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Abstract
Let G be a simple graph with the vertex set V (G) and edge set E(G). Let dG(vi) be the degree of the vertex vi ∈ V (G).
A vertex-degree-based topological index (TI) of G is defined as TI(G) =

∑
vivj∈E(G) f (dG(vi), dG(vj)), where f is a real

function with the property f(x, y) = f(y, x) ≥ 0. The (i, j)-th element aTI (i, j) of the general extended adjacency matrix
ATI(G) of G is defined as aTI (i, j) = f (dG(vi), dG(vj)) if vivj ∈ E(G) and aTI (i, j) = 0 otherwise. The TI energy of G
is the sum of the absolute values of the eigenvalues of ATI (G). In this paper, some sufficient conditions for the minimum
and second-minimum TI energy of trees are presented. Using the main result, trees with the minimum sum-connectivity
Gourava energy and minimum product-connectivity Gourava energy are characterized among all trees on n vertices. Trees
with the second-minimum values of the Randić energy, sum-connectivity energy, and sum-connectivity Gourava energy are
also characterized among all trees on n vertices.

Keywords: tree (graph); sum-connectivity Gourava energy; product-connectivity Gourava energy; sum-connectivity energy;
Randić energy.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let G be a such graph with vertex set V (G) =

{v1, v2, . . . , vn} and edge set E(G). Denote by dG(vi) the degree of the vertex vi ∈ V (G). The adjacency matrix of G, denoted
by A(G), is an n × n matrix whose (i, j)-th element aij is defined as aij = 1 if vivj ∈ E(G) and aij = 0 otherwise. The
characteristic polynomial of A(G), denoted by φA(G,λ) = |λI −A(G)|, is called the characteristic polynomial of G. The
roots of the equation φA(G,λ) = 0, denoted by λ1(G), λ2(G), . . . , λn(G), are called the eigenvalues of G. The energy ε(G) of
G is defined [10,12] as

ε(G) =

n∑
i=1

|λi(G)|.

There are numerous results on ε(G), especially on trees [14,15,21–23].
In chemical graph theory, various graph invariants, also known as topological indices, are currently being studied. In

this paper, we are mainly interested in vertex-degree-based topological indices and energy of graphs. The formal definition
of a vertex-degree-based topological index of G is as follows:

TI(G) =
∑

vivj∈E(G)

f (dG(vi), dG(vj)) ,

where f is a pertinently chosen function with the property f(x, y) = f(y, x) ≥ 0; some examples of interest are listed below:
Name f(x, y)

Randić index 1√
xy

Sum-connectivity index 1√
x+y

Sum-connectivity Gourava index 1√
x+y+xy

Product-connectivity Gourava index 1√
(x+y)xy

Corresponding to every vertex-degree-based topological index TI given above, a matrix ATI (G) = (aTI (i, j))n×n can be
defined (see [20]) such that

aTI (i, j) =

{
f (dG(vi), dG(vj)) , vivj ∈ E(G),

0, vivj /∈ E(G).
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The characteristic polynomial of ATI (G) , denoted by φTI(G,λ) = |λI −ATI (G)|, is called the TI characteristic polynomial
of G. The roots of the equation φTI(G,λ) = 0, denoted by f1(G), f2(G), . . . , fn(G), are called TI eigenvalues of G. The TI
energy of G is defined [3] as

εTI(G) =

n∑
i=1

|fi(G)|.

Recent results on the TI energy can be found in the papers [3,11,20]. Several particular forms of εTI have already been
extensively studied; see [1,2,4–6,25] for various results about the Randić energy, see [7,8] for some results concerning the
ABC energy, and also see [9, 13, 16–19, 24] for several results on some other forms of εTI . In this paper, some sufficient
conditions for the minimum and second-minimum TI energy of trees are presented. Using the main result, trees with
the minimum sum-connectivity Gourava energy and minimum product-connectivity Gourava energy are characterized
among all trees on n vertices. Trees with the second-minimum values of the Randić energy, sum-connectivity energy, and
sum-connectivity Gourava energy are also characterized among all trees on n vertices.

2. Main results

Let T (n) be the set of all trees of order n. For T ∈ T (n), let Mk(T ) be the set of all k-matching of T for 1 ≤ k ≤
[
n
2

]
. For

e = uv ∈ E(T ) and αk = {e1, e2, . . . , ek} ∈Mk(T ), we take fT (e) = fT (uv) = f2 (dT (u), dT (v)) and fT (αk) =
∏k
i=1 fT (ei). We

introduce the following functions associated with f(x, y) that will be used in the sequel.

f1(s, t) = f2(s+ 1, 2) + (t− 3)f2(2, 2) + f2(1, 2)− (t− 1)f2(s+ t− 1, 1), (1)

f2(s, t) = f2(s+ 1, t− 1) + (t− 2)f2(t− 1, 1)− (t− 1)f2(s+ t− 1, 1), (2)

f3(t) = f2(2, t+ 1) + tf2(t+ 1, 1)− (t+ 1)f2(1, t+ 2), (3)

f4(s, t) = (t+ 1)f2(1, t+ 2)× sf2(1, s+ 1)− f2(1, 2)× (t+ s)f2(1, s+ t+ 1), (4)

f5(s, t) = (t+ 1)f2(1, t+ 2) + sf2(1, s+ 1) + f2(t+ 2, s+ 1)− f2(2, s+ t+ 1)− f2(1, 2)− (t+ s)f2(1, s+ t+ 1). (5)

Lemma 2.1 (see [20]). Let T1, T2 ∈ T (n). Let

φTI(T1, x) =

[n2 ]∑
k=0

(−1)ka2kxn−2k, φTI(T2, x) =
[n2 ]∑
k=0

(−1)kb2kxn−2k,

be the TI characteristic polynomials of T1, T2, respectively. If a2k ≥ b2k for all k ≥ 1 and if there is an integer number k such
that a2k > b2k, then εTI(T1) > εTI(T2).

Consider the tree T ∈ T (n) shown in Figure 1, where T1 is a subtree of T with v1 ∈ V (T1), t ≥ 3, and dT (v1) ≥ 2. Let
T ′ = T − {v2v3, v3v4, . . . , vt−1vt} + {v1v3, v1v4, . . . , v1vt}. We say that T ′ is obtained from T by Operation I (as depicted in
Figure 1).

T1 v1 v2 vt−1 vt
T1 v1 vt

vt−1

v2

T T ′

Figure 1: Operation I.

Lemma 2.2. Let T ′ be the tree obtained from the tree T by Operation I as shown in Figure 1. If f(x, y) is decreasing with
respect to the variable x (with respect to the variable y too, of course) and if f1(s, t) ≥ 0 for t ≥ 3 and s ≥ 1, then

εTI(T
′) < εTI(T ).
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Proof. Let T, T ′ ∈ T (n). Let

φTI(T, x) =

[n2 ]∑
k=0

(−1)ka2kxn−2k, φTI(T ′, x) =
[n2 ]∑
k=0

(−1)kb2kxn−2k,

be the TI characteristic polynomials of T, T ′, respectively, where a0 = b0 = 1. Take NT (v1) = {v2, u1, . . . , us}, where s ≥ 1.
Note that t ≥ 3, dT (v1) = s+ 1, dT ′(v1) = s+ t− 1, and dT (ui) = dT ′(ui) for i = 1, 2, . . . , s. Then

a2 − b2 =

s∑
i=1

fT (v1ui) +

t−1∑
j=1

fT (vjvj+1)−
s∑
i=1

fT ′(v1ui)−
t∑

j=2

fT ′(v1vj)

>

t−1∑
j=1

fT (vjvj+1)−
t∑

j=2

fT ′(v1vj) = f1(s, t) ≥ 0,

that is, a2 > b2. For k = 2, . . . ,
[
n
2

]
, we have

a2k =
∑

αk∈Mk(T )

fT (αk)

≥
∑

αk∈Mk(T1)

fT (αk) +

t−1∑
j=1

fT (vjvj+1)
∑

αk−1∈Mk−1(T−v1)

fT (αk−1)

=
∑

αk∈Mk(T1)

fT (αk) +
(
f2(s+ 1, 2) + (t− 3)f2(2, 2) + f2(1, 2)

) ∑
αk∈Mk−1(T−v1)

fT (αk−1),

and

b2k =
∑

αk∈Mk(T ′)

fT ′(αk) =
∑

αk∈Mk(T1)

fT ′(αk) +

t∑
i=2

fT ′(v1vi)
∑

αk−1∈Mk−1(T−v1)

fT ′(αk−1)

≤
∑

αk∈Mk(T1)

fT (αk) + (t− 1)f2(s+ t− 1, 1)
∑

αk∈Mk−1(T−v1)

fT (αk−1),

and so
a2k − b2k ≥ f1(s, t)

∑
αk∈Mk−1(T−v1)

fT (αk−1) ≥ 0,

that is, a2k ≥ b2k. Now, by Lemma 2.1, the required result holds.

Consider the tree T ∈ T (n) shown in Figure 2, where T1 is a subtree of T with v1 ∈ V (T1), t ≥ 4 and dT (v1) ≥ 2. Let
T ′ = T − {v2v3, . . . , v2vt}+ {v1v3, . . . , v1vt}. We say that T ′ is obtained from T by Operation II (as depicted in Figure 2).

T1 v1

v3

vt

v2
T1 v1 v2

v3

vt

T T ′

Figure 2: Operation II.

Lemma 2.3. Let T ′ be the tree obtained from the tree T by Operation II as shown in Figure 2. If f(x, y) is decreasing with
respect to the variable x (with respect to the variable y too, of course) and f2(s, t) ≥ 0 for t ≥ 4 and s ≥ 1, then

εTI(T
′) < εTI(T ).
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Proof. Let T, T ′ ∈ T (n). Let

φTI(T, x) =

[n2 ]∑
k=0

(−1)ka2kxn−2k, φTI(T ′, x) =
[n2 ]∑
k=0

(−1)kb2kxn−2k,

be the TI characteristic polynomials of T, T ′, respectively, where a0 = b0 = 1. Take NT (v1) = {v2, u1, . . . , us}, where s ≥ 1.
Note that t ≥ 4, dT (v1) = s+ 1, dT ′(v1) = s+ t− 1, and dT (ui) = dT ′(ui) for i = 1, 2, . . . , s. Thus

a2 − b2 > fT (v1v2) +

t∑
j=3

fT (v2vj)−
t∑

j=2

fT ′(v1vj) = f2(s, t) ≥ 0,

that is, a2 > b2. For k = 2, . . . ,
[
n
2

]
, we have

a2k =
∑

αk∈Mk(T )

fT (αk)

≥
∑

αk∈Mk(T1)

fT (αk) +

(
fT (v1v2) +

t∑
i=3

fT (v2vi)

) ∑
αk−1∈Mk−1(T−v1)

fT (αk−1)

=
∑

αk∈Mk(T1)

fT (αk) +
(
f2(s+ 1, t− 1) + (t− 2)f2(t− 1, 1)

) ∑
αk−1∈Mk−1(T−v1)

fT (αk−1),

and

b2k =
∑

αk∈Mk(T ′)

fT ′(αk) =
∑

αk∈Mk(T1)

fT ′(αk) +

t∑
i=2

fT ′(v1vi)
∑

αk−1∈Mk−1(T−v1)

fT ′(αk−1)

≤
∑

αk∈Mk(T1)

fT (αk) + (t− 1)f2(s+ t− 1, 1)
∑

αk∈Mk−1(T−v1)

fT (αk−1),

and hence
a2k − b2k ≥ f2(s, t)

∑
αk∈Mk−1(T−v1)

fT (αk−1) ≥ 0,

that is, a2k ≥ b2k. Now, by Lemma 2.1, the desired result holds.

Consider the tree T ∈ T (n) as shown in Figure 3, where T1 is a subtree of T with v1 ∈ V (T1), t ≥ 2 and dT (v1) ≥ 1. Let
Ps = v1v2 · · · vs and T ′ = T − {vs+2u1, . . . , vs+2,ut}+ {vs+1u1, . . . , vs+1,ut}. We say that T ′ is obtained from T by Operation
III (as depicted in Figure 3).

T1 v1 v2 v3 vs vs+1 vs+2

u1 ut

T1 v1 v2 v3 vs vs+1 vs+2

u1 ut

T T ′

Figure 3: Operation III.

Lemma 2.4. Let T ′ be the tree obtained from the tree T by Operation III as shown in Figure 3. If f(x, y) is decreasing with
respect to the variable x (with respect to the variable y too, of course) and f3(t) ≥ 0 for t ≥ 2, then εTI(T ′) < εTI(T ).

Proof. Take T, T ′ ∈ T (n) and let

φTI(T, x) =

[n2 ]∑
k=0

(−1)ka2kxn−2k, φTI(T ′, x) =
[n2 ]∑
k=0

(−1)kb2kxn−2k,

be the TI characteristic polynomials of T, T ′, respectively, where a0 = b0 = 1. Note that a2 > b2 because

a2 − b2 = fT (vsvs+1) + fT (vs+1vs+2) +

t∑
i=1

fT (vs+2ui)− fT ′(vsvs+1)− fT ′(vs+1vs+2)−
t∑
i=1

fT ′(vs+1ui) > f3(t) ≥ 0.
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For k = 2, . . . ,
[
n
2

]
, we have

a2k =
∑

αk∈Mk(T )

fT (αk)

≥
∑

αk∈Mk(T1∪Ps)

fT (αk) + fT (vsvs+1)
∑

αk−1∈Mk−1((T1∪Ps)−vs)

fT (αk−1)

+

(
fT (vs+1vs+2) +

t∑
i=1

fT (vs+2ui)

) ∑
αk−1∈Mk−1(T1∪Ps)

fT (αk−1)

=
∑

αk∈Mk(T1∪Ps)

fT (αk) + f2 (dT (vs), 2)
∑

αk−1∈Mk−1((T1∪Ps)−vs)

fT (αk−1)

+
(
f2(2, t+ 1) + tf2(t+ 1, 1)

) ∑
αk−1∈Mk−1(T1∪Ps)

fT (αk−1),

and

b2k =
∑

αk∈Mk(T1∪Ps)

fT ′(αk) + fT ′(vsvs+1)
∑

αk−1∈Mk−1((T1∪Ps)−vs)

fT ′(αk−1)

+

(
fT ′(vs+1vs+2) +

t∑
i=1

fT ′(vs+1ui)

) ∑
αk−1∈Mk−1(T1∪Ps)

fT ′(αk−1)

=
∑

αk∈Mk(T1∪Ps)

fT ′(αk) + f2 (dT (vs), t+ 2)
∑

αk−1∈Mk−1((T1∪Ps)−vs)

fT ′(αk−1)

+ (t+ 1)f2(1, t+ 2)
∑

αk−1∈Mk−1(T1∪Ps)

fT ′(αk−1),

and so

a2k − b2k =
(
f2 (dT (vs), 2)− f2 (dT (vs), t+ 2)

) ∑
αk−1∈Mk−1((T1∪Ps)−vs)

fT (αk−1) + f3(t)
∑

αk−1∈Mk−1(T1∪Ps)

fT (αk−1) ≥ 0,

that is, a2k ≥ b2k. By Lemma 2.1, the lemma holds.

Consider the tree T ∈ T (n) as shown in Figure 4, where t ≥ 1 and s ≥ 2. Let T ′ = T−{v2w1, . . . , v2wt}+{v1w1, . . . , v1wt}.
We say that T ′ is obtained from T by Operation IV (as depicted in Figure 4).

v3 v2 v1

w1 wt u1 us

v3 v2 v1

w1 wt u1 us

T T ′

Figure 4: Operation IV.

Lemma 2.5. Let T ′ be the tree obtained from the tree T by Operation IV as shown in Figure 4. If f4(s, t) > 0 as well as
f5(s, t) > 0 for t ≥ 1 and s ≥ 2, then εTI(T ′) < εTI(T ).

Proof. Take T, T ′ ∈ T (n) and let

φTI(T, x) =

[n2 ]∑
k=0

(−1)ka2kxn−2k, φTI(T ′, x) =
[n2 ]∑
k=0

(−1)kb2kxn−2k,

be the TI characteristic polynomials of T, T ′, respectively, where a0 = b0 = 1. Note that

a2−b2 =

s∑
i=1

fT (v1ui)+

t∑
j=1

fT (v2wj)+fT (v2v3)+fT (v2v1)−
s∑
i=1

fT ′(v1ui)−
t∑

j=1

fT ′(v1wj)−fT ′(v2v3)−fT ′(v2v1)=f5(s, t)>0,
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a4 − b4 =

s∑
i=1

fT (v1ui)×

 t∑
j=1

fT (v2wj) + fT (v2v3)

−
 s∑
i=1

fT ′(v1ui) +

t∑
j=1

fT ′(v1wj)

× fT ′(v2v3) = f4(s, t) > 0,

and for k ≥ 3, a2k = b2k = 0. By Lemma 2.1, the lemma holds.

Let Sn be the star of order n. Let S∗n be the tree formed by attaching a new vertex to a pendent vertex of the star Sn−1
as depicted in Figure 5.

v3

v2v1

vn

vnv2v1

vn

v3

vn−1Sn S∗n

Figure 5: The trees Sn and S∗n.

Theorem 2.1. Let f(x, y) be a symmetric real function. Consider the functions f1(s, t), f2(s, t), f3(t), f4(s, t) and f5(s, t)

defined via Equations (1)–(5). Consider also the following conditions:

(C1) f(x, y) is decreasing with respect to the variable x (with respect to the variable y too, of course);

(C2) f1(s, t) ≥ 0 for t ≥ 3 and s ≥ 1;

(C3) f2(s, t) ≥ 0 for t ≥ 4 and s ≥ 1;

(C4) f3(t) ≥ 0 for t ≥ 2;

(C5) f4(s, t) > 0 and f5(s, t) > 0 for t ≥ 1 and s ≥ 2.

If the conditions (C1)–(C4) hold, then Sn is the unique tree with the minimum TI energy among all trees of order n. If the
condition (C1)–(C5) hold, then S∗n is the unique tree with the second-minimum TI energy among all trees of order n.

Proof. Suppose that T ∈ T (n)\{Sn} and the conditions (C1)-(C4) hold. We repeatedly perform Operations I–III on T and
finally get the star Sn. By Lemmas 2.2-2.4, we have εTI(Sn) < εTI(T ). Therefore, Sn is the unique tree with the minimum
TI energy in T (n).

In the following, we assume that T ∈ T (n)\ {Sn, S∗n} and the conditions (C1)-(C5) hold. We will prove the inequality
εTI(S

∗
n) < εTI(T ). Take R(T ) = {v ∈ V (T ) | dT (v) ≥ 3}. We consider two cases.

Case 1. |R(T )| ≤ 1.
By applying Operation I, we get the graph S∗n from T . By Lemma 2.2, we have εTI(S∗n) < εTI(T ).

Case 2. |R(T )| ≥ 2.
By applying Operations I-IV repeatedly, we get the graph S∗n from T . By Lemmas 2.2-2.5, the inequality εTI(S∗n) < εTI(T )

holds.

3. Applications

Theorem 3.1. The star Sn is the unique tree with the minimum values of the sum-connectivity Gourava energy and product-
connectivity Gourava energy among all trees on n vertices.

Proof. For each of the two considered energies, it is obvious that the condition (C1) of Theorem 2.1 holds. Hence, we only
need to verify that the conditions (C2)–(C4) of Theorem 2.1 hold for the considered energies.

Sum-connectivity Gourava energy. For this energy, f(x, y) = 1√
x+y+xy

and hence

f1(s, t) =
(30t− 42)s2 + (30t2 − 127t+ 151)s+ 50t2 − 215t+ 195

40(3s+ 5)(2s+ 2t− 1)
> 0,

f2(s, t) =
s(t− 2)(2st+ 2t− 1)

(st+ 2t− 1)(2t− 1)(2s+ 2t− 1)
> 0,

f3(t) =
4t2 + 7t

12t3 + 68t2 + 125t+ 75
> 0.
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Product-connectivity Gourava energy. For this energy, f(x, y) = 1√
(x+y)xy

and hence

f1(s, t) =
(3t− 1)s4 + (6t2 + 7t− 3)s3 + (3t3 + 20t2 − 58t+ 73)s2

48(s+ 3)(s+ 1)(s+ t)(s+ t− 1)

+
(12t3 + 2t2 − 155t+ 171)s+ 9t3 + 12t2 − 165t+ 144

48(s+ 3)(s+ 1)(s+ t)(s+ t− 1)
> 0,

f2(s, t) =
s(t− 2)(s2 + 2st+ t− 1)

t(s+ t)(t− 1)(s+ 1)(s+ t− 1)
> 0,

f3(t) =
3t

2(t+ 1)(t+ 2)(t+ 3)
> 0.

This completes the proof.

Theorem 3.2. Among all trees on n vertices, the graph S∗n is the unique tree with the second-minimum value of each of the
following energies: Randić energy, sum-connectivity energy, sum-connectivity Gourava energy.

Proof. For each of the considered energies, the condition (C1) of Theorem 2.1 trivially holds. Thus, we only need to verify
that the conditions (C2)–(C5) of Theorem 2.1 hold the considered energies.

Randić energy. For this energy, we have f(x, y) = 1√
xy and thus

f1(s, t) =
(t− 1)s2 + (t2 − 5t+ 6)s+ t2 − 4t+ 3

4(s+ 1)(s+ t− 1)
> 0,

f2(s, t) =
(t− 2)s2

(t− 1)(s+ 1)(s+ t− 1)
> 0,

f3(t) =
t

2(t+ 1)(t+ 2)
> 0,

f4(s, t) = f5(s, t) =
t(s− 1)(s+ t+ 2)

2(s+ 1)(t+ 2)(s+ t+ 1)
> 0.

Sum-connectivity energy. For this energy, we have f(x, y) = 1√
x+y

and thus

f1(s, t) =
(3t− 5)s2 + (3t2 − 8t+ 9)s+ t2 − 39t+ 36

12(s+ 3)(s+ t)
> 0,

f2(s, t) =
t− 2

t
− t− 2

s+ t
> 0, f3(t) =

t

t+ 2
− t

t+ 3
> 0,

f4(s, t) =
2t(s− 1)(s+ t+ 3)

3(s+ 2)(t+ 3)(s+ t+ 2)
> 0,

f5(s, t) =
2t(s− 1)(s+ t+ 5)

3(s+ 2)(t+ 3)(s+ t+ 2)
> 0.

Sum-connectivity Gourava energy. For this energy, we have f(x, y) = 1√
x+y+xy

. From the proof of Theorem 3.1, we
only need to verify that the condition (C5) of Theorem 2.1 holds. Here,

f4(s, t) =
3t(s− 1)(2s+ 2t+ 5)

5(2s+ 3)(2t+ 5)(2s+ 2t+ 3)
> 0,

f5(s, t) >
36t(s− 1)

5(2s+ 3)(2t+ 5)(2s+ 2t+ 3)(3s+ 3t+ 5)(st+ 3s+ 2t+ 5)
> 0.

This completes the proof.

4. Conclusion

In this study, we obtained sufficient conditions for the TI energy of trees to be minimum and second-minimum. Using
the main result, we characterized the unique tree with the minimum values of the sum-connectivity Gourava energy and
product-connectivity Gourava energy among all trees on n vertices. We also characterized the unique tree with the second-
minimum values of the Randić energy, sum-connectivity energy, and sum-connectivity Gourava energy, among all trees on
n vertices.
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[18] I. Redžepović, I. Gutman, Comparing energy and Sombor energy – An empirical study, MATCH Commun. Math. Comput. Chem. 88 (2022) 133–140.
[19] Y. Shao, Y. Gao, The maximal geometric-arithmetic energy of trees with at most two branched vertices, Appl. Math. Comput. 362 (2019) #124528.
[20] Y. Shao, Y. Gao, W. Gao, X. Zhao, Degree-based energies of trees, Linear Algebra Appl. 621 (2021) 18–28.
[21] W. Yan, L. Ye, On the minimal energy of trees with a given diameter, Appl. Math. Lett. 18 (2005) 1046–1052.
[22] W. Yan, L. Ye, On the maximal energy and the Hosoya index of a type of trees with many pendant vertices, MATCH Commun. Math. Comput. Chem. 53 (2005) 449–459.
[23] J. Zhang, B. Zhou, On minimal energies of non-starlike trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 62 (2009) 481–490.
[24] X. Zhao, Y. Shao, Y. Gao, The maximal geometric-arithmetic energy of trees, MATCH Commun. Math. Comput. Chem. 84 (2020) 363–367.
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