. The design 

methodology introduced a model reference to construct a feedforward control part and then adopted 

the neural PP-SMC. The results concluded that the performance of the proposed approach was efficient 

and robust in tracking reference trajectory with minimal error ranging between 0.08 and 0.12. In 

addition, the proposed method is characterized by the results illustrated by the ability to reduce the 

differences between the referenced and actual trajectory. Also, the performance of the neural PP-SMC 

controller can be enhanced by optimizing the parameter determination process compared to other 

controllers. 

In the context of multi-input multi-output (MIMO) control systems, certain researchers propose 

using decoupling techniques in servo systems to attain robustness in control systems. Nguyen et al. [29] 
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conducted an empirical investigation to validate the efficacy of a real-time multivariate control strategy 

employing the decoupling technique. This strategy employs the sliding neural network approach as the 

control method to mitigate uncertainties and external disturbances. Furthermore, the examination of 

system stability and attainment of global convergence was also accomplished. Nevertheless, there is 

still chattering appearing on the system tracks for their method. Therefore, the authors are required to 

improve the system’s performance by replacing the shifted sigmoid function with the saturation 

function. Compared to this work, the utilization of a shifted sigmoid function in our study has 

effectively eliminated the occurrence of chattering, as depicted in Figure 2. 

In recent work, Zhang et al. [30] proposed a robust H-infinity FLC method for powered 

wheelchairs. In this method, an iterative linear matrix inequality algorithm was utilized via an 

acceleration feedback signal to eliminate disturbances and approximate errors. The results 

demonstrated that this method was effective to control the dynamic system. A different study 

conducted by Al-Mahturi et al. [31] developed a model-free method that utilized a type-2 FLC system 

for mobile robots under large uncertainties. The method adopted the structure and parameters learning 

to achieve the desired set point. The Lyapunov stability theory is employed to carry out the proposed 

control strategy. To prove the effectiveness of the proposed method, the method needed to manage the 

motion of a mobile robot while under the influence of various disturbances. The results illustrated that 

this method was efficient to eliminate the external disturbance. Nevertheless, the implementation of 

FLC in many applications is accompanied by several drawbacks, including the need for meticulous 

tuning settings and its susceptibility to noise interference. 

As shown in Table 2, this paper provides a concise overview of the methodologies employed, 

control methods and evaluation type of tracking control algorithms in various studies. Moreover, the 

findings of this study are susceptible to various limitations, including an actual evaluation. The 

assessment of this study necessitates the incorporation of empirical experimentation alongside a 

comparative analysis with simulation-based research. Furthermore, it should be noted that the software 

model lacked the incorporation of reflex control and automatic regulatory systems. 

Table 2. Technique, control method and evaluation type for different studies. 

Authors Technique Control method Evaluation type 

Aly et al. [8] Dynamic model based Adaptive neural network Simulation 

Wang et al. [14] Dynamic model based 
Proportional-integral-

derivative (PID) 
Simulation 

Martins et al. [18] Dynamic model based Adaptive controller 
Simulation and 

experimental 

Nguyen et al. [29] Multivariable decoupling Neuro-Sliding Mode Real-time experiment 

De La Cruz et al. [32] Dynamic model based Adaptive controller Real-time experiment 

Al-Mahturi et al. [31] Dynamic model based Type-2 evolving fuzzy control Simulation 

The potential influence of the reflexive and automated systems’ ability to adapt to rapid changes in 

wheelchair movement will likely affect the current control strategy significantly. In addition, work has 

not been designed for underactuated mobile wheelchair systems. However, the developed technique 
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of underactuated wheeled mobile vehicles has offered a wide range of dynamic positioning to track a 

path trajectory [33–35]. Therefore, this work should be designed and implemented in future work. 

6. Conclusions 

In this study, a tracking control method for operating the dynamic model of the powered 

wheelchair was developed and implemented. The technique used a reference model, pole placement 

method, and sliding mode control approach. A neural network-based technology was utilized to 

eliminate uncertainty and system disturbances. In this method, we proposed to use a sinewave signal 

as a modeled reference signal to be tracked by the designed control system. The proposed tracking 

control method was evaluated in MATLAB simulink software tools. The gain values and online 

training gains that were assigned to the parameters for the proposed control algorithm were obtained 

to achieve robust tracking. The method was examined under three scenarios: operating under normal 

conditions, studying the dynamic system’s performance in changing parameter settings and evaluating 

the tracking system’s performance in the presence of external and unknown disturbances. The results 

showed that the developed control algorithm efficiently tracks the reference trajectory. In all scenarios, 

the MAE was between 0.08 and 0.12 in the presence of uncertainties or perturbations. 
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Appendix 

The nomenclature for the dynamic model of a mobile wheelchair and the developed control 

algorithm is displayed in the following table. 

Table A1. The parameters’ meanings of the dynamic model of the mobile wheelchair and 

for the designed control algorithm. 

Notations Definitions 

Dynamic model of mobile wheelchair 

&w wx y  cartesian coordinates 

Φ mobile orientation 

H center of mass 

G central point of the virtual axis 

l distance between H and G  

xRn state vectors of the dynamic system 

uRm input vector 

γ(t) system disturbance 

y(t) model output 

v(t) linear velocity 

ω(t) angular velocity 

R right and left wheel radius 

D distance between the wheels 

a, b and c compatibly dimensioned matrices 

δa system parameter variation 

Controller 

qRn reference model state vector 

rRj reference model input vector 

ak,bk compatibly dimensioned matrices for reference model 

k=[k1,k2, ,kn] state feedback matrix 

Continued on next page 
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Notations Definitions 

g feed-forward steady-state gain 

ex(t) trajectory error 

s(t) switch function 

ueqv(t) equivalent control part 

ucorr(t) corrective control part 

ûeqv(t) estimated equivalent control part 

ûcorr(t) estimated corrective control part 

J&Z weighting functions 
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