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In brief

We found two distinct subtypes closely 
associated with biochemical recurrence-free 
survival and androgen response for prostate 
cancer, which might be important for furture 
research in the field of prostate cancer.

Senescence-associated lncRNAs indicate 
distinct molecular subtypes associated with 
prognosis and androgen response in patients 
with prostate cancer
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•	 We proposed senescence-associated lncRNA-mediated molecular 
subtypes for prostate cancer.

•	 The two subtypes of prostate cancer were associated with 
biochemical recurrence-free survival and androgen response.

•	 The key lncRNAs identified in this study might serve as 
prognostic biomarkers for prostate cancer.
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ABSTRACT

Cellular senescence has been considered as a hallmark of aging. In this study, we aimed to establish two novel 
prognostic subtypes for prostate cancer patients using senescence-related lncRNAs. Nonnegative matrix factorization 
algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable 
packages. Using SNHG1, MIAT and SNHG3, 430 patients in TCGA database were classified into two subtypes 
associated with biochemical recurrence (BCR)-free survival and subtype 2 was prone to BCR (HR: 19.62, p < 0.001). 
The similar results were observed in the GSE46602 and GSE116918. For hallmark gene set enrichment, we found 
that protein secretion and androgen response were highly enriched in subtype 1 and G2M checkpoint was highly 
enriched in subtype 2. For tumor heterogeneity and stemness, homologous recombination deficiency and tumor 
mutation burden were significantly higher in subtype 2 than subtype 1. The top ten genes between subtype 2 
and subtype 1 were CUBN, DNAH9, PTCHD4, NOD1, ARFGEF1, HRAS, PYHIN1, ARHGEF2, MYOM1 and ITGB6 with 
statistical significance. In terms of immune checkpoints, only CD47 was significantly higher in subtype 1 than that 
in subtype 2. For the overall assessment, no significant difference was detected between two subtypes, while B cells 
score was significantly higher in subtype 1 than subtype 2. Overall, we found two distinct subtypes closely associated 
with BCR-free survival and androgen response for prostate cancer. These subtypes might facilitate future research 
in the field of prostate cancer.

Keywords: prostate cancer, biochemical recurrence, cellular senescence, nonnegative matrix factorization, molecular 
subtypes, androgen response

1. INTRODUCTION

Bladder, renal and prostate tumors, the most prevalent 
malignancies in the genitourinary system, are all closely 
associated with age. Prostate cancer (PCa) continues to 
be among the top three malignancies in men, in terms of 
prevalence and death rates (27% and 11%, respectively, 
in the United States) [1]. Despite major advancements 
in treatment, PCa continues to pose a serious health 

risk to men worldwide [2-4]. Therefore, several therapy 
options must be considered. One new cancer hallmark 
included in 2022 is cellular senescence. Senescent cells 
perform dual roles in a variety of malignant processes 
[5]. Another recently discovered hallmark of cancer is 
non-mutational epigenetic reprogramming, in which 
long non-coding RNAs (lncRNAs) play a key role [5]. 
Transcripts that are longer than 200 nt and do not encode 
proteins are known as lncRNAs. These RNAs regulate 
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gene expression at the epigenetic, translational and 
post-translational levels. Notably, lncRNAs appear to be 
associated with cellular senescence [6-8], and increasing 
evidence indicates critical roles of lncRNA expression in 
cancers [9, 10]. Studying senescence and lncRNAs in PCa 
could therefore guide both basic research and clinical 
treatment.

LncRNAs are abnormally expressed in a variety of 
cancers, including PCa. Numerous studies have exam-
ined the relationships between lncRNAs and PCa. For 
instance, prostate cancer antigen 3 (PCA 3), one of 
the most accurate biomarkers for PCa, functions as a 
lncRNA and modulates androgen receptor (AR) signal 
transduction and cell growth [11]. Second chromo-
somal locus associated with prostate-1 (SChLAP1), a 
lncRNA that is highly expressed in 25% of PCa, is like-
wise involved in PCa metastasis and adverse outcomes 
in patients with PCa [12]. In addition, Singh et al. have 
recently identified lncRNA H19 as a potential biomarker 
for neuroendocrine PCa diagnosis and prognostication 
[13]. They have demonstrated that lncRNAs are useful 
in both prognosis and treatment, even in patients with 
the deadly subtype of PCa that is resistant to castra-
tion. However, studies investigating that the relation-
ship between lncRNAs and PCa from a perspective of 
senescence remain lacking.

In this study, by integrating multiple analytic meth-
ods, we constructed and validated two novel prognos-
tic subtypes of patients with PCa by using senescence-
associated lncRNAs. The distinct characteristics of 
these two subtypes regarding prognosis and androgen 
response may aid in the future PCa research and clinical 
therapy.

2. METHODS

2.1 Data preparation
We downloaded a list of 279 human genes driving 
cellular senescence from the CellAge database (http://
genomics.senescence.info/cells) [14]. We used the 
PCa gene matrix and clinical features in The Cancer 
Genome Atlas (TCGA) database from our pervious 
study [3]. Biochemical recurrence (BCR)-associated 
lncRNAs and differentially expressed lncRNAs were 
examined. Differential expression was defined by 
a fold-change absolute value >1.5 and an adjusted 
p  value <0.05. The senescence-associated lncRNAs 
were identified with Pearson analysis, on the basis of 
a p value <0.5 and absolute value of the coefficient 
>0.4. A total of 430 samples from the TCGA database 
were examined, and the log-rank test for BCR-free sur-
vival was significant, at p <0.05. Through intersection 
of differentially expressed, BCR-associated and senes-
cence-associated lncRNAs, we identified lncRNAs that 
were used to group 430 patients with PCa undergoing 
radical prostatectomy in TCGA database by using the 
nonnegative matrix factorization algorithm. We used 
two additional Gene Expression Omnibus datasets 

(GSE46602 [15] and GSE116918 [16]) to externally val-
idate the subtypes identified in TCGA database. The 
prognosis and clinical traits of molecular subtypes 
were also analyzed.

2.2 Mutational landscape and functional 
differences between subtypes
TCGA (https://portal.gdc.com), a database containing 
information on PCa, was the source of the downloaded 
RNA-sequencing profiles, genetic mutations and related 
clinical data. Using the maftools package in the R pro-
gramming language, we downloaded and displayed the 
mutational data. Differences in mutational frequency 
between subtypes were also assessed. In functional 
analysis, we performed gene set enrichment analysis 
with “c2.cp.kegg.v7.4.symbols.gmt” and “h.all.v7.4.sym-
bols.gmt” from the molecular signatures database 
[17, 18]. The minimal gene set was determined to be 
5, whereas the maximum gene set was established to 
be 5000, on the basis of gene expression and subtypes. 
Resampling was performed 1000 times. A false discovery 
rate of 0.10 and a p value of 0.05 were considered to 
indicate statistical significance.

2.3 Tumor stemness and heterogeneity analyses
Tumor stemness indexes included stemness scores 
based on differentially methylated probes, DNA 
methylation-based stemness, enhancer element/DNA-
methylation-based stemness, epigenetically regulated 
DNA-methylation-based stemness, epigenetically reg-
ulated RNA-expression-based stemness and RNA-
expression-based stemness [19]. Tumor heterogeneity 
included homologous-recombination deficiency (HRD), 
loss of heterozygosity, neoantigens, tumor ploidy, tumor 
purity, mutant-allele tumor heterogeneity, tumor muta-
tional burden (TMB) and microsatellite instability [20, 
21]. The results of the above indicators were obtained 
from our previous study [22]. We compared the differ-
ences in two subtypes with the Wilcoxon rank-sum test.

2.4 Tumor microenvironment assessment
By using the TIMER and ESTIMATE algorithms, we deter-
mined the overall tumor microenvironment and immune 
component assessments [23-25]. The Wilcoxon rank-sum 
test was used to compare the 54 immune-checkpoint dif-
ferences and tumor microenvironment scores between 
subtypes. Figure 1 presents the flowchart of our study.

2.5 Statistical analysis
We performed the analysis in R 3.6.3 with the appropri-
ate tools. For data with a non-normal distribution, we 
used the Wilcoxon rank-sum test. A Kaplan-Meier curve 
representing the results of the log-rank test was used 
for survival analysis. The threshold for statistical signifi-
cance was a two-sided p <0.05. Significance is indicated 
as follows: not significant (ns), p≥0.05; *, p<0.05; **, 
p<0.01; *** and p<0.001.

http://genomics.senescence.info/cells
http://genomics.senescence.info/cells
https://portal.gdc.com
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3. RESULTS

3.1 Identification of senescence-associated 
lncRNA subtypes and their applications
We detected 47 lncRNAs that were differentially 
expressed between 498 tumor and 52 normal PCa 
samples in TCGA database (Figure 2a). A total of 38 
BCR-associated lncRNAs and 73 senescence-associated 
lncRNAs were detected. Through intersection, we iden-
tified 16 differentially expressed lncRNAs associated 
with BCR and senescence (Figure 2b). Subsequently, we 
used small nucleolar RNA host gene 1 (SNHG1), myo-
cardial infarction associated transcript (MIAT) and small 
nucleolar RNA host gene 3 (SNHG3) to group the 430 
patients in TCGA database, then performed Cox regres-
sion analysis including the above 16 lncRNAs (Figure 2c). 
Among the various subtypes (Figure 2c), two molecular 
subtypes were significantly associated with BCR-free 
survival, and subtype 2 was prone to BCR (HR: 19.62, p 
<0.001; Figure 3a). In GSE116918 [16], the three genes 
were used to divide the 248 patients undergoing radical 
radiotherapy into two subtypes (Figure 3b); subtype 2 
had significantly higher risk of BCR than subtype 1 (HR: 
27.48, p <0.001; Figure 3c). Similar results were observed 

for GSE46602 [15] (Figure 3d-e). In addition, the base-
line characteristics, e.g., Gleason score and T stage, were 
balanced between subtypes in both TCGA database 
(Table 1) and the GSE116918 [16] dataset (Table 2).

3.2 Functional enrichment, mutated genes, tumor 
heterogeneity and stemness
In hallmark gene set enrichment, protein secretion and 
AR were highly enriched in subtype 1, and the G2M 
checkpoint was highly enriched in subtype 2 (Figure 3f). 
In pathway analysis, spliceosomes, base excision repair 
and the cell cycle were highly enriched in subtype 2 
(Figure 3g). Regarding tumor heterogeneity and stem-
ness, HRD and TMB were significantly higher in subtype 
2 than subtype 1 (Figure 3h). The top ten significantly 
differentially expressed genes between subtype 2 
and subtype 1 were CUBN, DNAH9, PTCHD4, NOD1, 
ARFGEF1, HRAS, PYHIN1, ARHGEF2, MYOM1 and ITGB6 
(Figure 3i).

3.3 Tumor immune microenvironment and 
immune checkpoints
Among immune checkpoints, the expression levels of 
CTLA4, ICOS, TNFRSF18, TNFRSF4, TNFRSF25, LAG3, 

Figure 1  |  Study flowchart.
PCa, prostate cancer; lncRNA, long non-coding RNA; BCR, biochemical recurrence; GSEA, gene set enrichment analysis; NMF, nonnegative 
matrix factorization.
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Figure 2  |  Identification of TCGA subtypes.
(a) Volcano plot showing differentially expressed lncRNAs in TCGA database. (b) UpSet plot showing the intersection of senescence-associated, 
differentially expressed and BCR-associated lncRNAs in the TCGA database. (c) Heatmap plot showing all subtypes in TCGA database, on the 
basis of the nonnegative matrix factorization algorithm. lncRNA, long non-coding RNA; BCR, biochemical recurrence.
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Figure 3  |  Prognostic value of subtypes and pathway analysis.
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TNFRSF8, CD80, ADORA2A and CD276 were significantly 
higher in subtype 2 than in subtype 1 (Figure 4a). Only 
CD47 was significantly higher in subtype 1 than subtype 
2 (Figure 4a). In the overall assessment, no significant 
difference was detected between subtypes, whereas the 
B cell scores were significantly higher in subtype 1 than 
subtype 2 (Figure 4b).

4. DISCUSSION

After thorough validation, we identified two distinct 
prognosis-associated subgroups of patients with PCa. 
Subtype 2, with a poorer prognosis, was distinguished 

from subtype 1 by the lncRNAs SNHG1, MIAT and 
SNHG3. Importantly, according to our hallmark gene 
set enrichment analysis, this typing system aids in iden-
tifying patients who are not susceptible to androgens. 
Additionally, the main differences between subtypes 
and their probable causes were determined through 
investigation of tumor heterogeneity, the mutational 
landscape and PCa immunity.

SNHG1, MIAT and SNHG3 were lncRNAs differen-
tially expressed between cancerous tissues and adja-
cent normal tissues. SNHG1 is a novel lncRNA whose 
high expression and carcinogenic characteristics have 
been confirmed in various cancers [26-29]. In PCa, 
SNHG1 mediates malignant transformation by pro-
moting tumor proliferation, invasion and epithelial-
mesenchymal transition, primarily through a compet-
ing endogenous RNA mechanism [29-31]. Additionally, 
studies on SNHG3 and PCa have shown similar results 

Table 1  |  Differences in clinical characteristics between two 
prostate cancer subtypes in TCGA.

Characteristic Subtype 1 Subtype 2 p Value

Samples 355 75

Age, median (IQR) 61 (56, 66) 62 (57, 66) 0.495

Gleason score, n (%) 0.147

  6 32 (7.4%) 7 (1.6%)

  7 177 (41.2%) 29 (6.7%)

  8 50 (11.6%) 9 (2.1%)

  9 96 (22.3%) 30 (7%)

T stage, n (%) 1.000

  T2 128 (30.2%) 27 (6.4%)

  T3 215 (50.7%) 46 (10.8%)

  T4 7 (1.7%) 1 (0.2%)

Race, n (%) 0.317

  Asian 9 (2.2%) 2 (0.5%)

  Black or African American 45 (10.8%) 5 (1.2%)

  White 288 (69.2%) 67 (16.1%)

N stage, n (%) 0.901

  N0 253 (67.5%) 53 (14.1%)

  N1 56 (14.9%) 13 (3.5%)

Residual tumor, n (%) 0.272

  No 230 (54.9%) 43 (10.3%)

  Yes 116 (27.7%) 30 (7.2%)

IQR, interquartile range.

(a) Kaplan-Meier curve showing the BCR-free survival difference in TCGA database. (b) Heatmap plot showing two distinct subtypes in 
GSE116918. (c) Kaplan-Meier curve showing the BCR-free survival difference in GSE116918. (d) Heatmap plot showing two distinct subtypes 
in the GSE46602. (e) Kaplan-Meier curve showing the BCR-free survival difference in GSE46602. (f) Hallmark gene set analysis of TCGA sub-
types. (g) KEGG pathway differences in TCGA subtypes. (h) Forest plot showing results of tumor heterogeneity and stemness between TCGA 
subtypes. (i) Waterfall plot showing the top ten differentially mutated genes between TCGA subtypes. BCR, biochemical recurrence.

Table 2  |  Differences in clinical characteristics between 
prostate cancer subtypes in GSE116918.

Characteristic Subtype 1 Subtype 2 p Value

Sample 226 22

Age, median (IQR) 68 (63.25, 72) 69.5 (62.5, 73) 0.534

T stage, n (%) 0.095

  T1 48 (21.5%) 3 (1.3%)

  T2 69 (30.9%) 7 (3.1%)

  T3 83 (37.2%) 9 (4%)

  T4 2 (0.9%) 2 (0.9%)

Gleason score, n (%) 0.075

  6 42 (16.9%) 0 (0%)

  7 89 (35.9%) 10 (4%)

  8 45 (18.1%) 7 (2.8%)

  9 50 (20.2%) 5 (2%)

BCR, n (%) <0.001

  No 182 (73.4%) 10 (4%)

  Yes 44 (17.7%) 12 (4.8%)

Metastasis, n (%) 0.001

  No 211 (85.1%) 15 (6%)

  Yes 15 (6%) 7 (2.8%)

IQR, interquartile range.
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to studies on SNHG1. Interactions between SNHG3 and 
microRNA epigenetically regulate PCa progression [32-
34]. Although the role of MIAT in PCa remains to be 
clarified, Crea et al. have suggested that MIAT also pro-
motes neuroendocrine PCa initiation and progression 
[35]. Nonetheless, our experimental data and valida-
tion suggested that patients in subtype 2 were prone 
to BCR, on the basis of typing according to those three 
lncRNAs.

Because lncRNAs function primarily as epigenetic 
modulators, we conducted hallmark gene set enrich-
ment analysis. We observed clear enrichment in genes 
associated with AR in subtype 1, in which patients had 
better prognosis. Androgen dependence is a typical 
characteristic of primary PCa [36]. After ARs receive 
signals from androgens and associated products, they 
initiate the activation and transduction of a series of 
signaling pathways via a complex intracellular signal-
ing network. Mechanically, AR is a transcription factor 
involved in the cell cycle, prostate development and 

other key activities, and it has been found to promote 
PCa growth [37]. Therefore, androgen-deprivation ther-
apy was the traditional treatment for PCa [38]. However, 
patients with PCa who undergo androgen-deprivation 
therapy subsequently experience recurrence and ther-
apy resistance, and develop castration-resistant PCa 
after 18–36 months [39, 40]. Androgen-independent 
abnormal reactivation of AR signals results in such can-
cer progression [41]. Although novel second-generation 
AR antagonists, such as enzalutamide and abiraterone, 
may work temporarily, patients still encounter inev-
itable drug resistance, disease progression and even 
lethal outcomes [38]. Hence, androgen sensitivity and 
response are critical in the prognosis of patients with 
PCa. Accordingly, enriched AR genes may be consid-
ered the key factors associated with the better prog-
nosis in subtype 1. Moreover, a recent study has shown 
indicated that molecular modulation and interactions 
between other proteins and DNAs are involved in 
the resistance to enzalutamide and abiraterone [42]. 
Accordingly, we hypothesized that altered expression 
of the three lncRNAs in subtype 2 might also account 
for the altered AR characteristics and consequently the 
poor prognosis, from an AR-epigenetic modulation per-
spective. In contrast, G2M-checkpoint-associated genes 
were enriched in subtype 2. Tumors cannot grow with-
out constant and infinite mitosis, and the G2M check-
point determines whether cells enter the M stage of 
the cell cycle. Several lncRNA have been confirmed to 
interfere with the normal cell cycle by targeting the 
G2M checkpoint [43-45]. Subsequently, our hypothesis 
that the expression of the lncRNAs SNHG1, MIAT and 
SNHG3 promotes malignant proliferation in PCa may be 
a reasonable explanation for the short BCR-free survival 
among patients with subtype 2 PCa. Our pathway anal-
ysis provided evidence supporting that possibility: path-
ways associated with cell proliferation and cell death, 
including spliceosomes, base excision repair and the cell 
cycle, were highly enriched in subtype 2. Together, the 
three lncRNAs identified herein may regulate AR activ-
ity and the cell cycle in PCa cells, thus providing a basis 
for our subtyping analysis.

We also identified mutated genes in the two subtypes: 
CUBN, DNAH9 and PTCHD4 were the top three muta-
tion genes. CUBN, a co-transporter located primarily in 
absorptive epithelia, promotes the uptake of specific 
ligands, such as hemoglobin, lipoprotein and iron [46]. 
The expression of CUBN is associated with the initiation 
and progression of renal clear cell carcinoma, colorectal 
cancer and breast cancer [47-49]; moreover, low CUBN 
expression is significantly associated with poor progno-
sis [49]. The loss of DNAH9 often occurs in tumors, and 
Donner et  al. have revealed that DNAH9 may possess 
antitumor effects [50]. Furthermore, epigenetic reg-
ulation of PTCHD4 splicing decreases tumor growth, 
thus indicating a potential role of PTCHD4 in PCa [51]. 
Targeting these top mutated genes might improve the 
prognosis of subtype 2 patients.

Figure 4  |  TME and immune-checkpoint analysis.
(a) Forest plot showing significant differences in two TCGA sub-
types in terms of checkpoints. (b) Forest plot showing significant 
differences in two TCGA subtypes for TME assessment. TME, tumor 
immune microenvironment; CI, confidence interval.
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Because tumor immunity has non-negligible effects 
on patient prognosis, we analyzed several immunity-
associated indicators to better interpret our typing 
mechanisms. In the tumor immune microenvironment 
(TME), immune silencing and immunosuppressive sta-
tus have long been considered characteristics of PCa 
immunity [52]. In our TME score analysis, we observed 
that infiltrating immune and immune-associated cells 
in subtype 2 did not substantially differ from those 
in subtype 1 (except for B cells), and the difference 
in immune infiltrating status between subtypes was 
not sufficient to alter patient prognosis. However, our 
subsequent findings may advance current viewpoints 
regarding PCa immunotherapy. The TMB and HRD 
were significantly higher in subtype 2 than subtype 1. 
TMB indicates the total number of mutations and 
the degree of tumor heterogeneity [20, 21]. On the 
basis of the hypothesis that mutant proteins would 
increase the number of antigenic peptides and gener-
ate new immunogenic antigens [53, 54], TMB may be 
applied to predict therapeutic responses to immune-
checkpoint blockade and identify patients who might 
benefit most from treatment. Importantly, increas-
ing evidence suggests that cellular heterogeneity 
does not simply result from transcriptional processes 
but instead has an epigenetic basis, in which histone 
modifications, nucleosome positioning and chromatin 
accessibility have been demonstrated to be involved, 
and lncRNAs may also play a role [55]. In addition, 
HRD is a key therapy response indicator that results 
in specific and stable genomic changes in PCa [56, 57]. 
Changes in the two indicators of tumor heterogeneity 
may suggest that our typing system could be applied 
to identify specific patient populations that might 
benefit most from immunotherapy. In addition, most 
significantly differentially expressed immune check-
points in our analysis had higher expression in subtype 
2 than subtype 1, thereby suggesting a relatively more 
active immune TME with more potential therapy tar-
gets in subtype 2.

In summary, our study established two novel prognos-
tic subtypes that were closely associated with BCR-free 
survival in patients with PCa, and suggested that the 
AR may play a critical role. Our typing system addition-
ally indicated immune status. Therefore, our study may 
guide the clinical management of patients with PCa. 
However, further studies and experiments will be neces-
sary to reveal the detailed mechanisms.

5. CONCLUSION

In conclusion, we identified two distinct subtypes closely 
associated with BCR-free survival and AR for PCa, which 
might aid in future research in the field of PCa.
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