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ven though the human emotional experience                         
is  is essential in our daily lives,  our  scientific 
understan-ding of human emotions is still quite 
restricted. The advancement of the affective science 
field is critical for the advancement of psychology for 
societal detri-ments and solicitations. Identifying 
emotional signals in ordinary life is becoming 
increasingly significant as it affects people's 
communication through verbal and nonverbal 
actions [1]. Especially for people who have 
communication difficulties, it is crucial to de-
termine their emotions correctly. Various methods 
are being developed to monitor the physiological 
effects of emotions with technological tools. Among 
these methods, there exist various medical imaging 
techniques.

Along with devices, i.e. fMRI, EEG, GSR, and Faci-al 
Coding that allows emotions to be monitored, much 
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work is being done on newly developed computational 
methods. EEG devices, which are among these devices, 
enable analysis by recording brain waves with high tem-
poral resolution. Emotions are tried to be revealed by 
using machine learning (ML) methods on brain waves 
recorded with EEG. Studies are carried out to identify 
emotions online or offline. Face expressions are one 
example of emotional signals, which are believed to be 
one of the most instant ways humans express their fee-
lings and intentions [2]. With advancements in brain-
computer interface (BCI) and neuroimaging technology, 
it becomes possible to use a portable EEG headset to 
acquire brainwave signals non-intrusively and measure 
or control the motions of devices virtually [3]. When 
machines are incorporated into the system to assist in 
recognising these emotions, it enhances efficiency and 
lowers costs in several ways [4]. With the development 
of technology and population reduction, there is a signi-

A B S T R A C T

Among the most significant characteristics of human beings is their ability to feel emo-
tions. In recent years, human-machine interface (HM) research has centred on ways 

to empower the classification of emotions. Mainly, human-computer interaction (HCI) re-
search concentrates on methods that enable computers to reveal the emotional states of hu-
mans. This research proposed an emotion detection system based on visual IAPPS pictures 
through EMOTIV EPOC EEG signals. We employed EEG signals acquired from channels 
(AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) for individuals in a visu-
ally induced setting (IAPS fear and neutral aroused pictures). The wavelet packet transform 
(WPT) combined with the wavelet entropy algorithm was applied to the EEG signals. The 
entropy values were extracted for every two classes. Finally, these feature matrices were fed 
into the SVM (Support Vector Machine) type classifier to generate the classification model.  
Also, we evaluated the proposed algorithm as an area under the ROC (Receiver Operating 
Characteristic) curve, or simply AUC (Area under the curve) was utilised as an alternative 
single-number measure. Overall classification accuracy was obtained at 91.0%. For clas-
sification, the AUC value given for SVM was 0.97. The calculations confirmed that the 
proposed approaches successfully detect the emotion of fear stimuli via EMOTIV EPOC 
EEG signals and that the classification accuracy is acceptable.
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proposed to classify human emotions. The Spatio-tem-
poral analysis was performed using complex continuous 
wavelet transform to collect whole time-frequency in-
formation. Then, three different Deep Neural Networks 
were utilised to obtain a combined feature vector. In [20] 
[63], a hybrid of manual and automatic feature extraction 
methods has been proposed. The asymmetry in various 
brain regions is collected in a 2D vector named AsMap 
from the differential entropy features of EEG signals. A 
thorough comparison was conducted with other feature 
extraction methods, and a convolutional neural network 
model was used in the classification process. The emoti-
on EEG dataset reached the highest classification accu-
racy of 97.10%. An EEG emotion classification network 
based on attention fusing was proposed in [21] [64]. The 
multi-channel band features were extracted and then fu-
sed using attention units. The algorithm's performance 
was verified on an open-access dataset SEED and the self-
collected dataset LE-EEG. The proposed model applying 
five-fold cross-validation obtained the highest accuracy 
of 96.45%. 

[22] [65] developed the EEG signals-based automated
cross-subject emotion recognition framework that exhibits 
good generalizability and high classification accuracy of 
cross-subjects using the Fourier-Bessel series expansion-ba-
sed empirical wavelet transform method. The training and 
testing of the models were performed using 10-fold cross-
validation by training the feature vectors via ensemble bag-
ged tree classifiers.

A deep convolutional neural network model for emoti-
on classification utilising a non-end-to-end training method 
was proposed in [23] [66]. The proposed model achieved a 
high accuracy of 93.7%, and the extracted features exhibited 
the best separability among the tested models, proved with 
the feature visualisation technique. A novel multi-feature 
fusion network with spatial and temporal neural network 
structures was developed in [24] [67] to learn discrimina-
tive Spatiotemporal emotional information. Two common 
types of features, time-domain features (Hjorth, Differenti-
al Entropy, Sample Entropy) and frequency domain features 
(Power Spectral Density), were extracted. The experimental 
results on the DEAP dataset showed an average emotion re-
cognition accuracy of 80.52%. 

In [25] [68], three deep learning-based models (RNN, 
LSTM, and GRU) were compared for emotion recognition 
using EEG signals. The efficiency of these networks was 
validated by experimental data using the EEG Brain Wave 
Dataset.

[26] [69]  proposes a novel four-stage method for hu-
man emotion recognition using multivariate EEG signals. 

ficant interest in understanding emotional interactions, and 
reliable and feasible methods are needed to identify human 
emotional states [5]. Individual understandings may reveal 
a person's emotional condition. Self-Assessment Manikin 
(SAM) [6] is utilised to evaluate a state of mind as a self-
evaluation [7], that is, visually presented pleasure-displea-
sure images, degree of arousal, and dominance-submissive-
ness. People's emotional experiences throughout their lives 
are neurobiological activities of the human brain. We can 
investigate a person's emotional responses when exposed 
to certain situations by directly accessing their electroen-
cephalogram (EEG) signals. This evidence from brainwave 
signals can be used to enhance and verify whether or not a 
person is substantially healthy or have a mental disease [8]. 
EEG headset comes in a variety of design concepts and costs. 
The distinction is that the sort of electrodes used to capture 
the brainwave data has an impact on both the quality and 
duration of the setup [9]. The electrode numbers are put 
over the human scalp, and the EEG headset resolution va-
ries concerning design quality-related accessibility [10]. The 
design of the EEG headsets may differ, such as the 14-chan-
nel Emotiv EPOC+, and electrodeposition may address the 
temporal, parietal, and occipital lobes. These EEG headsets 
include wireless data transmission features, so no long wires 
are trailing around the body, making this equipment por-
table and simple to set up  [11]. Artefacts are signals collec-
ted by the electrodes due to muscular activity [12].

Additionally, external interferences such as auditory 
noise or sensation may induce distortions in the EEG du-
ring collection, which must be eliminated using filtering 
algorithms [13]. Finally, to assess EEG signals for emotion 
classification with ML algorithms, the brainwave signals 
must be represented in the frequency domain through a fast 
Fourier transform (FFT) [14].  Recent studies were publis-
hed with Emotiv EPOC+ headsets to obtain several types of 
brainwave recordings and determined frequency bands [15]. 
Artificial intelligence and ML are currently being dynami-
cally settled and researched to adapt to intuitive approac-
hes. Neuroinformatics is a science that examines emotion 
classification by collecting EEG signals and classifying them 
with ML algorithms. This would aid in improving human-
computer interactions to meet human requirements [16]. 
Emotion evaluation leads to emotion integration into hu-
man-machine interaction (HCI) systems. Over the last few 
years, many studies have assessed emotion and stress. Diffe-
rent emotion detection systems based on brain signals [17] 
and the application of entropy in bio-signal processing have 
already been addressed in other relevant works [18]. Fear is 
less common among the emotions trying to be determined 
with EEG devices. 

Related Works
In [19] [62], an efficient spatial feature extraction and fea-
ture selection method having a short processing time was 



243

C.
 U

yu
la

n 
et

 a
l. 

/ H
itt

ite
 J 

Sc
i E

ng
, 2

02
2,

 9
 (4

) 2
41

–2
51

These methods are multivariate variational mode decom-
position, joint instantaneous frequency and amplitude, 
and deep residual convolutional neural network ResNet-18, 
respectively. The experimental results show the best accu-
racy of 99.03%, 97.59%, and 97.755% percent for classifying 
arousal, dominance, and valence emotions, respectively. 
In [27] [70], a method for capturing the distinct minimum 
spanning tree topology that underpins the different emoti-
ons was developed. A hierarchical aggregation-based graph 
neural network was used to investigate the MST structure 
in emotion recognition. 

In light of recent studies, we proposed to evaluate 
possible signal changes in brain waves during fear stimuli 
through the EMOTIV EPOC EEG device. This study aims 
to classify the emotion of fear using the wavelet technique 
using the Emotiv EPOC EEG device. Then after the data 
acquisition procedure, the features retrieved from the ent-
ropy parameters and the classification methods were used 
to discriminate fear and neural emotions. 

MATERIAL AND METHODS
Experimental Design and Data Acquisition

Before the simulations, participants were asked to comp-
lete a questionnaire regarding the selected IAPS [Inter-
national Affective Picture System] picture. Because it is 
likely that the emotion a participant experience was not 
the same as what was imagined. As a result, the subject 
is asked to review his feeling on a self-administered sca-
le. Then, Among the IAPS photographs, fear-related and 
neutral pictures that were highly scored were chosen as 
a fear stimulus to provide a somatosensory stimulation 
in this study protocol. 1050, 1120, 1200, 1201, 1270, 1274, 
1280, 1300, 1302, 1930, 1931, 2770, 2811, 3001, 3061, 6021, 
6313, 6315, 6370, 6510, 8160, 8480, 9000, 9050, 9440, 
9584, 9590, 9600, for neutral stimuli with the number; 
5621, 5629, 5001, 5300, 5410, 5594, 5600, 5814, 7175, 7235 
were used in random order, but in the same order for each 
participant. IAPS designated various fear stimuli, Center 
for the Study of Emotion and Attention [28] was shown to 
the attendees as a stimulus set in the front of the compu-
ter screen to assess the responses to the fear and neutral 
stimulus with the EMOTIV EPOC EEG device. Partici-
pants completed the SAM-Self-Assessment Manikin qu-
estions regarding the stimuli after each photo zoomed on 
the screen for 3 seconds. The SAM form is used to evalu-
ate the subjects' emotional state in response to a stimulus. 
In emotion research, self-evaluation measures are usually 
employed to analyse emotions. Arousal, valence, and do-
minance criteria have been used to analyse emotions [29]. 
The subjects wore an EMOTIV EPOC EEG device for the 
duration of the experiment, which was videotaped. Sche-
matics of EMOTIV EPOC data acquisition are shown in 
Figure 1a, and the Epoc + channels localisation covered 

in the analysis according to the 10–20 system is shown 
in Figure 1b.   None of the participants had neurological 
symptoms, and all had healthy or normal vision. All of 
the participants signed the document written consent 
form. All participants were aware of the process and were 
not paid for their support. Experiments were approved 
by the human subject board of Uskudar University’s Et-
hics Committee in Turkey (14-02-20212 with 61351342 
number decisions) under the ethical principles outlined 
in the 1964 Declaration of Helsinki (World Medical Or-
ganization, 1996).    

EMOTIV EPOC EEG recordings and 
Preprocessing
The recording of emotional data is the initial step toward 
emotion recognition. Every standard test for assessing 
emotion and stress states has benefits and drawbacks [28]. 
Most studies that use EEG signals to detect emotion utili-
se images from the International Affective Picture System 
(IAPS). Several American participants rated the IAPS on 
two dimensions of nine points each (1-9). IAPS usage 
allows for more precise regulation of emotional stimuli 
as well as a more straightforward experimental design 
[30]. We picked the visual presentation test for this study 
since its assessment was closest to our objectives. Some 
photographs were used as stimuli to evoke the intended 
emotions (neutral and fear-stimulated). The EEG equip-
ment EMOTIVTM used in the experiment is a portable, 
practical and inexpensive model compared to the clini-
cal EEG devices of the EMOTIV brand, as seen in Fig. 1a. 
EEG signals were collected during emotional sessions at 
Uskudar University Istanbul, Turkey. This headset EMO-
TIVTM (version 2015) is composed of 14 usable saline 
electrodes positioned according to the 10/20 system (AF3, 
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) Fig. 
1b and two references on parietal sites (P3 and P4) CMS / 
DRL references right and left mastoids. 

Low-energy Bluetooth provides a wireless computer 
connection. The USB receiver transmits data over 2.4 GHz. 
For more detail, one can investigate the technical specifi-
cations at the following link: https://emotiv.gitbook.io/epoc-
user-manual/ 15 volunteers, eight women and seven men, 

Figure 1. (a) Schematics of EMOTIVTM EPOC EEG headset (b) 
Positioning of the Epoc + channels included in the analysis over the scalp 
according to the 10–20 system. Source: https://www.emotiv.com/.  
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participated in the experiment. The mean age of these sub-
jects was 44, and the standard deviation of the ages was 11.8. 
Attention was paid to ensuring that the subjects did not have 
any inconvenience regarding using EEG. This study recor-
ded EEG data with the Test Bench program and synchroni-
sed it with an open-source Open Sesame program (version 
3.3.8). A virtual serial port was installed on the computer 
to synchronise the EEG records with the IAPS pictures 
presented on the screen. A Python software (version 3.8.7) 
script was written that runs inside the Open Sesame prog-
ram to provide synchronised data flow to the input and out-
put channels of the virtual serial port. Thus, as soon as the 
pictures were on the screen, the Open Sesame program sent 
a trigger to the Test Bench program via a virtual serial port. 
Synchronisation is achieved on the same computer with a 
virtual port. Impedance was controlled at the initialisation 
of the recording via the Test Bench program. We used the 
EEGLAB Software program (version 2021.0) to pre-process 
all the EEG data, which is an open-source program and runs 
on MATLAB© (version R2020b) as used in previous studies 
[31]. All processing code is available at Open Science Frame-
work (https://sccn.ucsd.edu/eeglab/download.php).  After 
the pre-processing process, EEG data was saved in the Test-
bench program as a “.edf” extension. Then, these files were 
transferred to the EEGLAB program, and channel informa-
tion and electrode location information were obtained from 
the data file. Signals were filtered between 0.2-45 Hz with 
the Basic FIR band-pass filter and 1- Hz Basic FIR high-pass 
filter method as an artefact removal process.

Afterward, epochs in the range of 100-1000 ms were 
determined to evaluate the responses to the stimuli. Inde-
pendent component analysis (ICA) was performed [32].  Fol-
lowing filtering, all epochs were visually scanned, and arte-
facts caused by motor, visual or muscular movements were 
rejected in the pre-processing stage of the EEGLAB Softwa-
re program. After the pre-processing stage, the analysis part 
was started on EEGLAB. To determine the differences bet-
ween two levels of emotion, Fear and Neutral stimuli, EEG 
data was divided into two sub-data files, Fear and Neutral. 
In these data files, only the EEG recordings of the relevant 
pictures were included in the analyses. After topographic 
interpolating the rejected channels, the clean data were sa-
ved by separating fear and neutral epochs into two files for 
each subject.

Feature Extraction and Classification; The 
Wavelet Packet Transform and Wavelet Entropy
The data analysis having multiple levels of scale is reali-
sed through the Wavelet Transform (WT) by preserving 
the transient events in the data. Wavelet is an oscillatory 
window function having a distinct shape and zero mean 
value. Since CWT is computationally expensive and 
produces redundant information, DWT with sub-band 

coding should be used for efficiency concerns. The two-
dimensional time-scale domain is formed due to the imp-
lementation of the WT to the time-series data. In WT, 
the entire signal is examined through various-sized win-
dows. The size of the windows depends on the frequency 
characteristics in the parts of the signal. Small windows 
are used in the high-frequency parts for increasing time 
resolution, while more oversized windows are applied 
to capture important frequency information in the low-
frequency parts. 

 Wavelet Packet Transform (WPT) has a generalisation 
ability for the time-frequency analysis of the WT. In the 
WPT, the data is fed to the scaling and wavelet filters 
(low-pass and high-pass filters having complementary 
bandwidths), whose outputs are downsampled by a factor 
of two by applying a convolution operation. The outputs 
of the high-pass filtered data correspond to the detail co-
efficients, and the outputs of the low-pass filtered data 
match the approximation coefficients at that scale level. 
The approximation coefficients are utilised as the samp-
led data input subject to the next pair of wavelet filters. 
This sequential process continues until the unit interval 
limit is converged. However, the wavelet transform ope-
ration can be terminated at any level. If the transform has 
n level, the minimum length limit of the data set would 
be2n.  The schematic flowchart of the WPT algorithm 
can be seen in Fig. 2. 

The multi-rate filter bank comprises a series of half-
band high-pass and low-pass FIR filters and decimators; 
however, the WPT is a more flexible method than subband 
coding because it separates the signal into a well-suited sub-
band signal. The wavelet filters are constructed to be ortho-
normal transform kernels. The set of detail and approxima-
tion coefficients at each level of decomposition corresponds 
to a subspace pair that WT creates. These subspaces cover 
frequency subbands of the original data set. Any set of dis-
joint subspaces is on an orthonormal basis having different 
subband intervals. The transform coefficients evaluated at 
each level correlate with the original data set and are wa-
veform functions (Symlet, Daubechies, etc.) demonstrating 
the wavelet packet. Such decomposition is achieved by shif-
ting and scaling the chosen wavelet function and projecting 
the signal on the subspace. Various bases of the WPT can 
be utilised as arbitrary adaptive tree-structured filter banks. 

Figure 2. The partial graph of a binary tree of the WPT algorithm. (J is 
the transformation level).
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The best orthonormal basis can be chosen through a search 
algorithm (i.e. Pruning, Growth), which minimises the in-
formation cost function measuring signal energy distributi-
on, such as Shannon entropy, Log Energy, Coifman-Wicker-
hauser entropy, etc. [33].

WPT generalises the WT and provides a more flexib-
le tool to analyse the time-frequency features of the data 
[25, 26, 27]. The most crucial time-frequency features are 
extracted by reducing the computational cost and avoiding 
redundancy.

One can define the connection between wavelets and 
filters by first describing the wavelet transform as in Equ-
ation 1

( ) ( ) *1,f
ta t f h d

aa
τψ τ τ

+∞

−∞

− =  
 ∫

                             (1)

Where a  is the scale parameter,  t  is the shift para-

meter which indicates the centre location of the window as 

it is shifted through the signal, the variable τ  is denoted as

time, ( ).f  is the original signal or data in the time-domain, 

( )* .h
 refers to the wavelet basis.

While high-scale values support a broad view of the sig-
nal, as a controversy, low-scale values will pick up the detail 
of the signal.  

Then, Equation1 can be rewritten as in Equation 2

( ) ( ) ( ) ( )* *, ( ) *f a aa t f t h t f t h tψ = ⊗ = − (2)

The symbol ⊗  represents the correlation operation,
and the symbol  indicates the convolution operation. 

Since the wavelet family ( ),j kh t
 
is an orthonormal ba-

sis , ( )2L ℜ  the energy-like function is derived from the

wavelet coefficients as given in Equation 3

( ) 2

j jk
T kψ=∑ (3)

where the subscript 1,...,j N= − −  indicates the resoluti-

on level. 

The energy at each sampled time  will be like in Equ-
ation 4

( ) ( )
1 2

j j
j N

T k kψ
−

=−

= ∑ (4)

The total energy can be represented in Equation 5

( ) 2

0
total jk

j
T kψ=∑∑



(5)

Then, the normalised values, which give the relative 
wavelet energy, are stated as in Equation 6

j
j

total

T
p

T
= (6)

Equation 6 defines the probability distribution of the 
energy for each resolution level.

This identity gives a flexible tool to identify specific 
phenomena in the time-frequency plane. The energy term 
is obtained for the usage in the derivation of the wavelet 
entropy (WE) equation. 

According to the Shannon entropy [37], the informa-
tion of the wavelet energy distribution is defined in Equ-
ation 7

( )
0

lnj j
j

S p p pψ  = −  ∑


(7)

Sψ  is stated as total WE, a degree of order/disorder 
measure of the signal. We reveal the hidden process rela-
ted to the original signal. It can be predicted that an orde-
red signal behaves like a periodic mono-frequency signal 
having a narrowband spectrum. A wavelet representation 
of this kind of signal is encoded in one individual wavelet 
resolution level. Therefore all relative wavelet energies are 
almost zero except for the individual level. In contrast, a 
random signal demonstrates very disordered behaviour. 
This means that all frequency bands are equally contri-
buted. Therefore the relative wavelet energy is almost the 
same for all resolution levels, and the WE takes maximum 
values [38]. 

 Support Vector Machine
Some methods, i.e. perceptron, find a separating sub-
optimal hyperplane considering some criterion of ex-
pected goodness. Support Vector Machine [SVM] se-
arches for an optimal solution while maximising the 
margin between classes in a high dimensional feature 
space around the separating hyperplane. A subcate-
gory training of the samples characterises the decisi-
on function. SVM can perform classification utilising 
the support vectors rather than the entire dataset, and 
therefore it is robust to outliers and make very efficient 
predictions [39].

Methodology
The feature extraction methodology proposed in this 
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paper was inspired by the combination of the methods 
used in the papers [31, 18,32]. After pre-processing steps, 
we obtain two data matrices corresponding to control 
and fear-type emotion-driven groups, each of which has 
14592 samples for every 15 electrodes. Then, the WPT 
was applied to each group of data. The multiscale WPT 
feature extraction code used in this paper was adapted 
from [33-34]. Since acquired EEG signals were sampled 
at 128 Hz, the number of samples per window we extract 
features were selected as 128, and spacing of the windows 
or simply the increments among windows was selected as 
16. The decomposition level is 7. 255 features for every 15
electrodes were extracted for a complete tree at this le-
vel. Therefore, the WPT feature matrix size is [905,3825
[255*15]]. Afterwards, wavelet entropies were evaluated
from the WPT feature matrix to reduce the data size and
obtain a robust biomarker for the classification. At this
stage, the feature matrix was separated into fractions,
that each fraction has 255 samples for every 15 electrodes. 
The size of each fractioned matrix is [905,255]. The num-
ber of the total fractioned matrices is 15, which corres-
ponds to the electrode number. The wavelet entropy code 
used in this paper was adopted from [38]. The wavelet
filter was selected as “Coiflet-4” and the decomposition
level was chosen as 4 after making a comparative analysis, 
which shares the same procedure stated in [44]. Coiflets
performed relatively better compared to other wavelet fa-
milies. When the wavelet entropy algorithm was applied
to these matrices, [255,15]-sized feature matrix, which
contains the entropy values, were acquired for every two
classes. Finally, these feature matrices were fed into the
SVM-type classifier to generate the classification model.
The flowchart of the proposed methodology is demons-
trated in Fig. 3.

The classification was done via the Classification Le-
arner app in the Matlab environment. The Classification 
Learner app trains models for the classification process. By 
utilising this app, it is possible to generate supervised ML 

models. It is a flexible and automated tool to search for the 
best classification model type, i.e. decision tree, SVMs, nea-
rest neighbours, ensemble methods, etc. The data, including 
two classes (fear-type induced and control) and their labels, 
were trained, and a classification model that generates a pre-
diction for the response to new data was built. 

RESULTS
Classification Results using SVM Kernels
Control and fear-type emotion-driven groups were clas-
sified using an optimisable SVM model.  

Training involves the minimisation of the error functi-
on as given in Equation 8. 

, ,
1

1
2

l
T

w b i
i

min W W Cξ ξ
=

 
+ 

 
∑ (8)

The error function is subjected to the constraints: 
( )( )  0, 1,T

i i i iy W x b and i lϕ ξ ξ+ ≥ ≥ = …
 
. Here , 1,n

iX R i l= …ò

are training data in vector form showing the classes, and                    
ly R∈ .  It is a vector such that { }1, 1iy ∈ −  , W is the coef-

ficient vector, b is a constant and ξi are parameters that 
handle non-separable inputs. Support vectors are used to 
define the dual error and the decision function [45].

The hyperparameters of the SVM model were opti-
mised. The hyperparameter search range is listed as box 
constraint level: 0.001-1000, kernel scale: 0.001-1000, kernel 
functions: Gaussian, Linear, Quadratic, and Cubic, and stan-
dardised data: accurate. The optimiser option was selected 
as Bayesian optimisation; the acquisition function was “ex-
pected improvement per second plus” with 30 iterations. All 
features are used in the model, and Principle Component 
Analysis is disabled. After the optimisation process, the mi-
nimum classification error was obtained with the cubic ker-
nel whose scale is one, whose box constraint level is 15.1782.  
The minimum classification error plot is given in Fig. 4.

The following information was included in the mini-
mum classification error plot.  Estimated minimum clas-
sification error corresponds to a minimum classification 
error estimation evaluated through optimisation conducted 
with the trial sets of hyperparameter values. The best point 
hyperparameters description refers to the estimate corres-
ponding to an upper confidence interval evaluated from 
the objective model of classification error. The optimised 
hyperparameters do not guarantee the observed minimum 
classification error. The Bayesian optimisation algorithm 
selects the set of hyperparameter values that minimises an 
upper confidence interval for the objective model built to 
evaluate the classification error. The minimum error hyper-
parameters indicate the iteration corresponding to the 
hyperparameters that yield the observed minimum classifi-

Figure 3.Flowchart of the signal processing methodology.
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cation error. If the grid search was used to perform hyperpa-
rameter optimisation, the best point hyperparameters and 
the minimum error hyperparameters are identical. 10-fold 
cross-validation was used in the training and testing of the 
classifier. The optimised SVM classifier’s classification re-
sult is given in Table 1. The number of true positive (TP), 
false-negative (FN), true negative (TN), and false-positive 
(FP) subjects and accuracies are also considered to calculate 
the classifier performance. The results represent the mean 
values after a 10-fold CV for the robustness of the classifica-
tion performance.

The classification results are given in Fig. 5. The figure 
illustrates the spectral SVM classification results.

Also, to evaluate the proposed algorithm, the area un-
der the ROC (Receiver Operating Characteristics) curve is 
utilised as a measure represented by a single number. Ove-
rall accuracy was obtained at 90.98%.

The SVM-based optimised classifier reached 90.03% 
sensitivity, 92.15% precision, 91.96%, and 91.08% F-measure, 

Figure 4.The minimum classification error plot.

respectively.  The external validation was conducted to 
estimate the generalisation method using different data. 
New data comprising 20 subjects (10 neutral/10 fear-type 
induced) were processed through the same methodology 
to achieve external validation criteria. SVM-based classi-
fier performed 93.6% classification sensitivity, and 85.45% 
and 88.54% classification sensitivity was achieved by Naive 
Bayes (NB) and kNN-based classifiers, respectively. ANN 
classifier reached 89.78% classification sensitivity. The clas-
sification results of the classifiers with external validation 
are tabulated in Table 2. For classification, the AUC value is 
given in Fig. 6 for SVM as 0.97.

ROC analysis has been used in many scientific fields in 
which a graphical representation is needed, such as radio-
logy, medicine, deep learning, bioinformatics, etc. Area Un-
der Curve (AUC), derived from ROC analysis, is a key metric 
for interpreting the classification models. The classification 
models can be trained by considering cost proportion and 
distribution of the class in the operating condition, and then 
they are transferred to a different operating condition. ROC 
is a space decomposition that infers the performance of the 
classification model in a dual-comparative manner. The 
x-axis represents the false positive rate (FPR), and the y-axis 
is responsible for the valid positive rate (TPR). The visuali-
sation of the TPR and FPR changes can be described in the 
ROC curve, and also the evolution can be seen for the same 
classifier for a threshold range. Soft classifiers adapt to an 

Table 1. Confusion matrix and the other classification metrics.

Actual Values

Predicted 
Values

235 20

26 229

Recall/Sensitivity [TPR] 0.900383142

Precision 0.921568627

Specificity [TNR] 0.919678715

Overall Accuracy 0.909803922

F-Measure 0.910852713

Figure 5.According to the best classification results of the confusion 
matrix for fear and neutral stimuli conditions. (a) illustrates confusion 
matrix as a percentile (b) is the results of positive predictive value and 
false discovery rate shown. 

Table 2. The classification results of the classifier with external validati-
on. (Abbreviations; SVM: Support Vector Machine, NB: Naive Bayesian, 
k-NN: k-Nearest Neighbor, ANN: Artificial Neural Network).

Classifier Sensitivity 
[%]

Precision 
[%]

Specificity 
[%]

F-measure 
[%]

Accuracy 
[%]

SVM 93.6 92.88 92.71 93.25 93.17

NB 85.45 87.03 86.74 86.23 86.08

k-NN 88.54 87.93 86.79 88.23 87.71

ANN 89.78 89.23 86.79 89.50 88.43

Figure 6.The results of the features excluded from the EMOTIV EPOC 
EEG signals by ROC Curve of Classification Method. (AUC: Area Under 
the Curve)
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operating condition. Besides, ROC analysis illustrates how 
the performance of the classification models and threshold 
confidence are evaluated [46]. A comparative study that 
focuses on different methods for the performance of clas-
sifications was done based on the employment of the ROC-
AUC score utilised for ML applications [47].

DISCUSSION
Facial emotions were widely used for emotion recogniti-
on; however, this method is not preferred for classificati-
on because conducting an unbiased experiment is impos-
sible. The experiments conducted through EEG devices 
are more reliable, efficient, and robust, giving unbiased 
classification performance data. Systematic reviews were 
conducted thoroughly for EEG signal-based emotion 
classification, feature extraction, brain condition, group 
comparison, etc. [48].

Since EEG signals have a non-stationary nature, the 
transformations in the frequency domain are inadequate, so 
one should consider the time domain information associa-
ted with the frequency domain. WPT/DWT-based feature 
extraction methods are quite effective in analysing the EEG 
signals by extracting time-frequency information simulta-
neously for developing an emotion recognition system [49] 
because this method serves as a multi-resolution solution, 
which overcomes the signal resolution problem that ori-
ginated from Heisenberg’s uncertainty principle. The effi-
ciency of the classification for various kinds of WT can be 
compared, and the best wavelet transform method is found 
[50]. The raw EEG signals obtained by audio-visual stimu-
li-based protocol evoking the discrete emotions were pre-
processed by the Surface Laplacian filtering approach and 
partitioned into five prominent bands of brainwave using 
WT having various wavelet functions. The validation was 
done using 5-fold CV, and the classifier was proposed as 
kNN-k Nearest Neighbor, which has given a maximum ave-
rage classification rate of 82.87% on 62 channels, and 91.33% 
on the beta band with short-time FFT [14, 42] was found 
emotional state classification accuracy of 86.75% for arou-
sal level and 84.05% for valence level, by applying SVM and 
kNN. Especially the gamma band yielded higher accuracy 
than low-frequency bands of EEG signal. The effectiveness 
of utilising a time-frequency component combination and 
DWT feature for emotion recognition was studied through 
the IAP and EEG response images. The maximum classifi-
cation accuracy was obtained via ANN as 81.88% [52].

Moreover, DWT coefficients having different wavelet 
functions, i.e. coiflets, Daubechies, and symlets, were used 
with Extreme Learning Machine and SVM for improving 
the emotion recognition performance [53] used adaptive 
WP Filter-Bank for speech emotion recognition. Besides 
WT, the entropy-related features have significantly succee-

ded in EEE-based emotion recognition [54]. A comparati-
ve classification methodology was employed with an SVM, 
MLP, and 1D-CNN combined with features extracted from 
six entropy measures [55]. A PSD-based emotion state clas-
sification was done in [56]  by stating two simple decision 
rules to classify positive and negative emotions. The four 
emotion states, joy, relaxation, sadness, and fear, were classi-
fied through kNN, multilayer perceptron, and SVM. The ex-
perimental results revealed that the frontal and parietal EEG 
signals were more informative about emotional states. The 
average test accuracy for this kind of multi-class classifier 
was obtained as 66.51% [57].  In another study [58], the mean 
and standard deviation of Euclidean distances are compu-
ted from a 3-D phase space diagram. These features have fed 
into the multi-class least squares SVM with Morlet wavelet 
kernel function to discriminate four emotions. After 10-k 
CV, they found 91.04% accuracy. In the paper [59], EEG-ba-
sed emotion recognition was developed through Shannon 
entropy, cross-correlation and autoregressive modelling. 
The emotions, i.e., happiness, sadness, hatred, were classi-
fied using Multi-Class SVM with an accuracy of 94.097%. 
In the paper [60], a new method to recognise emotion from 
raw EEG signals by using LSTM-RNN  was proposed and 
the proposed algorithm, which gives an average accuracy of 
85.65%, 85.45%, and 87.99% with arousal, valence, and liking 
classes, respectively, was verified through the DEAP dataset. 
Emotion classifications were also performed through Naive 
Bayesian, Autoregressive model, ANFIS etc. [61]. Recently, 
deep learning-based methods, i.e. CNN, LSTM, GRU, SAE 
have also been used for emotion recognition [62].

The experimental results showed that conditional 
transfer learning methodology enhances emotion valence 
and arousal classification performance [63]. It was proven 
that to improve emotion recognition combining, featu-
re selection and kernel classifiers can be combined [64]. A 
novel deep learning-based method using CNNs for EEG-
based emotion recognition was employed, including bra-
in connectivity features [65]. In the paper [66], functional 
connectivity matrices and CNN was employed to classify 
several emotional tasks. The model with a 4-classification 
task demonstrated 75% average accuracy. [67], applied a 
four-class emotion classification method, SVM and kNN 
combined with Hjorth parameters. The fractal dimension 
feature was extracted and classified using SVM with radial 
basis function in [68]. In the paper [69]. ICA combined with 
SVM was found to recognise happy and sad emotions with 
an accuracy of 87.5% and 92.5%. The LIBSVM model classi-
fied two emotional dimensions of Arousal and Valance with 
a 74.88% and 82.63% average recognition rate  [70]. 

LIMITATIONS
The suitability of IAPS pictures for Turkish culture and 
heritage is questionable. To induce fear emotions, addi-
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tional non-IAPS pictures would have been utilised. The 
EEG device used in data acquisition had only 14 channels. 
The additional usage of a clinically approved multi-chan-
nel device would have allowed verifying the results. The 
number of participants was 15 in our study; the number 
was limited due to Covid 19 disease.

CONCLUSION
This research was conducted to reveal the effect of fear-
type emotion after stimuli and to find an efficient classifi-
cation feature in identifying this effect from the EEG sig-
nals. We utilised the potential of localising the frequency 
bands in EEG signals through WPT and fusing through 
Wavelet entropy to obtain efficient features utilised in 
the classification. The classification method was also op-
timised. The results can be compared well with other ML 
techniques, i.e. learning vector quantisation, k-nearest 
neighbours, and multilayer perceptron. Electrode selec-
tion through the feature selection process might enhance 
the recognition rate and produce better results.

In conclusion, WPT combined Wavelet Entropy fea-
ture extraction methodology gives good classification ac-
curacy in discriminating the fear-type emotion. The clas-
sification accuracy was also enhanced by performing an 
optimized-SVM kernel. The highest classification accuracy 
is obtained with a combination of optimised features obta-
ined from WPT with symlet-7 wavelet basis function and 
Wavelet entropy having coiflet-4 basis function, and opti-
mised SVM up to 90.1%. The algorithms developed in this 
paper can be further expanded and hybridised into various 
biological signals, i.e. electromyogram, electrooculogram, 
MEG, and EKG, for implementing a more unified and ver-
satile human-computer interface. However, we should focus 
on widening the database by experimenting with subjects 
for building a robust fear-type emotion detection system 
using the proposed methodology. 
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