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The success and performance of Machine Learning 
(ML) algorithms closely depend on the datasets

used, their sample and feature spaces, and sampling 
quality. Researchers who build a classifier that is tra-
ined and tested on a dataset publish their classificati-
on performances in terms of standard metrics such as 
accuracy, true positive rate, or F1 [1]. The classifiers 
are compared with other classifiers that are trained 
and tested on different datasets via the same perfor-
mance metrics. The datasets are usually not compa-
red or analyzed. On the other hand, researchers who 
wish to enrich their datasets usually merge new data-
sets they acquired from other sources without analy-
zing them. They could not be sure how these datasets 
are different from the existing ones.
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Indeed, some statistical methods could be used to 
describe datasets. However, those statistical approaches 
summarize a dataset based on a single feature that is 
usually continuous. A box plot, for example, visualizes 
and compares the descriptive statistics such as mean, 
median, range, and outliers [2]. Likewise, the statistics 
related to the shape of the feature distribution, such as 
skewness, kurtosis, and the number of peaks, can be 
analyzed [3]. Dataset profiling based on other statistical 
properties such as timeliness (freshness of the samples), 
sample duplication, and feature density gives extra in-
sight among the compared datasets [4]. Nevertheless, 
interpreting and comparing statistical figures alone are 
not convenient; besides, they are usually not suitable for 
discrete or qualitative features. To avoid such problems, 

A B S T R A C T

Researchers compare their Machine Learning (ML) classification performances with 
other studies without examining and comparing the datasets they used in training, 

validating, and testing. One of the reasons is that there are not many convenient meth-
ods to give initial insights about datasets besides the descriptive statistics applied to in-
dividual continuous or quantitative features. After demonstrating initial manual analysis 
techniques, this study proposes a novel adaptation of the Kruskal-Wallis statistical test to 
compare a group of datasets over multiple prominent binary features that are very common 
in today’s datasets. As an illustrative example, the new method was tested on six benign/
malign mobile application datasets over the frequencies of prominent binary features to 
explore the dissimilarity of the datasets per class. The feature vector consists of over a hun-
dred “application permission requests” that are binary f lags for Android platforms’ primary 
access control to provide privacy and secure data/information in mobile devices. Permis-
sions are also the first leading transparent features for ML-based malware classification. 
The proposed data analytical methodology can be applied in any domain through their 
prominent features of interest. The results, which are also visualized in three new ways, 
have shown that the proposed method gives the dissimilarity degree among the datasets. 
Specifically, the conducted test shows that the frequencies in the aggregated dataset and 
some of the datasets are not substantially different from each other even they are in close 
agreement in positive-class datasets. It is expected that the proposed domain-independent 
method brings useful initial insight to researchers on comparing different datasets.
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THE CASE STUDY CLASSIFICATION 
PROBLEM DOMAIN

The following subheadings introduce the case study 
problem domain, the binary features to be used in com-
parisons, and dataset usage in the related literature.

Android Mobile-Malware Classification Problem

Android is a mobile platform that provides a large num-
ber and a wide range of mobile applications. Android 
applications are developed by anyone and released on 
third-party application markets besides the official mar-
ket named Google Play. Despite this diversity, the plat-
form could be the target of malicious people who develop 
or make injections into existing applications that exposes 
some risks against end-users. Malware authors develop 
and use different techniques in those applications appe-
aring as legitimate to overcome the platform’s security or 
exploit human factors. Therefore, mobile malware detec-
tion, which labeling a given application as ‘benign’ (‘ne-
gative’) or ‘malign’ (‘positive’, also known as ‘malware’), 
is one of the urging areas to be studied by the security 
sector and academia. Experts examine the applications 
manually with the help of specialized tools (e.g., reverse 
engineering software) and decide whether they are be-
nign or malign. This human-involved process is called 
malware analysis [6]. In addition to dynamic malware 
analysis that concentrates on applications’ behaviors ob-
served at run-time, static malware analysis examines bi-
naries, files, and codes to classify Android malware from 
benign applications [7].

Mobile Application Permission Requests as 
Features

Manual analysis is impossible to conduct, considering 
the excessive number of applications. Solely in Google 
Play Store, on average, 3,700 new mobile applications are 
released every day [8]. To some degree, machine learning 
comes as a promising solution to classify malware among 
many mobile applications based on various features [9]. 
Android’s permission mechanism limits the specific ope-
rations performed by applications or provides ad hoc ac-
cess to particular data at the end-users discretion [10]. If 
an application is required to initiate a phone call without 
going through the standard dialer user interface for the 
user to confirm the call, for example, it must manifest 
or request CALL_PHONE permissions. Please, refer to 
Android API (Application Programming Interface) docu-
mentation for the list of the permissions and their desc-
riptions [11]. For static analysis, application permissions 
requested are the first natural and noticeable (i.e., promi-
nent) feature category to be examined among the wide 

new methods should be developed to give insights about 
one or comparatively more than one dataset. Better, the 
methods should be enhanced by visualization.

This study has proposed a method to compare datasets 
by adapting the Kruskal-Wallis test with a novel approach 
to compare the medians of a prominent feature’s frequen-
cies to determine if the samples come from the same po-
pulation or equivalently having the same distribution. This 
study aims to provide a new method for the researchers to 
compare more than one dataset over the common binary fe-
atures. The study also adopts three visualization techniques 
to assess the comparisons based on the proposed method’s 
outputs. A developed API described in Appendix A to cal-
culate and visualize the method is provided to conduct such 
comparisons conveniently.

The method was tested and evaluated on Android mo-
bile benign applications and malware datasets in the litera-
ture. The mobile malware classification problem was chosen 
because it is a critical emerging cyber security field where 
ML-based classification approaches are highly studied and 
practiced in the literature and the industry to enhance the 
capacities related to the human factor [5]. The results of the 
proposed comparison method summarized in Section 6 are 
encouraging, and shed light on using datasets on malware 
classification. Note that the proposed method is not specific 
to malware analysis, and it is expected that it could be used 
in any other area for comparing datasets in binary and even 
multi-class classification problems.

The rest of the paper is organized as follows. Section 
2 introduces the classification problem domain. Section 3 
describes and demonstrates techniques for an initial ma-
nual analysis of the reviewed datasets, namely basic quan-
titative comparison of sample/feature spaces and binary-fe-
ature space graphical analysis. It summarizes the negative 
and positive-class datasets to be compared in this study. 
Two suggested graphics, one of which is provided online as 
an interactive chart, to support such analysis are also de-
monstrated. Section 4 presents the followed methodology 
and the activities for comparing the datasets from different 
perspectives, including how to aggregate datasets. Section 5 
explains the proposed comparison method based on a novel 
adaptation of the Kruskal-Wallis test. Section 6 provides the 
dataset comparison results enhanced with the suggested 
visualization techniques. The last two sections present the 
discussion and summarize the advantages of the proposed 
comparison methods and outline this study’s contributions. 
Appendix A lists online supplementary materials (open-so-
urce API, interactive chart, and datasets). Appendix B sur-
veys the related chosen pieces of work about Android app-
lication permissions and highlights the Android permission 
mechanism’s significant aspects related to static malware 
analysis.
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range of possibilities. The dynamic analysis could also 
take application permissions into account [12]. Requested 
permissions could not provide conclusive evidence that 
an application conducts malicious activity. However, not 
requested permissions could generally absolve applicati-
ons from possible abuses, and some of the requested per-
missions are notable in most malign applications. Andro-
id application permissions have been used as a prominent 
feature in many ML studies on static malware analysis, 
some of which are reviewed in Appendix B.

Some might argue that the change in Android 6.0 (API 
level 23) deferring permission check from install time to 
run time should affect the permission feature and related 
studies. This ostensible change will not affect the underl-
ying mechanism shortly. Only the permission ranks will be 
reordered, but the features are still discriminative from an 
inter-class perspective. For further information, see the Ap-
pendix reviewing Android mobile malware detection litera-
ture, explicitly focusing on application permission request 
features.

Mobile Application Datasets

It is observed that the related literature compares classi-
fication performances with others via performance met-
rics, and the researchers do not consider the similarities 
or dissimilarities among the datasets they used. Moreo-
ver, the literature has not explicitly compared the data-
sets used in those studies. Whereas the performance of 

supervised machine learning algorithms closely depends 
on the datasets used, their sample sizes, sampling qua-
lity, and class ratios. Android mobile application datasets 
can hold many features that can be used for comparing 
different datasets such as the range or distribution of 
the application’s creation date that maybe not definite 
or other metadata, even the exact hash of the application 
samples. Nevertheless, these features could be arbitrary 
or manipulative, comparing permission features that are 
still at the core of the Android security mechanism. Hen-
ce, application permissions were chosen as a prominent 
feature category to compare the datasets.

AN INITIAL MANUAL ANALYSIS OF 
THE DATASETS

Before describing the proposed method and providing 
the results obtained from the case study domain, namely 
Android mobile malware detection, a manual analysis 
and comparison approach is described. Such an appro-
ach is also valuable to show the difference between the 
manual and the proposed method. The proposed method 
is then verified by a demonstration that examines and 
compares negative (benign) datasets and positive (ma-
lign) used in various binary classification (malware clas-
sification) studies based on binary features (application 
permission requests) as summarized in Table 1.

The initial manual analysis conducted in this study 
comprises the following two techniques:

Table 1. The aspects of demonstrating dataset comparison for the case study classification domain.

Binary Classification Demonstration

Classification problem (domain) Android mobile malware classification

Examples (samples) Android mobile applications

Negative class label “Benign” application

Positive class label “Malign” application or “Malware”

Prominent binary features Android application permission requests
(shortly ‘application permissions’ or ‘permissions’)

Example binary feature CALL_PHONE: It allows an application to initiate a phone call without going through the Dialer user interface for 
the user to confirm the call.

Binary feature values 0: No permission is given for the application (not allowed, default)
1: The permission is given (allowed)

Missing values
Datasets might have a missing value (i.e. they do not have at least one sample (application) with the specific binary 
feature).
Such features are taken as default 0 (not allowed) in dataset comparisons.

Number of features Minimum: 69 and maximum: 118

Compared datasets
Five pairs (negative/positive class) of datasets (DS0, DS1, DS2, DS3, and DS5) and one positive-only dataset (DS4).
An aggregated dataset (DSA) per class is also generated, as described in Section 4. The details are provided in Table 
2.
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Basic Quantitative Comparison of Sample/Feature 
Spaces: The negative and positive class datasets are descri-
bed based on sample space and feature space sizes. The dist-
ribution of positive/negative class ratios is another critical 
attribute for quantitative dataset comparisons.

Binary-Feature Space Graphical Analysis: The binary-
feature space per dataset is analyzed and compared via the 
following attributes:

• The frequency distribution of the features that are 
common in all the datasets (a dataset might have a missing 
value, i.e. binary-feature)

• The change in top-ranked features (a bump-chart 
is recommended; an interactive version is also provided on-
line).

After elaborating the manual analysis, the next secti-
ons describe the possible approaches to compare datasets 
(i.e. the types of the comparison activities), provides the defi-
nition and description of the proposed comparison method, 
and finally demonstrates the results when the method is 
applied to the reviewed datasets.

The Datasets

This study reviewed six academic studies providing And-
roid mobile benign and malign datasets. These datasets 
are used to demonstrate some initial manual analysis 
techniques and the proposed comparison method. The 

following subsections describe each technique and pre-
sent the results for the reviewed datasets.

Basic Quantitative Comparison of Sample/
Feature Spaces

Table 2 lists the basic quantitative information for the 
datasets and introduces the related studies that are also 
reviewed in Appendix A. The two dimensions, namely 
sample-space size (m) and feature-space size (n), are valid 
for any datasets, whereas prevalence (PREV; The propor-
tion of total positive samples (mP), e.g., having a malign 
characteristic, in total sample size [mP + mN]) is determi-
ned by comparing sample-space sizes of the positive and 
negative class datasets. In the related literature, it is ob-
served that authors compare their malware classification 
performance with others, most of which are based on 
different benign and malign datasets. The method pro-
posed in this study can help to compare those datasets. 
Highlighting once again, there has been no large-scale 
comparative study on comparing datasets used for mo-
bile malware classification encountered in the literature. 
However, it was not possible to see to what extent the 
proposed aggregation and comparison methods can be 
valid. A more recent independent study is used for asses-
sing validity. Lindorfer et al. [13] presented their findings 
based on a dataset collection called “ANDRUBIS” from a 
wide range of sources.

The DS0 dataset listed in the first row in Table 2 has not 
only a higher number of samples but also the highest num-
ber of malware (positive-class examples) compared with ot-

Table 2. Summary of sample and feature spaces of the benign (negative) and malign (positive) dataset.

Dataset Name Authors and reference mN PREV mP nN nP

Sample space Feature space

DS0 Touchstone Dataset1 Lindorfer et al., [13] 264,303 60% 399,353 84 90

DS1 Contagio Aswini and Vinod, [14] 254 52% 280 94 81

DS2 Wang et al.[15]2 310,926 2% 4,868 83 69

DS3 Yerima et al., [16]2 1,000 50% 1,000 99 75

DS4 Android Malware Genome Project Jiang and Zhou [17] 100% 1,260 83

DS5 Peng et al., [18] 207,865 0.2% 378 118 73

DSA Aggregated Dataset DS1 – DS5 520,045 1% 7,786 59 47

-DS6 Hoffmann et al., [19] 136,603 6,187

-DS7 Contagio Sarma et al., [20] 158,062 121

-DS8 Canfora et al., [21] 400

-DS9 Peiravian and Zhu, [22]2 1,250 1,260

-DS10 Felt et al., [23] 900

1. Original dataset name: ANDRUBIS 
2. The positive-class datasets contain AMGP samples.
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her datasets. Thus, it was selected as a kind of correctness 
measure that is called ‘touchstone’ in this study, to support 
verifying the comparisons. In this study, the permission fre-
quencies in DS1 to DS5 datasets per class were also aggrega-
ted into single combined values. The aggregated dataset, na-
med DSA is used to search for their consistencies among the 
datasets and to provide a baseline for further research. The 
aggregated frequencies are calculated by the weighted arith-
metic mean of frequencies in individual datasets according 
to dataset sample sizes per class, as explained in Section 4 
in detail. This is a natural calculation approach conside-
ring combining all the datasets into one dataset named DSA 
(ignoring the duplicate samples due to the same samples 
existing in one or more datasets). Note that the aggregated 
dataset (DSA) and the touchstone dataset (DS0) are entirely 
different and independent.

Note that two published datasets were combined, one 
from 2011 and one from 2012 in [18] into one dataset (DS5). 
The six datasets (DS6 – DS11) encountered in the literature 
were excluded from this study due to the following reasons. 
The DS9 dataset [22] is the same as the original DS4 dataset 
[17]. The datasets DS8 [21], DS10 [23] have missed one class. 
Only the top ten permissions were published for DS6 [19], 
and only the top 20 permissions were published for DS7 [20], 
but the whole feature space could not be obtained for this 
study.

Binary-Feature Space Graphical Analysis

As seen in Table 2, dataset sample sizes, prevalence, and 
feature space sizes of the datasets are dispersed. Sample 
sizes and equal class sample sizes (i.e. near 50% preva-

lence) are critical for generalization and unbiased classi-
fication. The low number of samples and low prevalence 
rates also cause limited credibility in the literature. The 
feature-space sizes and elements (permissions existing 
in each dataset) are also different in Table 2. Moreover, 
frequencies and ranks of permission requests vary from 
dataset to dataset.

Binary-feature frequency distribution

Fig. 1 shows the frequency distribution of the prominent 
binary features in negative and positive-class datasets 
together in one graphic, including only the common 
features (i.e. the permissions existing in all the datasets 
per class). The lower left part shows the distribution for 
the positive-class, while the upper right part is for the 
negative-class in reverse order of binary-feature frequ-
ency. The permissions within five datasets (from DS1 to 
DS5) and aggregated dataset (DSA) are sorted according to 
the touchstone dataset’s (DS0) permissions with descen-
ding frequency order of corresponding class. Fig. 1 also 
exhibits a discrepancy between the datasets per class 
when the permissions are ordered according to DS0. The 
proposed method helps to assess the discrepancy, as exp-
lained in the next sections.

Nevertheless, interpreting Fig. 1, the following findings 
were deduced:

• Negative-class datasets, except for dataset DS1 ha-
ving very few samples, are more similar to the touchstone 
dataset than positive-class ones.

Figure 1. Binary-feature frequency distribution: Lower-Left Group: Frequency distribution of 47 common permissions in positive-class datasets and 
Upper-Right Group: Frequency distribution of 59 common permissions in negative-class datasets. Common permissions are the intersection of all 
datasets per class and sorted according to the corresponding touchstone dataset (DS0, with thicker gold colored lines).
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• The distribution of aggregated datasets (DSA) se-
ems closer to the touchstone dataset (DS0) than individual 
datasets.

The first finding suggests that positive classes (gene-
rally abnormal entities like malware in provided applicati-
ons or illness for a medical classification or diagnosis test) 
possess high variability (or entropy). The second one implies 
that the aggregation of different datasets reduces noise and 
enhances sampling. Concerning the first finding, this is es-
pecially valid for the example domain where malware pro-
pagating by repackaging benign applications are the most 
common ones that request one or more extra permission 
from benign ones [24]. For the second finding, as seen in the 

dataset DS1 example, the low number of samples does not 
provide sufficient generalization; therefore, they should be 
used with caution in machine learning applications.

The top binary feature ranks

Fig.s 2 and 3 show the changes in the ranks of permissions 
between DS0, DS1, …, DS5 for positive and negative-class 
datasets, respectively, for the top 15 permissions only (for 
the sake of simplicity). The readership is encouraged to 
visit http://tabsoft.co/32CQGIP for interacting with the 
online chart prepared for this study in full-intersected 
permission space coverage.

Figure 3. Ranked top 15 permissions for benign datasets (from DS0 to DS5)

Figure 2. Ranked top 15 permissions for positive-class (malign) datasets (from DS0 to DS5). Visit http://tabsoft.co/32CQGIP for full data and an 
interactive chart.
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Please, refer to Android API documentation for desc-
riptions of the permissions (at developer.android.com). Con-
sidering the top 15 permissions in positive-class datasets, 
Fig. 2 shows DS3 with DS4, and DS4 with DS5 are relatively 
similar rankings for corresponding features (permissions). 
Using an interactive chart hovering on permissions (circles) 
in the DS0 dataset’s column, you can see that DS0 with DS5 

are also similar rankings (although they are not adjacent).

Concerning negative-class datasets, Fig. 3 shows DS2 
with DS5 and DS0 with DS5 are relatively similar rankings 
considering the top 15 permissions. If positive-class (Fig. 2) 
and benign-class (Fig. 3) feature ranks are compared, the 
top two permissions are the same in all the malign datasets 
while the top four ones in benign datasets. This supports 
the interpretation of high variability in malign datasets in 
Fig. 1 above. These two types of graphs help to analyze and 
compare datasets, but it is manual and may be subjective. 
Therefore, it is necessary to measure similarities that provi-
de more accurate results.

METHODS

Fig. 4 describes the general methodology followed in this 
study. The permissions were collected directly from dif-
ferent negative and positive-class datasets of the related 
six studies. Some of the authors were contacted to recei-
ve their datasets covering all the permission requests (i.e. 
full feature space for a dataset). After pre-analyzing the 
permission request features, their frequencies (i.e. ratio 
of the number of samples requesting permission to total 
sample size) were calculated for each class, and binary 
features were ranked according to these frequencies per 
each dataset from the most frequent to the least frequent.

For a dataset with c binary class (positive (P) or negative 
(N)), the existing nc binary features 1 2{ }

cnx ,x ,...,x  are presen-
ted as X vector. c iX DSf  denotes binary-feature frequencies 

vector for i. dataset. 
c iX DSF  denotes ranked feature-frequen-

cies vector and holds ranks within the same datasets instead 
of frequencies. The ranked feature-frequencies vector for 
the aggregated dataset (DSA) per each class was calculated 
by applying a weighted average of feature frequencies in 
each dataset (from DS1 to DS5) and ranked from top to bot-
tom as shown in Eq. (1) where 

iPm  and 
iNm  denote the total 

sample size of i. dataset per c class, and Sc is the number of 
datasets compared.

,

1

1

rank
c

c i i

c P N A c

i

S
x DS ci

X DS S
ci

f m
F

m
    

=

=

=

 ⋅
 =
 
 

∑
∑

(1)

The ranked binary-feature frequencies per negative 
and positive classes are compared between:

• (Comparison-1) all the dataset including the to-
uchstone dataset (DS0) and the aggregated dataset (DSA)

• (Comparison-2) pair of all the datasets (e.g., bet-
ween DS1 and DSA or DS1 and DS0)

The results of the two comparisons on the reviewed 
datasets are given in Section 6.

NEW METHOD: COMPARISON VIA 
ADAPTED KRUSKAL-WALLIS TEST

The Kruskal-Wallis test is a nonparametric test to cal-
culate the null hypothesis assuming that independent 
samples are from the same population. The test, which 
was developed by and named after Kruskal and Wallis 
[25], is an extension of the Wilcoxon Rank Sum Test on 
two groups. As a nonparametric test, the Kruskal-Wallis 
test does not assume that populations have normal distri-
butions. The test is applicable for measurement variables 
as well as nominal variables classifying observation valu-
es into discrete categories (like binary features) among at 
least three or more samples.

Figure 4. Activity flows for comparing datasets via feature frequency ranks.
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This test is based on ranks instead of the original ob-
servation values (i.e. frequencies). This makes the test much 
insensitive to outliers that make it more suitable for this 
experimental study on the negative (benign) and positive 
(malign) mobile applications like other practical research 
studies such as clinical ones [26]. The ranks are calculated 
across all the samples by ordering the observation values 
from smallest (a rank of 1) to largest and could be fractional. 
The sum of the ranks per sample is also calculated.

Typical usage of the Kruskal-Wallis test in machine-le-
arning is using as a filtering method for feature selection in 
high-dimensional datasets [27,28]. It is appropriate for not 
only binary classification but also multi-class classification 
problems [29]. The literature has successfully used the test 
on analyzing and comparing data with different characte-
ristics, for example, censored data [30] and microarray gene 
expression data [31], but also addressed the limitations when 
applied in high dimensional low sample size data (shallow 
datasets) [32]. Another usage of the Kruskal-Wallis test, 
along with the one-way analysis of variance test, Friedman’s 

test, in ML is in testing the statistical significance between 
the different individual classifiers (i.e. whether a classifier is 
significantly different from the others) [33]. The significan-
ce in algorithm factors or parameters such as the data-size 
effect or fitness values is also tested with the Kruskal-Wallis 
test [34,35]. From an information security perspective, the 
test was used for evaluating different alternatives, such as 
measuring differences in password behaviors and attitudes 
between research participants [36] or selecting more discri-
minative features in the forensic analysis [37]. It was enco-
untered that only one study uses the Kruskal-Wallis test in 
malware analysis in the literature. Asmitha and Vinod [38] 
employ the test for selecting prominent features from be-
nign and malign applications on the Linux desktop platform. 
According to their classification experiment, the Kruskal-
Wallis test achieves slightly better than the other feature se-
lection methods. The review reveals that the literature uses 
the test in comparing the dataset’s features and classifier’s 
performances. However, it is not used to compare datasets. 
This study explores and proposes such usage demonstrated 
in real-world datasets in a specific domain.

Figure 5. Normality check by Quantile-Quantile chart with Shapiro-Wilk test values and p-values. y-axis shows binary-feature frequencies  for (a) 
positive-class datasets (b) negative-class datasets. Note that some of the frequency values (points) are outside the corresponding normal distribution 
indicated by a shaded area.
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Normality Check

Before applying the proposed adapted Kruskal-Wallis 
test, we must ensure that the frequencies do not present 
a normal distribution [39]. If a normal distribution exists, 
the distribution can be entirely defined by using merely 
two parameters: mean and standard deviation, which 
may be used for dataset comparison statistically instead 
of this method.

Two supportive approaches are employed for checking 
normality:

• A formal method by using the Shapiro-Wilk Test

• A manual method by drawing Quantile-Quantile 
charts

Eq. (2) is the Shapiro-Wilk test explicitly written for 
binary-classification datasets where aj normalized standard 
normal-order statistics and 

cX DSf
ι

 is the mean value for an 
i. dataset:

c ij c

2
1

2
X DS X DS1

( )

(f f )

cmn

c ij

i cmn

n
x DSj

DS n

j

aj f
W

ι

=

=

⋅
=

−

∑
∑

(2)

W is between 0 and 1, and lower W values against the 
corresponding test table value indicate the rejection of the 
normality null hypothesis. Fig. 5 shows not only the quanti-
le-quantile chart but also the Shapiro-Wilk test values with 
P probability values (p-values) for each dataset in x-axes.

Lower W values, or better specifically, lower correspon-
ding p-values (less than 0.05 for 95% significance level), re-
ject the normal distribution. Here we have p-values that are 
even very close to zero (more than 99% significance level). 
Note that the original Shapiro-Wilk test is suitable for less 
than 50 observations. In this study, Royston’s [40] extension 
is used here to avoid such a limit. Benign and malign data-
sets have 59 and 47 common (intersected) feature-space si-
zes (ncmn). Ensuring non-normality, the test can be employed 
as described in the following subsection.

Adapted Kruskal-Wallis Test

In the standard notation, given C samples with N num-
ber of total observations in all samples combined, with ni 

observations yielding the sum of the ranks as Ri in the i. 
sample, the Kruskal-Wallis Test value (H) is calculated by 
the following equation:

1

12 3 1
1

2
C i
i=

i

RH = - (N + )
N(N + ) n∑ (3)

Eq. (4) has specifically annotated for the reviewed data-
set comparisons where Sc is the total number of datasets in 
this study (seven for positive, six for negative, including agg-
regated dataset DSA). N in Eq. (3) corresponds to the total 
of samples’ common (intersected) feature-space size (ncmn) 
(7x59 for negative-class, 6x47 for positive-class). Ri corres-
ponds to rank( )

C iX Df , the sum of binary-feature frequencies 
ranks in the i. dataset. Rank orders are determined within 
all the datasets as if there is one dataset where the lowest 
value corresponds to the lowest rank. Fractional ordering is 
used for ties by averaging orders.

1
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∑   (4)

Low H values or low p-value as an approximate chi-
square statistic (with Sc – 1 the number of degrees of free-
dom, DoF) in the range [0, 1] rejects the null hypothesis that 
independent samples are from the same population.

RESULTS

The following subsections provide comparison results for 
all the datasets together (Comparison-1) and per pair of 
all the datasets (Comparison-2).

Comparison-1 (All)

The proposed adapted Kruskal-Wallis test was conduc-
ted for all the permission frequencies in negative and 
positive-class datasets (touchstone, aggregated, and four 
negative-class or five positive-class datasets, respecti-
vely) listed in Table 2. The conducted test produced two 
different results per class. Table 3 displays the summary 
of the test. The p-values less than the significance level 
(α = 0.05) reject the null hypothesis that the samples in 
negative-class datasets are from the same population 
concerning ranks of the frequencies of the same permis-
sion features or “negative-class datasets are different from 

Table 3. Dataset comparison summary based on adapted Kruskal-Wallis method.

Class (c) ncmn Sc (DoF) H p-value Test Result*

Positive (Malign) 47 Seven datasets (6) 2.45 0.8735 Failed to reject the null hypothesis

Negative (Benign) 59 Six datasets (5) 27.84 3.92e-05 Rejected

* Significance level, α = 0.05
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each other”. In comparison, we could not conclude if the 
positive-class datasets are different, although the p-value 
is close to 1. The alternative hypothesis indicating “dissi-
milarity” assumes that at least one dataset comes from a 
different population than the others.

The H value obtained by Eq. (4) is merely for stating 
whether the group of datasets together differs in some way. 
This is important because one could not express this evi-
dently by analyzing and comparing the samples as tried in 
Section 3.3 via different graphs. However, the dissimilarity 
of individual datasets should also be interpreted separately 
afterward.

Comparison-2 (Pairs) with Suggested 
Visualization Techniques

Comparison-2 shows the similarity test per pairs of the 
dataset. Instead of giving the results in a cross-tabular 
fashion, three visualization techniques are recommen-
ded:

1) Multiple comparisons of mean ranks

2) All-in-one binary-feature frequency descriptive
statistics

3) Complete clustered pairwise comparison of
p-values.

The suggested visualization techniques demonstrated 
in Fig.s 6 and 7 are straightforward, informative, and easy 
to interpret.

Visualization-1 (Multiple comparisons of mean ranks)

The first visualization technique depicts the pairwise 
comparison of the datasets based on rank means calcula-
ted by the Kruskal-Wallis test. The graph is developed by 
using MATLAB’s multi compare functionality [41]. The 
interactive version of the graph shows the mean rank dif-
ference between a selected dataset and the others. The 
findings of the multiple comparisons of mean ranks to be 
highlighted are

• “No positive-class datasets have mean ranks sig-
nificantly different from the aggregated positive-class da-
taset (DSA),” as shown in Fig. 6 (b) (Kruskal-Wallis test can 
reject the null hypothesis even the means or medians are 
the same. Therefore, p-values are valid.).

• The same findings are not valid for negative-class 
datasets. However, four datasets, including the aggregated 
dataset (DSA), have mean ranks significantly different from 
the benign (DS1) dataset, as shown in Fig. 7 (b).

• Interestingly, mean ranks are not significantly dif-
ferent for DS1 and the touchstone dataset DS0.

Visualization-2 (All-in-one binary-feature frequency 
descriptive statistics)

Violin with a box-plot comparison diagram in Fig.s 6 and 
7 (b) show the following binary-feature frequency desc-
riptive statistics for negative and positive-class datasets:

• ranges (min/max values shown in vertical line
ends),

• quartiles (lower and upper shown in the bottom
and top edges of boxes),

• medians (horizontal line in box),

• means (black dot),

• outliers (pink dot), and

• probability densities (violin shape).

The significant difference of negative-class DS1 and 
no-significance difference among positive-class datasets 
can be observed in Visualization-2 graphs (see the shapes 
of the violins). Note that DS1 has the smallest samples for 
both classes.

Visualization-3 (Complete clustered pairwise 
comparison of p-values)

The third visualization technique that is originally de-
signed as an API in R by the author. The API displays 
the p-values for all the pairs of datasets. Pairwise data-
set comparisons with heatmap diagrams in Fig.s 6 and 
7 (c) present a complete set of comparison information. 
It shows colored p-values for the null hypothesis indica-
ting similarity between the paired datasets. Datasets are 
also hierarchically clustered by Euclidean distances of 
p-values (i.e. their similarities). In other words, the da-
tasets in row/columns are reordered according to row or 
column means and then hierarchically clustered using 
Euclidean distance. A similar group of datasets is shown 
as horizontal and vertical dendrograms.

The findings complying with the Comparison-1 shown 
in Table 3 are

• We could not reject the null hypothesis that each
pair of the positive-class datasets are from the same popula-
tion with ultimately high p-values. DS0 and DS1 have 0.7989 
p-values at a minimum.
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• The following dataset pairs are significantly diffe-
rent from each other: DSA vs. DS1 (with p-value: 8e-04), DSA 
vs. DS5 (with p-value: 0.00001), DS1 vs. DS2 (with p-value: 

0.0021), and DS1 vs. DS3 (with p-value: 0.0361). For others, 
we could not reject the null hypothesis.

Figure 6. Comparison graphs for malign datasets: (a) multiple comparisons of mean ranks (graph shows DSA comparison) (b) violin with a box-plot 
comparison diagram (c) Pairwise dataset comparisons with heatmap diagram
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Figure 7. Comparison graphs for benign datasets: (a) multiple comparisons of mean ranks (graph shows DS1 comparison) (b) violin with a box-plot 
comparison diagram (c) Pairwise dataset comparisons with heatmap diagram
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Touchstone vs. Aggregated Datasets Comparison

Overall assessment of the test results suggest the follo-
wing two highlighted findings of touchstone and aggre-
gated datasets:

• For the comparison of the touchstone and aggre-
gated datasets: There is no significant difference between 
the datasets DS0 and DSA. Rank means the difference betwe-
en these datasets is 17.2 (162.9 and 180.1) for positive-class 
and 26.1 (158.6 and 184.7) for negative-class, as shown in 
Fig.s 6 and 7 (b).

• For the comparison between each dataset and the 
aggregated dataset (DSA): Fig.s 6 and 7 (b) show that the ma-
lign datasets are more similar to the aggregated dataset than 
the touchstone dataset. Considering the touchstone dataset 
(DS0), the DS4, DS5, and DS3 malign datasets and DS3 and 
DS2 are the most similar datasets to the touchstone dataset 
so that their sampling approaches are quite successful.

DISCUSSION

Two aspects addressed in this study are discussed in 
this section: first the issues and findings specific to the 
case study domain and the prominent feature category, 
second, the issues related to the proposed comparison 
method.

Firstly, permission requests are leading clues to an-
ticipate the purpose of Android applications not only for 
regular users but also for malware analysts who use them 
as a prominent feature category to classify malware. A fun-
damental problem with much of the literature on mobile 
malware classification on the Android platform is that they 
use different datasets and focus on the results of their clas-
sification. However, the comparison of the datasets has not 
been dealt with in-depth.

Comparison of performances of malware classification 
attempts with various ML algorithms cannot be consistent 
without knowing the difference of the used datasets. To 
study this gap, this study has compared the permissions 
ranked by request frequencies of different datasets of the se-
ven reviewed academic works. The ANDRUBIS dataset, as 
it is called the “touchstone” dataset in this study, was used as 
a verification dataset for comparing the similarity of binary-
feature (permissions) frequencies of individual datasets.

This study has conducted a focused review of the lite-
rature and highlighted the different issues around permissi-
ons to classify Android mobile malware. In summary, it is 
concluded that;

• The Android permissions and frequency of per-
mission requests do continue to hold its invaluable contribu-
tion to statically classify Android applications as long as they 
are selected comparatively and continuously updated;

• Satisfactory results were obtained showing that
frequently requested permissions extracted benign/malign 
applications, as well as the permissions dominantly reques-
ted by malign applications, should be the first statistical fe-
atures to examine for static malware analysis and dynamic 
analysis further;

• Comparing the performance of malware classifi-
cation, the published research should consider the compari-
son of their datasets and others;

• Authors could use the proposed dataset compari-
son method and initial manual analysis approaches to com-
pare their datasets with others easily. The permission-requ-
ests feature distribution could also be used as an indicator to 
examine datasets;

• Reducing the number of top permissions that are
considered may provide more accurate comparison statis-
tics; and

• The characteristics of the feature used for compa-
rison, especially the factors affecting its frequency, should 
be scrutinized (as discussed in Appendix A). Eliminating 
this kind of external effect makes comparisons more accu-
rate.

The followings are the summary of the overall findings 
in the conducted test on the case study domain:

• Further evidence has been provided on the effect
of good sampling of negative-class (benign applications) and 
positive-class (malign or malware) datasets in static malwa-
re analysis research in the literature, which pointed towards 
the idea that even a small number of well-selected datasets 
could present a sufficient level of representation comparing 
the touchstone dataset.

• There is still a need for continuously updating
samples to adapt to the existing trends in benign and malign 
applications.

Secondly, concerning the proposed comparison met-
hod, the Kruskal-Wallis test was conducted with a comple-
tely different approach. The test is typically applied through 
a single ordinal variable (apart from categorical or interval 
variables), for example, “levels of blood cholesterol” with 
different observations in more than two samples. For the 
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proposed approach, the frequencies of the specific number 
of the same binary features, namely Android mobile appli-
cation permission requests, are used as the observations in 
each dataset. In this manner, it is possible to create a kind 
of ‘imitated’ ordinal variable per dataset that could be exp-
ressed as ‘the frequency of any binary feature of a specific 
number of requested permissions in the compared dataset.’ 
The datasets were compared by using this variable. The 
comparison via binary-feature frequencies by this method 
has the following advantages:

• It provides a single metric (a test value (H) with
easy to interpret p-value indicator) for similarity among da-
tasets.

• This test also shows the similarity positions for
all datasets without pairwise comparisons, which could be 
time-consuming and hard to analyze.

The method does not require any preference for the 
choice of parameter settings (except default significance 
level); therefore, it can be used as-is. The comparison does 
not need the feature-space details of all the samples in the 
dataset; the frequencies of the prominent binary features are 
sufficient. This is practical considering the difficulties or 
obstacles in sharing the datasets. The provided API facilita-
tes the comparison process providing results and generating 
graphs for the recommended visualization techniques. The 
results that were reported from the complete perspective in 
this study are promising. The subject matter experts can 
find the methodology convenient and insightful. At least, 
the method addresses the dissimilarity among the datasets 
allowing the researchers and experts to focus. Nevertheless, 
theoretical validation cannot be found; therefore, more si-
mulations should be conducted. The future work will be 
validating the method in synthetic datasets.

This study also includes comparing the individual 
datasets with the aggregation of the datasets. Aggregating 
compared datasets spots the missing frequent and rare 
patterns in samples. Thus, adding different samples having 
those missing patterns could improve the overall sampling 
quality of a dataset in hand.

Regarding the novel adaptation of the Kruskal-Wallis 
test, there could be some controversy surrounding the imi-
tation of the ordinal variable. Instead of using values of a 
single variable from different observations for each sample 
(e.g., INTERNET permission request frequencies observed 
per dataset), using the values of a group of variables from 
different observations may seem unconventional. However, 
it becomes more understandable and valid for the test when 
the variable is stated as “the binary-feature frequency values 
of a specific group of observations”. Upon suggesting this 

approach, other studies in different domains could try the 
usability of the methods.

Limitations comparison of the datasets over common 
features seems to discard the real differences among data-
sets. In this case, the missing values (i.e. nonexistent featu-
res) should also be reported in the comparisons. Neverthe-
less, as the datasets become large, having at least one sample 
per feature, the comparison over common features becomes 
more representative.

The comparison approaches and the proposed method 
has been demonstrated in real-world datasets. The manu-
al analysis generally supports the results. Furthermore, the 
fact that the malign DS2 and DS3 datasets have the same 
samples as the malign DS4 (Android Malware Genome Pro-
ject) dataset is also validated via the clustered complete pair-
wise comparison of p-values in Comparison-2 (DS3 and DS4 
in one dendrogram, which is then in the upper dendrogram 
with DS2, as shown in vertical dendrograms in Fig. 6).

CONCLUSION

The researchers mostly focus on selecting and optimi-
zing ML classification algorithms and improving the ac-
hieved performance expressed in terms of conventional 
performance metrics such as accuracy and F1. Selecting 
and maintaining a dataset is a secondary concern for not 
only classification problems but also clustering problems. 
Both in practice and the literature, performance metrics 
are the only criteria to claim success or improvement in a 
specific classification problem domain whereas the data-
sets are not taken into account in comparison of different 
studies.

The initial manual analysis of datasets demonstrated 
in Section 3 provides little insight and requires efforts for 
preparing summary data and related graphics. Basic quan-
titative comparison of sample and feature spaces presents 
the preliminary perspective in compared datasets whereas 
binary-feature space graphical analysis provides more deta-
il. Especially, feature ranks are more understandable to re-
aders; however, the approximation used on calculating the 
ranks according to the frequencies decreases. The precision, 
related calculations, and analyses are simplified.

To help to avoid such inefficiencies in the manual 
analysis of datasets, this study proposed a novel adaptation 
of the Kruskal-Wallis test. In the proposed method, instead 
of providing a single ordinal variable, a kind of variable was 
created, indicating the frequencies of the binary features. 
The features are selected from the intersection of existing 
features in all of the compared datasets. Each of those fre-
quencies is provided as if they are the observations per da-
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taset. Then the tests are conducted based on these variables 
in the case study domain. It is observed that the results of 
manual analysis for the case study domain and the proposed 
method are coherent. Although the method and approaches 
provided in this study were applied to the mobile malware 
domain, they could be used in other domains having a bi-
nary-feature space vector.

The demonstration in the case study domain has 
shown that the method gives clear and measurable initial 
insights to see the differences among available datasets. The 
researchers can publish the dataset comparison test results 
among their dataset and the other datasets along with the 
classification performance metrics. The method can also be 
particularly useful for the practitioners and researchers to 
compare different open ML datasets provided in different 
platforms such as Kaggle. It can be used in data mining, data 
quality, and data profiling activities. The provided API given 
in Appendix A supports the possible future uses of the met-
hod. Finally, it is expected that the proposed comparison 
method and findings potentially lead to practical improve-
ments in dataset collection, sampling, profiling, and mobile 
malware analysis and provide a measurable indicator for 
comparing the used and related datasets.
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APPENDIX A. SUPPLEMENTARY 
MATERIAL

A.1. DsFeatFreqComp – Dataset Feature-
Frequency Comparison R Package

The developed open-source API provides two categories 
of important functionality for dataset manipulation and 
visualization conducted and recommended in this study.

Address: https://github.com/gurol/dsfeatfreqcomp

Visualization functions (as appeared in Fig.s 5 – 7):

• plotDsFreqDistributionViolin

• plotQQ

• plotPairwiseDsPValuesHeatMap

Dataset manipulation functions:

• loadDsFeatFreqsFromCsv2

• meltDataFrame
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• loadPairwiseDsComparisonOfMeanRanks

• getPairwiseDsPValueMatrix

More information is provided in the developed packa-
ge. The installation is also described in the GitHub address 
above.

A.2. Online Interactive Bump Chart for
Permission Ranks for Intersection of Malign/
Benign Datasets

The online interactive dataset comparison chart appea-
red in Fig.s 2 and 3. The number of top binary features 
can be changed per class. Tooltips provide extra infor-
mation.

Address: https://tabsoft.co/32CQGIP

A.3. Prominent Binary-Feature (Permissions)
Frequencies for Android Mobile Benign Apps and
Malware Datasets

The datasets compared in this study are provided online 
at Mendeley Data.

Address: http://dx.doi.org/10.17632/ptd9fnsrtr.1

APPENDIX B. RELATED EXAMPLE-
DOMAIN WORKS

Since 2009 starting from the first version of Android, 
some studies have published frequent permission requ-
ests on benign/malign samples as a part of their static 
malware analysis. The following paragraphs outline the 
studies’ review by only examining some of their high-
lights on permissions to explain the different aspects of 
permissions. As one of the earlier studies, Enck et al. [42] 
examined permission requests of 311 malicious appli-
cations and heuristically defined eight combinations of 
13 permissions as the rules to signal malware. Table B.1 
shows the rules decomposed in this study. Expressing 
their research solely based on a narrow set of permissi-
on combinations as a “certification” or “risk mitigation” 
process may cause misunderstanding. It is suggested that 
naming such an approach as ‘suspiciousness indicator’ for 
binary decisions or ‘suspiciousness score’ for rating the 
decision.

A composed rule is stated as “an application must not 
receive phone state, record audio, and access the Internet.” 
In contrast, the actual threat is not requesting the permissi-
ons but allowing an application to record audio upon getting 
phone state (upon incoming or outgoing call), which is pos-
sible only by examining the code or catching the behavior 

Table B.1. Decomposition of Rule-Based Classification in [42].

RULES
(Combination of permissions)

PERMISSIONS Number of rules R1 R6 R7 R8 R2 R3 R4 R5

SEND_SMS 1 X

RECEIVE_SMS 1 X

READ_PHONE_STATE 1 X

INSTALL_SHORTCUT 1 X

UNINSTALL_SHORTCUT 1 X

PROCESS_OUTGOING_CALLS 1 X

ACCESS_FINE_LOCATION 1 X

ACCESS_COARSE_LOCATION 1 X

SET_DEBUG_APP 1  X

RECEIVE_BOOT_COMPLETED 2 X X

WRITE_SMS 2 X X

RECORD_AUDIO 2 X X

INTERNET 4 X X X X

Number of permissions involved in the combination 1 2 2 2 3 3 3 3
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at run-time on dynamic analysis. One question that needs 
to be asked is how the permissions chosen in the rules are 
sufficient to indicate the suspiciousness, which is not elabo-
rated in [42].

One of Android’s permission mechanism’s nontrivial 
aspects is the distinction between the request and the actual 
use of permissions. Android application developers can dec-
lare a permission request, but there is no related action in 
the existing code that needs the existence of that permission 
granted. In a related study, Felt et al. [23] examined Android 
applications’ permission requests. They evaluated whether 
the applications need the requested permissions based on 
their generated API (Application Programming Interface) 
permission map. They implemented a tool to scan the API 
calls to determine the required permissions and compare 
them with those requested. The generated result shows that 
about one-third of the examined 940 sample applications 
are over-privileged, violating the least privilege principle 
in information security. The study is based on API-level 8 
(2010) with 85% coverage and 134 permissions and finds 
that 6.5% of all API calls depend on permission checks. The 
authors address the following reasons for developers to re-
quest unnecessary permissions:

• Being misled by permission names (e.g., MO-
UNT_UNMOUNT_FILESYSTEMS, ACCESS_NET-
WORK_STATE, and ACCESS_WIFI_STATE)

• Making unnecessary permission requests for the
intents of deputy applications even though the deputy appli-
cation already requested them (e.g., asking INSTALL_PAC-
KAGES for Google Play deputy application, CAMERA for 
default camera, INTERNET for opening a URL (Uniform 
Resource Locator) in a browser, and CALL_PHONE for de-
fault Phone Dialer)

• Requesting permissions for unprotected methods 
such as ‘getters’ (e.g., no need to ask WRITE_SETTINGS for 
only calling getters [not setters] for Settings Content Provi-
der)

• Pasting code snippets found on the Internet ha-
ving inaccurate permission requests

• Requesting deprecated permissions (e.g., AC-
CESS_GPS or ACCESS_LOCATION has been deprecated 
since 2008)

• Forgetting the permission requested for tests (e.g.,
ACCESS_MOCK_LOCATION) and trials

• Requesting invalid ‘Signature’ or ‘SignatureOrSy-
stem’ permissions that are silently refused since they are va-
lid for the applications signed by the device manufacturers

• Requesting permissions intentionally in advance
for future versions.

These reasons do certainly cause discrepancies in per-
mission request frequencies, which should be considered as 
a significant noise in mostly benign datasets. However, it co-
uld be hypothesized that malware authors tend to develop 
malware requesting the minimal set of necessary permissi-
ons to avoid falling under suspicion.

Another attribute is advertisement libraries that are 
immensely used in Android applications. However, they ca-
use over privilege in applications and consecutively mislead 
the analysis of permission requests for malware classificati-
on. Pearce et al. [43] examined 964 sample applications and 
found that some of the permissions requested by applicati-
ons do not need for their functionalities but requested on 
behalf of advertisement libraries. Fig. B.1 shows the prepa-
red depiction of the top permissions causing ‘over privilege 
by advertisement’ as they called it. The application category 
is another attribute that characterizes the permission re-
quirements of applications. For instance, an application in 
the ‘Games’ category tends to request certain permissions 
than those in other categories such as the ‘Shopping’ cate-
gory. Sarma et al. [20] present an approach that evaluates an 
application’s permissions with those requested from other 
applications in the same category. They proposed a warning 
mechanism as ‘the first line of defense’ to inform the gi-
ven application’s permissions frequency compared with its 
category’s permissions frequencies. Permissions rarely used 
by the category trigger a warning. Peng et al. [18] suggested 
using probabilistic generative models instead of frequency 
analysis to formulate a suspiciousness score for applications. 
The preferred scoring approach is based on the application’s 
permission requests besides its category.

Figure B.1. The top permission requests cause over privilege due to the 
advertisement libraries, derived from [43].
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Permissions in Android have other related attributes 
such as API-level, at which the permission is introduced, 
permission types (i.e. standard or custom), protection level, 
permission group, and used hardware or software features. 
The number of studies examining these additional attribu-
tes is very few. Sanz et al. [44] add informational used fea-
tures as declared by ‘uses-permissions’ tags in an Android 
manifest file beside the permission requests. These features 
could be used for clustering permissions.

Besides the declarative static features extracted from 
an Android manifest file and Google Play data, as seen in 
the studies summarized above, some studies combine per-
missions with actual code structures, especially with And-
roid API calls. Peiravian and Zhu [22] focus on the combi-
nation of permissions and API calls on potentially benign/
malicious application classifications. Another observable 
attribute about permissions is comparing the number of 
requested permissions between benign and malicious app-
lications. The executors of the “Android Malware Genome 
Project” Jiang and Zhou [17] conducted a very comprehen-
sive analysis of Android malware, malware families’ charac-
teristics, propagation methods, triggering conditions, and 
payloads and permission usage. Analyzing 1,260 malware 
and 1,260 benign applications, they found that the malware 
usually requested more permissions than the benign appli-
cations, which are consistent with the other observations in 
the literature [13,15,18,19,22,44].

The study by Hoffman et al. [19] is noteworthy for exp-
ressing the possibility of data leakage threat by the existence 
of a specific pair of permissions. One permission is for ac-
cessing the critical or sensitive data (e.g., device information, 
contacts, location), and the other is for delivering them to 
the attacker (INTERNET permission with the overwhel-
ming majority). Searching for critical permission combina-
tions is not limited to permission pairs as in the indication of 
data leakage; more than two prerequisite permissions could 
also foresee other threats or abuse of privileges. Going be-
yond [21,42], Hoffman et al. [19] suggested, without giving 
sufficient explanation, a small number of suspicious per-
mission patterns that are heuristically combined by logical 
connectives comprising not only ANDs but also ORs.

Yerima et al. [16] looked for the answers to ‘which car-
dinality of the feature sets does yield a better result?’ and 

‘which type or types of feature category generates more 
accurate classification result?’ Comparing the top 30 per-
missions ranked by mutual information (MI), they conclu-
ded that a small number of features are sufficient, namely 
application permission requests and code attributes such as 
command calls, intent filters, embedded binaries, and API 
calls. The features could be used for statically classifying be-
nign and malign applications at an underestimated perfor-
mance. Wang et al. [15] examined the Android permission 
mechanism from different aspects and pointed to a different 
discriminative pattern in permission requests. Instead of re-
viewing a single or combination of a few permissions, the 
distribution of all permissions requested by applications co-
uld be used to classify applications as malign or benign. As-
wini and Vinod [14] categorized the permissions according 
to their occurrence in two classes and assessed their cont-
ribution to classification. The common permissions occur 
at the intersection of two classes. Common and discrimi-
nant permissions are applied in different machine learning 
algorithms. They suggested that the common permissions 
have more influence on accurate classification. The ones 
having high inter-class variance are categorized as common 
prominent features. Another finding of the study in featu-
re selection, contrary to assumptions, was the bottom BNS 
(Bi-Normal Separation) permissions exhibit better accuracy 
than the top BNS permissions because the distribution of 
top ones was nearly the same for both classes.

In summary, the review of related works highlights that 
several issues are related to permissions and the usage of 
permissions as a prominent feature for classifying malware 
such as

• effect of the combination of individual permissi-
ons, application category, and advertisement libraries,

• noise in permission request frequencies caused by 
over-privileged applications, and

• selection of the prominent permissions for achie-
ving more successful classification.

However, as described in the examples of ‘over privile-
ge by advertisement’ [43] and ‘rule-based classification’ [42] 
above, discriminative malign permissions’ frequencies still 
provide a valuable indicator for practical malware classifi-
cation.




