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We analyze the accuracy and sample complex-
ity of variational Monte Carlo approaches to
simulate the dynamics of many-body quantum
systems classically. By systematically study-
ing the relevant stochastic estimators, we are
able to: (i) prove that the most used scheme,
the time-dependent Variational Monte Carlo
(tVMC), is affected by a systematic statis-
tical bias or exponential sample complexity
when the wave function contains some (pos-
sibly approximate) zeros, an important case
for fermionic systems and quantum informa-
tion protocols; (ii) show that a different scheme
based on the solution of an optimization prob-
lem at each time step is free from such prob-
lems; (iii) improve the sample complexity of
this latter approach by several orders of mag-
nitude with respect to previous proofs of con-
cept. Finally, we apply our advancements to
study the high-entanglement phase in a proto-
col of non-Clifford unitary dynamics with local
random measurements in 2D, first benchmark-
ing on small spin lattices and then extending
to large systems.

1 Introduction
The boundaries of current computational paradigms
shape the scope of questions that can be investi-
gated in many-body quantum systems. Problems
such as the dynamics of high-dimensional interact-
ing systems [1], dissipative phase transitions out of
equilibrium [2], the simulation of digital quantum cir-
cuits [3], or quantum information protocols [4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14] on states with volume-
law entanglement all suffer from a lack of efficient
computational methods. A class of powerful numeri-
cal techniques to treat such problems are variational
methods, which rely on an efficient parametriza-
tion of the quantum state and stochastic optimiza-
tion of its parameters. Compared to more estab-
lished Tensor Network (TN) [15, 16] or Quantum
Monte Carlo (QMC) [17, 18] algorithms, variational
approaches coupled with Monte Carlo sampling can
simulate high-dimensional or unstructured systems

while not suffering from the sign-problem [19], mak-
ing them ideal candidates to target molecules [20, 21]
and fermionic [22, 23, 24] or frustrated matter [25].
However, the optimization problem arising in varia-
tional calculations is generally non-convex, making it
hard to give general convergence guarantees. While
state-of-the-art results for the calculation of ground
states [25, 26, 27] have been obtained with Varia-
tional Monte Carlo (VMC) [28], variational simula-
tions of dynamics have yet to improve over existing
approaches systematically.

Techniques for the variational time evolution
rely on so-called variational principles to recast
Schrödinger’s differential equation for the wave func-
tion onto non-linear differential equations for the pa-
rameters [29]. These latter equations can be inte-
grated with an explicit scheme, the time-dependent
Variational Monte Carlo or tVMC [30, 31], or with an
implicit method by solving an optimization problem
at every time-step [32, 33, 34, 35, 36]. The first ap-
proach has been applied to many systems [37, 38, 39],
but it struggled to significantly improve upon bench-
mark methods due to several poorly-understood chal-
lenges in the numerical integration. The second
method is conceptually more powerful than tVMC,
but it has yet to be applied to realistic systems due
to an unexpectedly large computational overhead [35].

In this manuscript, we systematically analyze the
accuracy and efficiency of stochastic variational meth-
ods to tackle dynamical problems. First, we formal-
ize the origin of the numerical challenges affecting
tVMC by proving that they arise from the Monte
Carlo sampling, which may hide a bias or an exponen-
tial cost when the wave function contains zeros, as is
the case for many physically-relevant problems. Then,
we prove that the high overhead of the implicit inte-
gration arises from poor scaling of the Monte Carlo
sampling and we derive a new scheme that lowers the
computational cost by several orders of magnitude.
We call this scheme projected tVMC (p-tVMC). Fi-
nally, we apply the p-tVMC to simulate the dynam-
ics of a quantum system undergoing unitary evolu-
tion interspersed with random measurements, which
is a paradigmatic model for entanglement phase tran-
sitions [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Established
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Figure 1: Sketch of the failure of the tVMC when the state features zeros (red) and of the dynamics generated by the p-tVMC
algorithm (blue). When a state with zeros (or near zeros) in the wave function is encountered during the tVMC evolution,
such as |Ψθ(ti+1)⟩, the variational dynamics starts to detach from the exact solution due to a bias (or an vanishing signal
to noise ratio). In p-tVMC, the optimization problem of projecting the exactly evolved state U |Ψθ(t)⟩ onto the variational
manifold M of the ansatz |Ψθ̃⟩ is solved at each time-step. This is achieved by minimizing a distance in the Hilbert space,
which is the infidelity I (as shown in the right panel).

methods can access 1D systems [4, 5, 6, 8, 12, 14] or
higher dimensional Clifford dynamics [7, 9, 10, 13],
but questions remain on the nature of this transi-
tion in the case of non-Clifford 2D dynamics. As
a proof of concept, we investigate this regime which
is intractable to TNs due to the rapid entanglement
growth and the higher dimensionality but also to
tVMC due to the projective measurements enforcing
a large number of zeros in the wave function.

2 Numerical challenges in time-
dependent Variational Monte Carlo
We consider a quantum many-body system whose
Hilbert space is spanned by the basis states {|σ⟩},
where σ is a set of quantum numbers that is treated
as discrete. The state of the system |Ψ⟩ can be ef-
ficiently approximated by a variational ansatz |Ψθ⟩
whose wave function Ψθ(σ) ≡ ⟨σ|Ψθ⟩ is completely
specified by a set of P parameters θ = (θ1, . . . , θP ),
thus we have:

|Ψ⟩ ≈ |Ψθ⟩ =
∑

σ

Ψθ(σ) |σ⟩ . (1)

We consider computationally tractable ansätze,
meaning that P is polynomially large in the sys-
tem size and Ψθ(σ) can be sampled and queried effi-
ciently [40].
Within this framework, variational dynamics can

be encoded onto time-dependent parameters θ(t) such
that |Ψθ(t)⟩ approximates the physical dynamics. In
what follows, we focus on the unitary evolution of a
time-independent Hamiltonian H, on complex θ and
holomorphic Ψθ(σ). However, the discussion is gen-
eral and also applies to non-Hermitian PT-symmetric
Hamiltonians [41], imaginary time evolution [18], or
open quantum systems obeying the Lindblad Mas-
ter Equation [42] and can be extended to the non-
holomorphic case.
The McLachlan’s variational principle [43] recasts

the Schrödinger’s equation d|Ψθ⟩
dt = −iH |Ψθ⟩ at every

time onto the optimization problem:

min
θ̇

D(|Ψθ(t)+δtθ̇(t)⟩, e−iHδt|Ψθ(t)⟩), (2)

where D is the Fubini-Study metric and δt is a small
time-step. By keeping only the leading terms in δt
in Eq. (2), it is possible to derive the following set of
explicit equations of motion for θ(t):

θ̇k(t) = −i
∑
k′

(S−1)kk′Fk′ . (3)

Fk are the variational forces and Skk′ is the Quan-
tum Geometric Tensor [44, 45, 46]. These two quan-
tities are defined as:

Fk= ⟨∂θk
Ψθ| H |Ψθ⟩

⟨Ψθ|Ψθ⟩
−⟨∂θk

Ψθ|Ψθ⟩
⟨Ψθ|Ψθ⟩

⟨Ψθ| H |Ψθ⟩
⟨Ψθ|Ψθ⟩

, (4)

Skk′=
〈
∂θk

Ψθ

∣∣∂θk′ Ψθ

〉
⟨Ψθ|Ψθ⟩

−⟨∂θk
Ψθ|Ψθ⟩

⟨Ψθ|Ψθ⟩
⟨Ψθ|∂θk′ Ψθ⟩

⟨Ψθ|Ψθ⟩
, (5)

where we use the notation |Ψθ⟩ ≡ |Ψθ(t)⟩. The equa-
tions of motion Eq. (3) are integrated with numerical
schemes like Euler or higher-order Runge-Kutta.

The quantities in Eqs. (4) and (5) are efficiently
computed by estimating the expectation values as sta-
tistical averages over the Born distribution Π(σ) =
|Ψθ(σ)|2/ ⟨Ψθ|Ψθ⟩ with Monte Carlo sampling, follow-
ing the scheme known as time-dependent Variational
Monte Carlo (tVMC) [30, 31]. The resulting stochas-
tic expressions are given by:

FMC
k = EΠ[O∗

k(σ)(Eloc(σ) − EΠ[Eloc(σ)])] (6)
SMC

kk′ = EΠ[O∗
k(σ)(Ok′(σ) − EΠ[Ok′(σ)])]. (7)

In the previous relations, the quantity Eloc(σ) =∑
σ′ Hσ,σ′Ψθ(σ′)/Ψθ(σ) is the local energy and

Ok(σ) = ∂θk
log Ψθ(σ) are the log-derivatives of the

variational state.
However, we remark that if the wave function and

its derivatives have non-identical support, namely
there exist configurations σ for which Ψθ(σ) is zero
but ∂θk

Ψθ(σ) is not, the stochastic estimate FMC
k and
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SMC
kk′ may differ from the exact quantities in Eqs. (4)

and (5) by bias terms as:

Fk =
∑

σ:|Ψθ(σ)|=0

⟨∂θk
Ψθ|σ⟩ ⟨σ|H |Ψθ⟩

⟨Ψθ|Ψθ⟩︸ ︷︷ ︸
bias bF

+FMC
k , (8)

Skk′ =
∑

σ:|Ψθ(σ)|=0

⟨∂θk
Ψθ|σ⟩ ⟨σ|∂θk′ Ψθ⟩

⟨Ψθ|Ψθ⟩︸ ︷︷ ︸
bias bS

+SMC
kk′ . (9)

The previous relations show that FMC
k and SMC

kk′ are
biased if ⟨σ|Ψθ⟩ vanishes on some configurations while
⟨σ|∂θk

Ψθ⟩ do not, leading to a mismatch between the
tVMC and ideal variational dynamics.

This condition may arise from the variational en-
coding of several physically relevant states, such as
basis states |σ⟩, anti-symmetric wave functions (e.g.
Slater, Neural Backflow [48], . . . ) or states gener-
ated by digital quantum circuits. Another relevant
class of affected states are those that underwent pro-
jective measurements, which are commonly found in
trajectory unravelings of the Lindblad Master Equa-
tion [49, 50, 51] or in quantum information measure-
ment protocols [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. We
remark that for continuous systems (such as a particle
in free space), the bias may only emerge from zeros
in the bulk, since at infinity the wave function and its
derivative must vanish. A pictorial representation of
the breakdown of tVMC is shown in Fig. 1.
In realistic calculations, the variational wave func-

tion is often arbitrarily close to zero without encoding
nodes exactly. In such cases, the biases bF and bS are
zero. Still, we find that the variances of FMC and
SMC grow such that an exponential number of sam-
ples is required to resolve those quantities with finite
accuracy. This phenomenon can be revealed by the
signal-to-noise ratios (SNRs) of FMC and SMC ap-
proaching zero. The SNR of a function f of random
variable σ with distribution Π is:

SNRΠ[f ] =

√
|EΠ[f(σ)]|2
VarΠ[f(σ)] . (10)

In practical calculations, to ensure an accurate esti-
mation with a finite number of samples Ns we require
SNRΠ[f ]

√
Ns ⪆ 1. This inequality guarantees that

the effective signal (mean value) is larger than the
statistical fluctuations and thus it can be resolved.
In the following, we first discuss a minimal example

where finite biases emerge, and we then consider a
more realistic case where there are no biases but for
which we show that the SNRs go to zero.

2.1 Paradigmatic examples
We analyze a toy model where the biases are non-zero,
and they break the tVMC dynamics. The system is
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Figure 2: (a-b) Dynamics of the z-magnetization ⟨σz
i ⟩ for:

(a) the N = 1 spin 1/2 toy-model, where the initial state
|+⟩ is rotated with σy, which is simulated by Exact Diago-
nalization (ED), tVMC and p-tVMC; (b) a system of N = 4
spins 1/2, initialized in |Ψε⟩ with ε = 1.5 · 10−4 and evolved
via HTFI (J = h = 1), which is simulated by ED and tVMC
with increasing number of samples Ns (see colorbar). For the
tVMC the time-step δt = 10−3 has been used, while for the
p-tVMC δt = 10−2. (c) Infidelity I among states evolved
with tVMC and with ED after a time tf starting from |Ψε⟩
with increasing Ns (see colorbar) and different ε. The inset
shows how the minimal Ns to reach I = 5·10−3 (indicated by
a dashed line in (c)) scales with ε (markers) and a power-law
fit (red line). In (a) for tVMC the ansatz parametrizing the
wave function amplitudes is used, while in (b-c) a Restricted
Boltzmann Machine (RBM) [47] with α = 1. (d) Illustration
of the Born distribution for the peaked states |Ψε⟩.

made by N = 1 spin 1/2 where the state is param-
eterized by the ansatz |Ψ(α,β)⟩ = α |↓⟩ + β |↑⟩. For
|Ψθ⟩ = |Ψ(1,0)⟩ = |↓⟩, such that ⟨↑|Ψθ⟩ = 0, and evo-
lution generated by Hamiltonian H = σy, we have
that bF and bS in Eqs. (8) and (9) are finite and the
stochastic estimates differ from the exact values as:

F =
(

0
i

)
, S =

(
0 0
0 1

)
, (11)

FMC =
(

0
0

)
, SMC =

(
0 0
0 0

)
, (12)
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(see Appendix B.1 for the full calculation).
In Fig. 2(a) we show a simulation of an initial state

|+⟩ which is rotated by the Hamiltonian H = σy. At
t = π/4 the state becomes |Ψθ⟩ = |↓⟩ and the tVMC
evolution is stuck, as FMC and SMC vanish. Similar
considerations hold for more than 1 particle, and in
Appendix B.2 we discuss an example for the GHZ
state of N = 2 spins.

We now analyze a more realistic case where the
variational state does not exactly encode zeros. In
particular, we consider a system of N spins in the
state |Ψε⟩, which is peaked on a single configuration
|σ0⟩ and has a constant small amplitude

√
ε for all the

other basis states (see Fig. 2(d)), namely:

Ψε(σ) =
{√

ε, if σ ̸= σ0,√
1 − (2N − 1)ε, if σ = σ0,

(13)

where 0 < ε < 1/(2N −1). We remark that for small ε
this ansatz approximates a Hartree-Fock state, which
commonly arises from quantum-chemistry Hamiltoni-
ans. For ε ̸= 0 the biases bF/S are zero, but for ε ≈ 0
the leading terms of the SNRs for FMC and SMC are
respectively (see Appendix C for the full calculation):

SNRΠ[FMC] ∝
√

ε, SNRΠ[SMC] ∝
√

ε. (14)

Intuitively, this suggests that the more peaked the
state is, the more samples will be needed to accurately
estimate those quantities, in particular Ns ∝ ε−1.
As normalization of the state imposes ε ∝ 2−N , the
number of samples necessary to correctly compute the
quantum geometric tensor and the variational forces
will diverge as Ns ∝ 2N , eliminating the advantage
of stochastic sampling and rendering tVMC compu-
tationally ineffective.
We consolidate this argument with a numerical ex-

periment involving a commonly adopted setup for
quantum dynamics. We evolve with tVMC the state
|Ψε⟩ for t ∈ [0, tf ] according to the Transverse Field
Ising (TFI) Hamiltonian,

HTFI = −J
∑
⟨i,j⟩

σz
i σz

j − h
∑

i

σx
i , (15)

where ⟨i, j⟩ denotes nearest neighbors in a lattice with
periodic boundary conditions. In Fig. 2(b) we show
some evolutions obtained with an increasing number
of Monte Carlo samples Ns for a fixed ε, demonstrat-
ing that the dynamics is correctly reconstructed only
at large values of Ns. The scaling of Ns with the sys-
tem size is studied in Fig. 2(c), where we report the
final infidelity1 of the state obtained with tVMC with
respect to the exact solution for different ε and Ns.
We remark that the accuracy of the variational sim-
ulation improves when ε or Ns are increased, as the

1The infidelity between two arbitrary states |ψ⟩ and |ϕ⟩ is
defined as I(ψ, ϕ) = 1 − |⟨ψ|ϕ⟩|2/ ⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩.

statistical fluctuations in the estimated quantities are
suppressed. The inset highlights a power-law relation
between the Ns necessary to reconstruct the dynamics
accurately and ε, proving that Ns ∼ 2N .

2.2 Overview
In this first section, we have shown that the tVMC
method can be either biased or require an exponential
number of samples when the wave function is exactly
or approximately zero. This highlights the necessity
of an efficient alternative method to tVMC for varia-
tional time evolution.

We stress that while our considerations on stochas-
tic estimators arose in the context of tVMC, they
are also applicable to ground-state calculations using
both plain gradient descent or stochastic reconfigu-
ration [52], because they rely on the same stochastic
estimators. However, we believe that in such calcula-
tions, the additional errors contributed by the biasing
or small SNR are mitigated by the iterative optimiza-
tion scheme, which may avoid the accumulation of
errors that instead affects dynamics. We also remark
that Monte Carlo variational methods for open quan-
tum systems [53, 54, 55, 56] are also possibly affected
by the same issues.

Going forward, in Appendix A we propose a modi-
fied estimator for the forces F for which the bias and
the SNR problems are absent, and therefore it can
efficiently estimate the forces when the standard esti-
mator FMC fails (see Appendices B and C). From our
knowledge, this alternative estimator has never been
discussed in the literature, and preliminary investi-
gations suggest that it already reduces the computa-
tional effort needed to reliably find the ground state
of some frustrated or fermionic Hamiltonians.

Unfortunately, we could not find a similarly
straightforward modification of the estimator for the
quantum geometric tensor S. For that reason, the fol-
lowing section presents a completely different scheme
that avoids using the tensor.

3 Projected time-dependent Varia-
tional Monte Carlo
We consider the general problem of finding the pa-
rameters of a variational state |Ψθ̃⟩ such that it ap-
proximates the state U |Ψθ⟩, where θ are known and
U is an arbitrary transformation, in terms of a given
distance. Considering the distance to be the infidelity
I, this can be expressed as the following optimization
problem:

min
θ̃

I( |Ψθ̃⟩ , U |Ψθ⟩). (16)

Other distance choices, such as the L2 metric, have
also been discussed in the literature [36]. Eq. (16)
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Figure 3: (a) Learning curves for the infidelity I using the bare estimator Re Iloc and the CV estimator ICV
loc . In the inset

the corresponding variances, generically indicated as Varχ[I], are shown. (b) Rescaled signal to noise ratio of the infidelity
SNRχ[I]

√
Ns as a function of I for the bare and the CV estimators with different values of c. We remark that the slope of

the curves of the SNR with c ̸= −0.5 in the limit I → 0 is approximately 1, which is better than what is given by Eq. (43).
This is because the estimator used in practical calculations is Re Iloc instead of simply Iloc (further discussion in Appendix E).
In both (a) and (b) a system of N = 8 spins 1/2 is considered and the transformation used is U = exp

(
−i δt

2 Hzz

)
, where

Hzz = −J
∑

⟨i,j⟩ σz
i σz

j with J = 1 and δt = 5 · 10−2. In (b) Ns = 104 samples have been employed.

is similar to Eq. (2), but it can treat arbitrary uni-
taries and therefore can be used to simulate non-
infinitesimal gates in quantum circuits [32, 33] or to
perform state preparation.
The solution of Eq. (16) can be found with iterative

gradient-based optimizers such as Stochastic Gradient
Descent [57], ADAM [58], Natural Gradient [59, 60,
44] or similar methods. Since this approach consists
of projecting the exactly evolved state U |Ψθ⟩ onto
the manifold of the variational ansatz |Ψθ̃⟩, we name
it projected time-dependent Variational Monte Carlo
(p-tVMC), and this is pictorially represented in Fig. 1.
The infidelity in Eq. (16) can be estimated through

Monte Carlo sampling as I(θ̃) = Eχ[Iloc(σ, η)]. Many
choices for the sampling distribution χ and the local
estimator Iloc are possible, but assuming that U is
unitary we can sample

Iloc(σ, η) = 1 − ⟨σ| U |Ψθ⟩
⟨σ|Ψθ̃⟩

⟨η| U† |Ψθ̃⟩
⟨η|Ψθ⟩

, (17)

from the joint Born distribution of the two states
χ(σ, η) = |Ψθ̃(σ)|2|Ψθ(η)|2/ ⟨Ψθ̃|Ψθ̃⟩ ⟨Ψθ|Ψθ⟩. For
non-unitary U it is necessary to sample from U |Ψθ⟩
instead of |Ψθ⟩ [32, 33].
We remark that estimating the infidelity using

Eq. (17) is efficient if U is K-local [61], namely it acts
non-trivially on at most K degrees of freedom (spins,
qubits, particles, . . . ), where K is polynomially large
in the system size. When this is not the case, it can
be factored in several sub-terms U = U1 . . . UN where
each term is K-local, and Eq. (16) must be solved
for every sub-unitary Ui. In particular, the unitary
propagator of a general Hamiltonian can be decom-

posed with the Trotter-Suzuki decomposition [62, 63]
or with other expansions that are unitary up to lead-
ing order, such as the Taylor series [35].

We now analyze the estimator Iloc according to the
same approach used in the previous section. We find
that, in the limit of I → 0, the SNR of the estimator
scales as

SNRχ[Iloc] ∝
√

I. (18)

This means that, as the optimization approaches
the optimum of I = 0, the number of samples needed
to resolve the infidelity increases as I−1 (see Ap-
pendix E for analytical calculation). This is systemat-
ically different from what happens when minimizing
the energy, where the SNR remains constant when
close to the solution, and a constant number of sam-
ples can be used to achieve arbitrarily high precision.

To recover this behaviour in the case of the infi-
delity optimization we propose a new estimator based
upon the Control Variates (CV) technique [64]:

ICV
loc = Re Iloc − c(|1 − Iloc|2 − 1). (19)

where c ∈ R. The quantity c can be chosen such that
the Varχ[ICV

loc ] attains a minimal value. This optimal
value of c, say c∗, depends on the parameters of the
ansatz, so it changes during an infidelity optimization.
However, it is possible to show (see Appendix E for
analytical proof) that in the limit |Ψθ̃⟩ → U |Ψθ⟩, c∗

is exactly −1/2. Therefore, we avoid the high cost
of estimating c∗ at each iteration of an optimization,
and directly use the asymptotically ideal estimator
Eq. (19) with c = −1/2.
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To further support this approach, we show in
Fig. 3(a) that the CV estimator ICV

loc features a vari-
ance that is orders of magnitude smaller than the one
of the bare estimator Re Iloc, in such a way that the
number of samples needed for the optimization is re-
duced by almost three orders of magnitude. Addi-
tionally, the scaling of the variance with I changes,
such that for I → 0 we have that:

SNRχ[ICV
loc ] = O(1), (20)

meaning that the SNR remains asymptotically con-
stant (see analytical proof in Appendix E). Indeed, in
Fig. 3(b) one can see that the SNR of Re Iloc goes to
zero when I decreases, while the SNR of the corrected
estimator decreases at smaller values of I. When
c = −1/2, ICV

loc has a rescaled SNR which is constant
and larger than 1 over the whole range of I consid-
ered, suggesting that our strategy is ideal.

Moreover, the reduced variance of the CV estimator
implies that the infidelity gradient computed with it
results to be more accurate [65]. The lower-variance
gradient can improve the accuracy of the solution,
since its mean value is affected by smaller statistical
fluctuations, and can increase the speed of conver-
gence, as it allows for larger learning rates.

This substantial improvement of the sampling cost
using the CV estimator Eq. (19) makes the p-tVMC
an efficiently scalable method for simulating large sys-
tems, such that it can address system sizes that have
not been investigated before within this approach.
A detailed analysis on the CV infidelity estimator is
present in Appendix E, with further extensions in Ap-
pendix F. As shown in Fig. 2(a), in Appendix B.2 for
the GHZ state and in Appendix D for adiabatic evolu-
tion, the p-tVMC, since it is not affected by biases or
vanishing SNR, can simulate dynamics in cases where
tVMC fails or is inefficient.

4 Unitary dynamics with random mea-
surements
In recent years, considerable interest has been devoted
to studying entanglement in many-body quantum sys-
tems subject to evolution and random local measure-
ments. This is a paradigmatic model of a quantum
system coupled to an external environment acting as
a measurement apparatus. Therefore, it is intimately
related to the physics of open quantum systems. The
competition between the unitary evolution’s entan-
gling action and the measurements’ localizing effect
gives rise to a phase transition between volume-law
and area-law entanglement in the steady state of the
dynamics. The order parameter is the measurement
rate. This phenomenology has been originally inves-
tigated in quantum circuits [4, 5, 7, 9, 10, 11, 13, 14],
and more recently for continuous dynamics [6, 8, 12].

To the extent of our knowledge, numerical inves-
tigations have focused so far on systems in one-
dimension, integrable or evolving via efficiently sim-
ulable [66] Clifford gates because of algorithmic lim-
itations. However, several open questions remain on
the nature of such transitions in non-integrable 2D
systems or non-Clifford circuits, requiring novel com-
putational paradigms.
In this concluding section, we leverage the p-tVMC

to simulate the time evolution generated by the (non-
Clifford) 2D TFI model subject to random local mea-
surements. This problem cannot be treated efficiently
with Tensor Network methods because of the rapid
entanglement growth and the exponential cost of ex-
act contractions in 2D. Moreover, as projective mea-
surements insert exponentially many zeros in the wave
function amplitudes, the shortcomings of tVMC dis-
cussed in this article emerge, resulting in an expo-
nential cost. We consider a 2D spin 1/2 square lat-
tice with side length L, such that the total number of
spins is N = L2. We evolve the system to time tf ,
discretized into time-steps of duration δt. At each t,
two operations are performed on the system:

• unitary evolution with U = e−iHTFIδt, where
HTFI is the 2D TFI Hamiltonian of Eq. (15);

• a projective measurement of each spin in the σz

basis independently with probability p (measure-
ment rate).

The overall evolution is stochastic and non-unitary.
As the unitary propagator is not K-local, we de-

compose it with a second-order Trotter scheme as:

e−iHTFIδt = e−iHzz
δt
2 e−iHxδte−iHzz

δt
2 + O(δt3), (21)

where Hzz = −J
∑

⟨i,j⟩ σz
i σz

j and Hx = −h
∑

i σx
i .

In the first stages of this work we employed the
forward-backward scheme as done in [36, 67], but then
we move to the Trotterization as it allowed to use
larger δt and was more practical for our calculations.
We use the p-tVMC to apply each unitary ob-

tained from the decomposition. Still, we remark that
as exp(−iHzzδt/2) is diagonal in the chosen σz ba-
sis, its p-tVMC optimization problem can be solved
analytically, as shown in Appendix G. Instead, the
unitary containing Hx is applied using the p-tVMC,
factorizing the propagator into a product of terms,
each of which acts on a small subset of the spins. In
this way, the number of connected elements to com-
pute is not exponentially large with N . The uni-
tary dynamics that we simulate is a global quench
across the critical point of the 2D HTFI, which is in
correspondence of the transverse field hc such that
hc/J ≈ 3.044 [68, 69, 70, 71, 72]. In particular, the
initial state is the paramagnetic ground state in the
limit h → ∞, given by

⊗N
i=1 |+⟩i, and this is evolved

into the ferromagnetic phase where h < hc.
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Figure 4: Time evolution of the Rényi-2 entropy S2 simu-
lated with p-tVMC for HTFI interspersed with random local
measurements along z in 2D L × L lattices. For L = 4 and
L = 5 we also provide ED benchmark results. Subsystems
of increasing size |A| up to the maximum ⌊N/2⌋ are con-
sidered, and the corresponding markers are indicated with
different colors according to the colorbar. The insets show
the scaling of S2 as a function of |A| in the steady-state for
the three lattices. S2 for subsystems with equal boundary
length is indicated using the same marker. The initial state
is
⊗N

i=1 |+⟩i and the parameters of HTFI are J = 1/2 and
h = hc/4. The measurement rate is p = 0.01 and the time
interval is δt = 0.1. The results are averaged over 5 trajec-
tories. The ansatz is an RBM with α = 4, endowed with the
variational terms to exactly implement the diagonal part of
the propagator and the measurements. The number of sam-
ples is Ns = 104 for L = 4, and Ns = 2 · 104 for L = 5, 6.

The measurement operators are P±
i = (1 ± σz

i )/2
for i ∈ [1, N ]. When a spin i is measured, one of the
two projectors P±

i is applied to the state according to
the probabilities ⟨Ψ| P±

i |Ψ⟩/ ⟨Ψ| Ψ⟩. Measurements
can be exactly realized on a variational state |Ψθ⟩ by
modifying it into a new ansatz |Ψϕ,θ⟩ with additional

parameters ϕ = (ϕ↓
1, ϕ↑

1, ϕ↓
2, ϕ↑

2, . . .) defined as:

⟨σ|Ψϕ,θ⟩ =
N∏

i=1
(ϕ↓

i δσi,↓ + ϕ↑
i δσi,↑) ⟨σ|Ψθ⟩ . (22)

Measuring spin i with outcome ↓ translates into set-
ting ϕ↑

i = 0 and ϕ↓
i ̸= 0 and vice versa for the other

outcome. The measurement probabilities are stochas-
tically computed using Monte Carlo sampling. The
protocol of unitary evolution and random measure-
ments is repeated several times and the final result is
obtained by averaging over all these trajectories, as in
the Monte Carlo wave function method [49]. To study
the entanglement growth of |Ψθ⟩, we monitor the
Rényi-2 entanglement entropy S2(ρA) = − log2 Tr ρ2

A,
where ρA is the reduced density matrix of the state
on a subsystem A. Indeed, the Rényi-2 entropy is a
lower bound for the Von Neumann entanglement en-
tropy and it can be estimated via Monte Carlo sam-
pling [73] as:

S2 = − log2

(
E Π(σ,η)

Π(σ′,η′)

[
Ψθ(σ′, η)Ψθ(σ, η′)
Ψθ(σ, η)Ψθ(σ′, η′)

])
, (23)

where σ, σ′ ∈ A and η, η′ ∈ B (complementary of A).
See Appendix H for a derivation of Eq. (23).

Fig. 4 shows the evolution of S2(ρA) for subsystems
of size |A| ∈ [1, ⌊N/2⌋] in lattices with L = {4, 5, 6}
and with measurement rate p = 0.01. To assess
the quality of the variational simulations, we com-
pare with ED for L = 4, 5 and we select a feature
density for the RBM ansatz employed (which deter-
mines its expressivity) that gives a satisfying level of
precision. Given the chosen hyper-parameters, there
is an excellent agreement for small subsystem sizes
(|A| ≲ ⌊N/4⌋) and a good agreement for the largest
partitions. The Rényi-2 entanglement entropy is 0 at
t = 0, as expected for the initial product state, and it
grows linearly over time, plateauing to a value that is
proportional to |A|. The Page-like curves [74] in the
insets of Fig. 4 suggest that with p = 0.01 the steady-
states belong to a high-entanglement phase. However,
due to possible finite size effects, whether the scaling
of S2 with the subsystem size is linear, witnessing
a volume-law, or logarithmic as in critical phases is
not obvious. In any case, a low-entanglement regime
with area-law scaling is excluded since, in that situa-
tion, the steady-state S2 would not change for subsys-
tems with the same boundary length (indicated with
equal markers in the insets). Instead, what is ob-
served is that S2 increases with |A| independently of
the boundary length, at least far from ⌊N/2⌋ where
finite size effects might play a role. The proportion-
ality of the entanglement growth rate in the initial
times with the boundaries of the partitions is in ac-
cordance with the Lieb-Robinson bound [75] valid for
local Hamiltonians.

Accepted in Quantum 2023-09-27, click title to verify. Published under CC-BY 4.0. 7



5 Conclusions
In this manuscript, we proved that the standard
approach to Monte Carlo variational dynamics, the
tVMC, can be limited by a finite bias or by an ex-
ponentially small signal-to-noise ratio when the wave
function contains nodes or is only approximately zero.
This implies that the tVMC cannot efficiently sim-
ulate the time evolution of physically-relevant cases
such as completely polarized wave functions, states
arising from digital quantum circuits or measurement
processes, including the open dynamics with quantum
jumps. Subsequently, we have formalized an alterna-
tive scheme, which consists in solving an optimiza-
tion problem at each time step using the infidelity
distance, and we have introduced a novel stochastic
estimator which makes this approach viable and scal-
able to large systems. Finally, we showed that our
method can solve the lack of efficient algorithms to
investigate the high-entanglement phase in a proto-
col of non-Clifford unitary dynamics with local ran-
dom measurements in 2D. This enables future inves-
tigation into the physics of several classes of systems,
including measurement-induced phase transitions in
non-trivial models above 1D and the physics of dissi-
pative systems, all of which are currently limited by
the available computational methods. In particular,
a direct application of the projected method would
be the variational simulation of quantum trajectories
arising from unraveling the Lindblad Master Equa-
tion.

6 Data availability
All the simulations have been performed using Netket
3 [76, 77] with MPI and MPI4jax [78]. The code for
the p-tVMC method can be found in [79].
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Appendix
A Unbiased force estimate
An unbiased estimate for the variational forces Fk can be obtained by inserting the completeness relation∑

σ |σ⟩ ⟨σ| = 1 between H and |Ψθ⟩, instead of between ⟨∂θ∗
k
Ψθ| and H as done for the standard tVMC

estimate FMC
k , yielding:

F̃MC
k =

∑
σ

⟨∂θk
Ψθ| H |σ⟩ ⟨σ|Ψθ⟩

⟨Ψθ|Ψθ⟩
−
∑
σ,σ′

⟨∂θk
Ψθ|σ⟩ ⟨σ|Ψθ⟩
⟨Ψθ|Ψθ⟩

⟨Ψθ|σ′⟩ ⟨σ′| H |Ψθ⟩
⟨Ψθ|Ψθ⟩

=

= EΠ

[
⟨∂θk

Ψθ| H |σ⟩
⟨Ψθ|σ⟩

]
− EΠ[O∗

k(σ)]EΠ[Eloc(σ)],
(24)

where, like in the main text, Eloc(σ) is the local energy and Ok(σ) are the log-derivatives of the ansatz. F̃MC
k

does not have a covariance form like FMC
k , therefore it has, in general, larger statistical fluctuations when

estimated using a finite number of samples. Moreover, since Ok(σ) cannot be used to compute the first term in
Eq. (24), its computational cost is generally higher than the standard estimator.

B Examples of biases in tVMC
B.1 One-spin system
We consider a system of N = 1 spin 1/2 whose state is represented by the variational ansatz |Ψθ⟩ = α |↓⟩+β |↑⟩
with parameters θ = (α, β). The evolution is generated by the Hamiltonian H = σy. For the choice α = 1 and
β = 0, we have |Ψθ⟩ = |↓⟩, |∂αΨθ⟩ = |↓⟩ and |∂βΨθ⟩ = |↑⟩. In these conditions:

F =
(

0
i

)
, S =

(
0 0
0 1

)
. (25)

However, due to the covariance form of the standard tVMC estimates FMC
k and SMC

k,k′ evaluated on samples
including only one value of σ, we have that ∀ k, k′:

FMC
k = O∗

k(↓)Eloc(↓) − O∗
k(↓)Eloc(↓) = 0, SMC

kk′ = O∗
k(↓)Ok′(↓) − O∗

k(↓)Ok′(↓) = 0. (26)

We verify that, instead, the stochastic estimate F̃MC with the alternative estimator proposed in the previous
section is unbiased, since:

F̃MC
α = ⟨∂αΨθ| H |↓⟩

⟨Ψθ|↓⟩
− O∗

α(↓)Eloc(↓) = 0, F̃MC
β = ⟨∂βΨθ| H |↓⟩

⟨Ψθ|↓⟩
− O∗

β(↓)Eloc(↓) = i, (27)

as Eloc(↓) = H↓↓Ψθ(↓)/Ψθ(↓) + H↓↑Ψθ(↑)/Ψθ(↓) = 0.

B.2 Two-spin system
We consider a system of N = 2 spins 1/2 whose state is represented by the variational ansatz |Ψθ⟩ = α |↓↓⟩ +
β |↓↑⟩ + γ |↑↓⟩ + δ |↑↑⟩ with parameters θ = (α, β, γ, δ). For θ = (1/

√
2, 0, 0, 1/

√
2) the ansatz represents

the Greenberger–Horne–Zeilinger state |Ψθ⟩ = |GHZ⟩ = (|↑↑⟩ + |↓↓⟩)/
√

2. The variational derivatives are
|∂αΨθ⟩ = |↓↓⟩, |∂βΨθ⟩ = |↓↑⟩, |∂γΨθ⟩ = |↑↓⟩ and |∂δΨθ⟩ = |↑↑⟩. We consider the dynamics generated by the
TFI Hamiltonian HTFI with coupling J and transverse field h. In these conditions, F and S differ from FMC

and SMC as:

F =


0

−h
√

2
−h

√
2

0

 , S =


1/2 0 0 −1/2
0 1 0 0
0 0 1 0

−1/2 0 0 1/2

 , FMC =


0
0
0
0

 , SMC =


1/2 0 0 −1/2
0 0 0 0
0 0 0 0

−1/2 0 0 1/2

 . (28)

One can verify that, like for the one spin case, the alternative estimator F̃MC gives an unbiased estimate
for the variational forces. As shown in Eq. (28), SMC has a lower rank than S, while FMC is identical to zero
meaning that this dynamics starting from |GHZ⟩ cannot be evolved with tVMC. On the contrary, the p-tVMC
is not affected by any problem and can perform the evolution, as shown in Fig. 5.
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Figure 5: Dynamics of the z-correlator ⟨σz
1σz

2⟩ computed with Exact Diagonalization (ED), tVMC and p-tVMC for N = 2
spins 1/2 evolved with HTFI from the initial state |GHZ⟩. The parameters of HTFI are J = h = 1. The time-steps used are
δt = 10−3 for tVMC and δt = 10−2 for p-tVMC. Ns = 103 samples have been employed.

C Signal to noise ratios in Monte Carlo estimates
We consider a system of N spins 1/2 and normalized variational states |Ψε⟩ whose wave function is parameterized
by a single parameter ε as:

Ψε(σ) =
{√

ε, if σ ̸= σ0,√
1 − (2N − 1)ε, if σ = σ0,

(29)

with 0 < ε < 1/(2N − 1) and for a given σ0. In the following, we prove that the signal-to-noise ratios (SNRs)
of FMC

k and SMC
kk′ scale as O(

√
ε), namely they diminish indefinitely as the wave function becomes more peaked

around σ0. In order to ensure normalization of |Ψε⟩ over different system sizes, ε goes as 1/2N . Therefore, the
two SNRs diminish exponentially as N increases, and so the number of samples needed to resolve FMC

k and
SMC

kk′ with finite precision is exponentially large in the system size. Instead, the SNR of the unbiased estimate
F̃MC

k of Eq. (24) is O(1) in ε, enabling it to efficiently estimate the forces in the limit ε → 0, where FMC
k cannot

be used, and independently of the system size.

Proof. The variational log-derivative of Ψε(σ) is:

Oε(σ) =


1
2ε

, if σ ̸= σ0,

− 2N − 1
2(1 − (2N − 1)ε) , if σ = σ0.

(30)

We define (1 − (2N − 1)ε) ≡ α for brevity and we observe that α → 1 when ε → 0. Both F MC
k and SMC

kk′ are
of the form EΠ[Ā(σ)B̄(σ)], where Ā(σ) = A(σ) − EΠ[A(σ)] and B̄(σ) = B(σ) − EΠ[B(σ)] for some functions A
and B of random variable σ with distribution Π. In F MC

k we have A(σ) = O∗
k(σ) and B(σ) = Eloc(σ), while in

SMC
kk′ we have A(σ) = O∗

k(σ) and B(σ) = O∗
k′(σ). The variance of stochastic estimates of this form is given by:

VarΠ[Ā(σ)B̄(σ)] = EΠ[|Ā(σ)B̄(σ)|2] − |EΠ[Ā(σ)B̄(σ)]|2. (31)

For the local energy we have:

Eloc(σ ̸= σ0) =
∑

σ′ ̸=σ0

Hσσ′
Ψε(σ′)
Ψε(σ) + Hσσ0

Ψε(σ0)
Ψε(σ) =

∑
σ′ ̸=σ0

Hσσ′ + Hσσ0

√
α

ε

ε≪1
≈ Hσσ0

√
α

ε
, (32)

Eloc(σ0) =
∑

σ′ ̸=σ0

Hσ0σ′
Ψε(σ′)
Ψε(σ0) + Hσ0σ0

Ψε(σ0)
Ψε(σ0) =

∑
σ′ ̸=σ0

Hσ0σ′

√
ε

α
+ Hσ0σ0

ε≪1
≈ Hσ0σ0 , (33)
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where the notation Hσσ′ ≡ ⟨σ| H |σ′⟩ for any σ, σ′ is used. Therefore, keeping leading order terms in 1/ε, the
variances of the stochastic estimates are:

VarΠ[F MC
k ] ε≪1

≈ α

4ε2

∑
σ ̸=σ0

|Hσσ0 |2, VarΠ[SMC
kk′ ] ε≪1

≈ (2N − 1)
16ε3 . (34)

Since F MC
k ≈

∑
σ ̸=σ0

Hσσ0

√
α/4ε and SMC

kk′ ≈ (2N − 1)/4ε for ε ≪ 1, we have that:

SNRΠ[F MC
k ] ε≪1

≈
|
∑

σ ̸=σ0
Hσσ0 |√∑

σ ̸=σ0
|Hσσ0 |2

√
ε

ε→0−→ 0, SNRΠ[SMC
kk′ ] ε≪1

≈
√

(2N − 1)ε ε→0−→ 0. (35)

The two SNRs go to zero when the state becomes more peaked because when ε → 0 we have that |Ψε(σ)|2 → 0
for σ ̸= σ0, so these configurations are rarely sampled, but the estimators of the biases for σ ̸= σ0 increase as ε
is reduced. Indeed, for σ ̸= σ0 we have that:

|∂εΨε(σ)|2 = 1
4ε

ε→0−→ ∞, ∂εΨε(σ) ⟨σ| H |Ψε⟩ =
∑

σ′ ̸=σ0

1
2Hσσ′ + 1

2Hσσ0

√
α

ε

ε→0−→ ∞. (36)

It is possible to verify that using the unbiased force estimate F̃ MC
k of Eq. (24) the SNR remains constant in

the limit ε → 0, making it able to efficiently compute the variational forces when the standard estimate F MC
k

fails. This is because the original sum of the first term in Eq. (24) already runs over the points where the
wave function is non-zero, so to obtain the corresponding estimator it is sufficient to divide by ⟨Ψθ|σ⟩ without
excluding any point. Instead, to obtain the estimator of the first term in the expression of F MC

k it is necessary
to divide by |Ψθ(σ)|2, implicitly excluding from the Monte Carlo expression the points for which the bias bF

can be non-zero. Considering only the contribution of the first term in F̃ MC
k , since this is the problematic one

in the standard estimate and the second term is common to F MC
k , we obtain that:

VarΠ[F̃ MC
k ] ε≪1∝ 1

4ε

∑
σ ̸=σ0

∣∣∣∣ ∑
σ′ ̸=σ0

Hσ′σ

∣∣∣∣2. (37)

Therefore, since F̃ MC
k ≈

∑
σ ̸=σ0

Hσσ0

√
α/4ε = F MC

k for ε ≪ 1, we have:

SNRΠ[F̃ MC
k ] ε≪1

≈
|
∑

σ ̸=σ0
Hσσ0 |√∑

σ ̸=σ0
|
∑

σ′ ̸=σ0
Hσ′σ|2

√
α

ε→0−→ const. (38)

D Example of vanishing SNRs in tVMC
We consider a chain of N spins 1/2, initially in the ground state of the Hamiltonian −

∑
i σx

i , which evolves
according to the time-dependent Hamiltonian:

H(t) = γ(t)
∑

i

σz
i + (γ(t) − 1)

∑
i

σx
i , (39)

where γ(t) oscillates between 0 and 1 with a triangular profile of period T , namely γ(t) = t/T if 0 < t < T and
γ(t) = 1 − (t − T )/T if t > T . It is known that for a sufficiently large T , so for an adiabatic evolution, the state

at t = T is going to be ε-close to
⊗N

i=1 |↓⟩i, so an instance of the peaked states |Ψε⟩ of the previous section for
some ε depending on T .

While in this case the biases in the tVMC estimates are zero, in Fig. 6 we show that the dynamics is correctly
reconstructed for t > T only when choosing a sufficiently large number of Ns = 104 samples (the Hilbert space
in this case has size 210 ≈ 103), hinting at the exponentially small SNRs of FMC and SMC. As before, the
p-tVMC can efficiently simulate this dynamics with a fair number of Ns = 103 samples, for which instead the
tVMC fails.
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Figure 6: Dynamics of the z-magnetization ⟨σz
i ⟩ computed with Exact Diagonalization (ED), tVMC and p-tVMC for N = 10

spins 1/2 adiabatically evolved with H(t) of Eq. (39) with period T = 8 from the ground state of −
∑

i
σx

i . The time-steps
used are δt = 10−3 for tVMC and δt = 10−2 for p-tVMC. The ansatz is an RBM with α = 1.

E Infidelity estimator with control variates
The stochastic estimate of the infidelity between the states |Ψθ̃⟩ and U |Ψθ⟩, where |Ψθ̃⟩ and |Ψθ⟩ are variational
states and U is an arbitrary transformation, is obtained by inserting completeness relations and dividing by
wave function amplitudes in its definition as follows:

I = 1 − ⟨Ψθ̃| U |Ψθ⟩ ⟨Ψθ| U† |Ψθ̃⟩
⟨Ψθ̃|Ψθ̃⟩ ⟨Ψθ|Ψθ⟩

=
∑
σ,η

|Ψθ̃(σ)|2

⟨Ψθ̃|Ψθ̃⟩
|Ψθ(η)|2

⟨Ψθ|Ψθ⟩

[
1 − ⟨σ| U |Ψθ⟩

⟨σ|Ψθ̃⟩
⟨η| U† |Ψθ̃⟩

⟨η|Ψθ⟩

]
= Eχ[Iloc(σ, η)], (40)

where Iloc(σ, η) is the term in brackets and χ(σ, η) = |Ψθ̃(σ)|2|Ψθ(η)|2/ ⟨Ψθ̃|Ψθ̃⟩ ⟨Ψθ|Ψθ⟩.
Similarly, the (conjugate) gradient of the infidelity can be computed stochastically as:

∂θ̃∗
k
I = Eχ[O∗

k(σ)Iloc(σ, η)] − Eχ[O∗
k(σ)]Eχ[Iloc(σ, η)], (41)

where Ok(σ) = ∂θ̃k
log Ψθ̃(σ). We remark that the first term in the previous expression is free from the problem

present in FMC
k and SMC

k when |Ψθ̃⟩ → U |Ψθ⟩. Indeed, in this limit we have that for σ where Ψθ̃(σ) = 0 the
term ⟨∂θ̃k

Ψθ̃|σ⟩ ⟨σ| U |Ψθ⟩ vanishes, so the bias as in Eq. (8) disappears. Since we consider continuous time
dynamics generated by a succession of infinitesimal Us, such that |Ψθ̃⟩ ≈ U |Ψθ⟩ already at the beginning of
the optimizations, we can use the gradient Eq. (41) without incurring in the issues discussed for the tVMC.
The variance of Iloc can be directly computed from the one of Floc = 1 − Iloc as:

Varχ[Iloc(σ, η)] = Eχ[|Floc(σ, η)|2] − |Eχ[Floc(σ, η)]|2 = 1 − (1 − I)2 = 2I − I2. (42)

This proves that Iloc has a variance bounded above by 1 (because 0 ≤ I ≤ 1), as already noted in Ref. [80]
of the main text, and that it features a zero variance principle, since Varχ[Iloc(σ, η)] → 0 when the solution is
approached (I → 0), as the energy in VMC for ground state search. However, the SNR of Iloc is:

SNRχ[Iloc(σ, η)] =

√
I2

Varχ[Iloc(σ, η)] =
√

I2

2I − I2
I≪1∼

√
I, (43)

which vanishes when I → 0. This entails that when approaching the solution the number of samples Ns must
diverge as 1/I to resolve the infidelity with finite accuracy.

We find that this problem of diverging sampling overhead can be eliminated by applying the Control Variates
(CV) technique on Iloc. Since I is real, Re Iloc can be considered in place of Iloc in all the following. CV
consists of adding to an estimator an additional random variable that is correlated to the estimator and for
which the expectation value is known exactly, such that the fluctuations of this variable cancel out the ones
of the original estimator. For the infidelity, we discovered that |Floc|2 satisfies the required properties, since it
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is correlated to Iloc and we have Eχ[|Floc|2] = Eχ[|1 − Iloc|2] = 1. Therefore, we can define the CV infidelity
estimator:

ICV
loc = Re Iloc − c(|1 − Iloc|2 − 1), (44)

where c ∈ R. ICV
loc has the same mean as Re Iloc for any c, while its variance depends on c. Therefore, c can be

chosen such that Varχ[ICV
loc (σ, η)] is minimized. This optimal value, say c∗, is:

c∗ = −Covχ[Re Floc(σ, η), |Floc(σ, η)|2]
Varχ[|Floc(σ, η)|2] , (45)

where Covχ[A(σ), B(σ)] is the covariance of functions A and B of random variable σ with distribution χ. The
corresponding minimized variance is:

Varχ[ICV
loc (σ, η)](c∗) = Varχ[Re Iloc(σ, η)]

(
1 − c∗2Varχ[|Floc(σ, η)|2]

Varχ[Re Iloc(σ, η)]

)
, (46)

which is smaller than Varχ[Re Iloc(σ, η)]. c∗ from Eq. (45) depends on the parameters θ̃ of the variational ansatz,
thus its value varies during the optimization. However, it is possible to prove that when |Ψθ̃⟩ → U |Ψθ⟩, c∗ tends
to −1/2, such that we can fix c = −1/2 when I is smaller than a predetermined value and avoid to re-estimate
c∗ at each iteration. The limit value of c∗ can be proven analytically considering that when |Ψθ̃⟩ → U |Ψθ⟩ we
have Re Floc → 1 and |Floc|2 → 1 with same order as Re2 Floc. Therefore, computing lim|Ψθ̃⟩→U|Ψθ⟩ c∗ reduces

to solve limx→1 −(x3 − x)/(x4 − 1) = −1/2.
For reasons similar to the ones previously discussed for the first term in Eq. (41), the estimation of the CV

factor |1 − Iloc|2 is not affected by a bias or a vanishing SNR as FMC
k and SMC

kk′ when |Ψθ̃⟩ → U |Ψθ⟩, and it
is precisely in this limit where CV acts to keep the SNR constant. Therefore, ICV

loc is a well-defined infidelity
estimator.

F Infidelity estimator with importance sampling
The estimator Re Iloc(σ, η) is unbounded because it contains ratios of wave function amplitudes. Therefore,
it may diverge if ⟨σ| U |Ψθ⟩ and ⟨σ|Ψθ̃⟩ or ⟨η| U† |Ψθ̃⟩ and ⟨η|Ψθ⟩ differ of orders of magnitudes. This is a
severe problem when evolving the variational state after local measurements, since it may happen that on some
configurations the state |Ψθ⟩ is close to zero but U† |Ψθ̃⟩ is not. Therefore, despite these configurations are
rarely sampled, the estimator Iloc(σ, η) on them can be very large, significantly skewing the statistics. A way
to include these outliers in the sampling is to perform importance sampling (see Ref. [64] of the main text),
namely by rewriting:

I = Eχ[Iloc(σ, η)] = Eχ′

[
Iloc(σ, η) χ(σ, η)

χ′(σ, η)

]
, (47)

for a given distribution χ′. This latter can be chosen such that it minimizes the variance of the estimator,
leading to the expression:

I = Eχ′ [Iloc(σ, η)w(σ, η)], χ′(σ, η) = |Iloc(σ, η)|χ(σ, η)
Eχ[|Iloc(σ, η)|] , (48)

where w(σ, η) = Eχ[|Iloc(σ, η)|]/|Iloc(σ, η)|. Using ICV
loc in place of Iloc, importance sampling can be combined

with control variates obtaining the estimator:

I = Eχ′ [ICV
loc (σ, η)w(σ, η)]. (49)

The cost of importance sampling is almost n times larger than the cost of standard sampling, where n is the
number of spins on which U acts non-trivially.

G Exact application of a diagonal propagator
The exact solution θ̃ of the general optimization problem in the p-tVMC must satisfy:

⟨σ|Ψθ̃⟩ = C ⟨σ| U |Ψθ⟩ , (50)
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for all configurations σ and any constant C equal for all σ. For certain U and variational states, Eq. (50) can
be solved exactly. In particular, if U is diagonal in the basis {|σ⟩} and if it is possible to write ⟨σ|Ψθ̃⟩ =
⟨σ|Ψθ⟩ ⟨σ|Ψδθ⟩ ∀σ with some update δθ, Eq. (50) is reduced to:

⟨σ|Ψδθ⟩ = CU∗
σ , (51)

where Uσ is the eigenvalue of U for the eigenstate |σ⟩. In the following, we consider spin systems for simplicity.
For the RBM, Eq. (51) admits a solution when U = Rz

i (ϕz) = e−iϕzσz
i consisting in an update of the visible bias

only. If U = Rzz
ij (ϕzz) = e−iϕzzσz

i σz
j , instead, a simple parameter update is not sufficient. The transformation

can be exactly implemented by adding a hidden unit (see Refs. [32, 33] of the main text). However, in general,
starting with an arbitrary ansatz |Ψθ⟩, it is possible to add two variational terms such that both Rz

i and Rzz
ij

can be exactly simulated with a parameter change. Indeed, |Ψθ⟩ can be modified into a new ansatz |Ψ
J

(1)
i

,J
(2)
ij

,θ
⟩

with two additional parameters {J
(1)
i , J

(2)
ij } which is defined as:

|Ψ
J

(1)
i

,J
(2)
ij

,θ
⟩ = e−iJ

(1)
i

σz
i e−iJ

(2)
ij

σz
i σz

j |Ψθ⟩ . (52)

The two exponential terms factorize as required to have Eq. (51), such that the application of Rz
i (ϕz) translates

into the updates δJ
(1)
i = ϕz, δJ

(2)
ij = 0 and δθ = 0, while for Rzz

ij (ϕzz) the changes δJ
(1)
i = 0, δJ

(2)
ij = ϕzz and

δθ = 0 are required. Adding many two-site terms in the ansatz, it is possible to simulate the dynamics of the
diagonal part of the TFI Hamiltonian HTFI exactly.

H Stochastic estimator for the Rényi-2 entropy
An estimator for the Rényi-2 entanglement entropy S2 = − log2 Tr ρ2

A can be obtained by explicitly writing the
definition of the purity of the reduced density matrix:

Tr ρ2
A = Tr

[(
TrB

|Ψθ⟩ ⟨Ψθ|
⟨Ψθ|Ψθ⟩

)2
]

=
∑

σ′,η,η′

⟨σ′, η|Ψθ⟩ ⟨Ψθ|η⟩ ⟨η′|Ψθ⟩ ⟨Ψθ|η′, σ′⟩
⟨Ψθ|Ψθ⟩ ⟨Ψθ|Ψθ⟩

, (53)

where TrB indicates the partial trace over B, σ′ ∈ A and η, η′ ∈ B. Now, inserting a further completeness
relation in A and dividing by wave function amplitudes one obtains:

Tr ρ2
A =

∑
σ,σ′

η,η′

|Ψθ(σ, η)|2

⟨Ψθ|Ψθ⟩
|Ψθ(σ′, η′)|2

⟨Ψθ|Ψθ⟩
Ψθ(σ′, η)Ψθ(σ, η′)
Ψθ(σ, η)Ψθ(σ′, η′) = E Π(σ,η)

Π(σ′,η′)

[
Ψθ(σ′, η)Ψθ(σ, η′)
Ψθ(σ, η)Ψθ(σ′, η′)

]
. (54)
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