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A promising avenue for the preparation of Gibbs states on a quantum computer
is to simulate the physical thermalization process. The Davies generator describes
the dynamics of an open quantum system that is in contact with a heat bath.
Crucially, it does not require simulation of the heat bath itself, only the system we
hope to thermalize. Using the state-of-the-art techniques for quantum simulation
of the Lindblad equation, we devise a technique for the preparation of Gibbs states
via thermalization as specified by the Davies generator.

In doing so, we encounter a severe technical challenge: implementation of the
Davies generator demands the ability to estimate the energy of the system unam-
biguously. That is, each energy of the system must be deterministically mapped
to a unique estimate. Previous work showed that this is only possible if the system
satisfies an unphysical ‘rounding promise’ assumption. We solve this problem by
engineering a random ensemble of rounding promises that simultaneously solves
three problems: First, each rounding promise admits preparation of a ‘promised’
thermal state via a Davies generator. Second, these Davies generators have a
similar mixing time as the ideal Davies generator. Third, the average of these
promised thermal states approximates the ideal thermal state.
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1 Introduction
Motivation. Preparing Gibbs states is a major task for quantum computers. There are
several reasons for this. First, the Gibbs state is one of the most important states of mat-
ter. For quantum models comprised of many locally interacting particles, it describes a wide
range of physical situations, relevant to condensed matter physics, high energy physics, quan-
tum chemistry [Alh22]. Therefore, to use the quantum computer as a universal simulator
of quantum systems, it is desirable to be able to prepare Gibbs states. Second, for general
Hamiltonians, the Gibbs state is a crucial ingredient in some quantum algorithms such as
those for solving semidefinite programs [VAGGdW20, BKL+19, vAG19, GSLW19] and for
training quantum Boltzman machines [KW17]. Third, the problem of estimating the quan-
tum partition function, which is connected to the problem of approximately preparing the
Gibbs state, plays an important role in quantum complexity theory [BCGW21].

Background and overview of prior work. There are three main approaches to preparing
Gibbs states.

The first one is a Grover-based approach in which an initial state is mapped onto a
certain purification of the Gibbs state at inverse temperature β (see [PW09, CS17]). The
resulting running time is dictated by the overlap between the initial and target states, which
is exponentially small in the system size. The Gibbs state can be approximately prepared in

time on the order of
√
D/Zβ, where D denotes the dimension of the quantum system and

Zβ the partition function at inverse temperature β. In [HMS+22] a quantum algorithm is
presented for preparing a purification of the Gibbs state for the Hamiltonian H1 = H0 +V at
inverse temperature β starting from a purification of the thermal state of H0.

The second approach is based on Davies generators, which is a differential equation that
describes how nature thermalizes a quantum system to its thermal equilibrium [Dav76, Dav79].
Davies generators are special cases of Lindbladians [Lin76, BP02], which describe the most
general continuous-time Markovian dynamics of an open quantum system, i.e., a quantum
system that is weakly coupled to the environment and the dynamics of the environment are
fast enough so that the information only flows from the system to the environment while no
information is flowing back to the system. The method in [CB21] simulates a Davies generator
by attaching a heat bath and simulating time evolution on the joint system while repeatedly
refreshing the bath. Their algorithm in some sense follows the original derivation of the Davies
generator as the limit of such joint system-bath Hamiltonian time evolution. When the system
Hamiltonian satisfies the Eigenstate Thermalization Hypothesis (ETH), they show that the
implemented quantum map not only converges to the desired Gibbs state, but also does so in
polynomial time.

The third approach is based on the quantum Metropolis algorithm [TOV+11]. This
approach also avoids the exponential scaling when the system Hamiltonian satisfies ETH
[SC22, CB21].

The advantages of the second approach are two fold. First, for every quantum system that
thermalizes fast in nature, it is expected that our algorithms can also prepare its corresponding
Gibbs state efficiently without suffering from the exponential dependence on the number of
qubits. Second, this approach fits well for many physics-motivated applications. For example,
we can use our algorithm to prepare a “partially thermalized” (in the natural thermalization
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process) thermal state, which might be of interest in some scenarios.

Main result. The present work examines how to approximately prepare Gibbs states for
arbitrary system Hamiltonians by simulating time evolutions according to carefully engineered
Lindbladians. These Lindbladians are derived from an ideal Davies generator having the Gibbs
state as unique fixed point.

There are some similarities but also important differences to the work [CB21]. Obviously,
both are based on Davies generators. In contrast, we do not approximate Lindblad evolution
with the help of the Hamiltonian evolution of the system and a bath, a method with which
it is provably impossible to achieve linear scaling in evolution time (see [CW17]). Instead,
we rely on a method for directly simulating Lindbladian time evolution specified by any
jump operators. Using this method can lead to a reduction in resources: specifically, we
achieve linear scaling in the mixing time tmix. In addition, a direct Lindblad simulation
approach avoids the complication of dealing with the dynamics of the bath and the interaction
Hamiltonians. We also seek to prove that our quantum map approximates the Gibbs state
for any system Hamiltonian, that is, we do not need to make an assumption such as ETH.

The quantum algorithms for simulating Lindbladian time evolution in [CW17, LW22] as-
sume that the jump operators have been suitably encoded. Unfortunately, it is not possible to
construct jump operators of a Davies generator due to inherent imperfections of energy esti-
mation of general Hamiltonians. However, we show how to construct a family of Lindbladians
from the given Davies generators such that simulating them with the help of the simulation
algorithms in [CW17, LW22] and taking the average of the resulting quantum states provides
a good approximation of the Gibbs state. This is formulated in more detail in the theorem
statement below.

Theorem 1 (Main result – informal statement). Assume we are given block encodings of the
Hamiltonian H, coupling operators Sα, and a filter function G. With appropriately chosen
Sα, these give rise to a Davies generator L that has the Gibbs state ρβ for inverse temperature
β as a unique fixed point. Assume that after time tmix the time evolved state exp(tmixL)(σ0)
is ε-close to the Gibbs state ρβ for any initial state σ0.

We engineer a certain family of 2r many Lindbladians L̃(j) from the above Davies generator
L. These Lindbladians have a new ‘attenuated’ mixing time tmix, and their jump operators
can be encoded efficiently with imperfect energy estimation. This makes it possible to simulate
their time evolutions exp

(
tL̃(j)

)
. We prove that the average

1
2r

∑
j

exp
(
t̃mixL̃(j)

)
(σ0) (1)

is ε-close to the Gibbs state ρβ for any initial state σ0. Furthermore, we show how to imple-
ment the time evolution according to L̃(j) to arbitrarily small failure probability δL, and that
the total number of invocations of the block encoding of the Hamiltonian is bounded by:

O
(
t̃mix · γ−1 · β3ε−7 · polylog(t̃mix/δL) · log2(β/ε)

)
, (2)

where γ is an attenuation coefficient that affects the attenuated mixing time t̃mix.
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Remark. After the first version of this manuscript was made public, recent work [CKBG23]
resolved an open question raised in this manuscript (see Section 7) on utilizing the block
encoding of the form ∑

j |j⟩ ⊗ Lj. Using the Theorem III.1 of [CKBG23] together with slight
adaptation of the simulation algorithm in [LW22], the complexity of our algorithm can be
improved to Õ(t̃mix · γ−1 · βε−2). We also note that the additional factor of log2(β/ε) can be
removed via existing techniques from [Ral21].

In Section 5 we give some numerical experiments indicating that the attenuated mixing
time t̃mix is on the order of the original mixing time tmix for suitably chosen γ−1.

We formulate in Section 7 some open research questions whose solution could lead to
improvements of our current methods.

Technical overview. As mentioned above, the implementation of jump operators of a
Davies generator requires perfect energy estimation. More precisely, what we mean by perfect
is that energy estimation would have to be unambiguous: for each energy of the Hamiltonian, it
must yield a unique energy estimate. Unfortunately, energy estimation unavoidably produces
superpositions of different energy estimates for general Hamiltonians: if |ψ⟩ is an eigenstate
of the Hamiltonian with eigenvalue λ, energy estimation implements a map:

|ψ⟩ 7→ |ψ⟩ ⊗
(
α |λ̃1⟩ + β |λ̃2⟩

)
(3)

where λ̃1 and λ̃2 are two different estimates of λ. This superposition of estimates cause
constant-size errors in quantum algorithms implementing Davies generators, and must be
eliminated. With perfect estimation, the superposition on the second register is not present
and there is always a unique estimate.

It is possible to construct an ‘approximate Davies generator’ from an energy estimation
algorithm that produces superpositions of estimates. However, the resulting dynamics no
longer correspond to the Davies generator of any particular Hamiltonian, making it challenging
to analyze. To our knowledge, no method exists for rigorously proving the accuracy of an
algorithm based on such an approximate Davies generator. We highlight some of the challenges
of this task in Appendix C.

It was shown in [Ral21] that perfect energy estimation is possible when the Hamiltonian
satisfies a ‘rounding promise’ assumption. The rounding promise prohibits the Hamiltonian
from having any eigenvalues that induce a superposition of estimates. However, such an
assumption on the Hamiltonian is extremely unphysical and will not be satisfiable in practice.
The main technical idea of the present work is to shift the notion of a rounding promise away
from the Hamiltonian itself, but rather to a family of states. The basic idea is very simple:
if a quantum state has no support on any eigenstates whose eigenvalues have a superposition
of estimates, then it is as if the Hamiltonian did not have such eigenvalues. This family of
states is defined by a ‘promised subspace’.

Since perfect energy estimation is possible on a promised subspace, implementation of
Davies generators is possible as well. While the analysis involves a wide variety of error
parameters, we find that all of them admit a mathematically rigorous treatment.

Our construction relies on just one assumption: that we can construct coupling operators
for each promised subspace that ensure that the Davies generator converges in a reason-
able amount of time. We give numerical evidence that projecting a coupling operator into a
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promised subspace does not significantly reduce the Davies generator’s convergence time. No-
tice how this assumption has nothing to do with the protocol’s accuracy, only its convergence
time.

We now summarize the different types of errors that occur in our implementation, and
the rough ideas behind keeping them under control:

• Lindblad simulation error: There exists a quantum algorithm, e.g. [CW17], for simu-
lating Lindblad evolution given a description of the jump operators of a Lindbladian L.
For evolution time t and accuracy δsim, this algorithm implements a quantum channel
with accuracy δsim in terms of the diamond norm to the ideal channel eLt. In our case,
we simulate the dynamics that approximates a special Lindbladian called the Davies
generator.

• Knowledge of mixing time: Given a Hamiltonian H, coupling operators Sα, and a
filter function G, the Davies generator is a certain Lindbladian whose fixed point is the
desired thermal state ρβ = e−βH/Tr e−βH . We assume we are given the Hamiltonian
and suitable coupling operators of the Davies generator together with a bound tmix after
which, the state is sufficiently close the desired thermal state.

• Precision and failure probability of energy estimation: The jump operators of a Davies
generator depend on the coupling operators and on the Bohr frequencies (differences
of the energies) of the Hamiltonian and the corresponding pairs of eigensubspaces. To
realize these, we rely on energy estimation of the Hamiltonian.

By restricting to the promised subspace, we can guarantee using techniques from [Ral21]
that for every energy λ there exists a single unique estimate λ̃. There remain two other
kinds of error, both of which can be dealt with rigorously.

First, the energy estimation map is only implemented with a failure probability δest that
can be exponentially suppressed. By phrasing this error as a deviation in spectral norm
of the Lindbladian jump operators, we can show that this error is not blown up when
the Davies generator is simulated for a long period of time.

Second, the cost of energy estimation scales linearly with the precision of the estimate.
To analyze this, we leverage a trick from [PW09]: instead of preparing the thermal
state for the original Hamiltonian, one can interpret the resulting process as preparing
the thermal state for a rounded Hamiltonian. Since the norm of the difference of these
Hamiltonians is small, the corresponding thermal states are close to each other.

• Preparation of an initial state on the promised subspace: We implement a Davies gen-
erator whose dynamics are trivial outside the promised subspace. In order to prepare
a promised thermal state, we must feed the Davies generator with a state that is ex-
clusively supported on the promised subspace. We achieve this by taking an arbitrary
input state and measuring a two-outcome ‘left-right’ POVM. Depending on the POVM
outcome, we know that either a ‘left’ or a ‘right’ rounding promise is satisfied by the
post-measurement state.

• Approximation of the ideal Gibbs state: Our goal is to prepare a Gibbs state supported
on the entire Hilbert space. But our protocol only prepares promised Gibbs states, which
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are only supported on the promised subspace. Thus, individual promised thermal states
are generically far in trace distance from the ideal state. To deal with this, we show
that there exists an ensemble of rounding promises such that the ensemble average of
all the promised Gibbs states is an accurate approximation of the ideal thermal state.
The basic idea of this ensemble is that the probability of any particular energy being
excluded can be made arbitrarily small.

• Leakage and attenuation errors in removal of rounding promise: The constructed cou-
pling operators of the Davies generators for the well-rounded Hamiltonians on the
promised subspaces have two important types of errors, namely, ‘leakage’ and ‘attenu-
ation.’

The leakage error δleak measures how much coupling operators and initial states ‘leak’
outside a promised space. Fortunately, δleak can be made exponentially small by using
quantum singular value transformation.

Blocks of coupling operators corresponding to some pairs of energies can be ‘attenuated’,
i.e., multiplied by small positive numbers. However, as long as attenuation remains non-
zero, the fixed-point remains the thermal state for the well-rounded Hamiltonian on the
promised subspace. Unfortunately, the mixing speed can be negatively affected.

• Mixing assumption for projected/attenuated coupling operators: In principle, it could
happen that the ideally projected coupling operators do not guarantee convergence to
the thermal state of the well-rounded Hamiltonian on the promised subspace anymore.
Moreover, even if they do, attenuation could increase the convergence time.

However, we provide numerical evidence that these unfavorable situations do not typi-
cally occur. For the theoretical analysis of our quantum algorithm, we must assume that
the attenuated coupling operators for the well-rounded Hamiltonian on the promised
subspaces have similar mixing behavior as the original coupling operators.

2 Preliminaries
In this section, we first review some preliminaries about Gibbs states and Davies generators
in order to establish notation and to rigorously define our goal: to prepare a Gibbs state by
simulating the time evolution of a Davies generator. To do so, we leverage an algorithm for
simulating general Lindblad evolution [LW22].

In order to implement the Davies generator, we require conditions under which the energy
of a Hamiltonian can be estimated without producing superpositions of different energy esti-
mates. So, in Section 2.2 we establish the notion of a rounding promise, and review a result
from [Ral21] how a rounding promise can ensure that each energy is rounded to a unique
energy when performing energy estimation.

Here are some notations and conventions used in this paper. We use Z+ to denote the set
of all positive integers. Let H be a Hilbert space. We use L(H) to denote the collection of
all linear operators (matrices) of the form: A : H → H. For a matrix A, the spectral norm
∥A∥ is the largest singular value of A, and the trace norm ∥A∥1 is the sum of the singular
values. For a superoperator Λ, the induced trace norm of Λ, denoted by ∥Λ∥1, is defined as
∥Λ∥1 = maxA ̸=0 ∥Λ(A)∥1/∥A∥1. If Λ is acting on L(H) for some Hilbert space H, then, the
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diamond-norm of Λ, denoted by ∥Λ∥⋄, is defined as ∥Λ∥⋄ = ∥Λ ⊗ I∥1, where I is the identity
map acting on L(H). If A and B are matrices, then we say A ≥ B if A−B is positive semi-
definite. Finally, a block encoding of A is a unitary matrix UA that, for some ancilla-count k,
satisfies:

A =
(

⟨0k| ⊗ I
)
UA

(
|0k⟩ ⊗ I

)
. (4)

2.1 Gibbs states and Davies generators
We now define some fundamental concepts required to state our quantum algorithm and to
analyze its performance.

Definition 2. Let H be a Hamiltonian on the Hilbert space H with eigendecomposition

H =
∑

i

λiΠi. (5)

Here, the Πi are projectors onto the subspace with energy λi. We assume that the spectrum
of H is contained in the interval [0, 1]. For inverse temperature β > 0, the Gibbs state ρβ

is the state such that

ρβ ∝ exp(−βH). (6)

The partition function Zβ is the normalization factor given by

Zβ = Tr (exp(−βH)) . (7)

Our quantum algorithm makes it possible to approximately prepare thermal states ρβ. It
is based on the Davies generators defined below. The Davies generators describe dissipative
dynamics that converge to thermal states.

Definition 3. Let {Sα}α be a collection of Hermitian operators acting on H. The Davies
generator with respect to the system Hamiltonian H and the coupling operators Sα is the
Lindbladian L in the Schrödinger picture given by

L(σ) =
∑
ω

G(ω)
(∑

α

Sα(ω)σSα(ω)† − 1
2
(
Sα(ω)†Sα(ω)σ + σSα(ω)†Sα(ω)

))
. (8)

The jump operators Sα(ω) are enumerated by the Bohr frequencies ω of H and are
obtained from the coupling operators Sα by

Sα(ω) =
∑
i,j

λi−λj=ω

ΠiSαΠj . (9)

The filter function G(ω) is a real-valued function satisfying G(ω) = eβωG(−ω).
The time evolution of quantum states is given by the quantum channels

Tt = exp(tL) (10)

for t ≥ 0.
We say that a quantum state ρ is a fixed point of the Davies generator L if

L(ρ) = 0. (11)
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It is known that if the fixed point of the Davies generator L is unique, then the Lindbladian
time evolution is relaxing in the sense that

lim
t→∞

Tt(σ) = ρβ (12)

for any initial state σ (see [Nig19] and the references therein). The converse clearly holds.

Definition 4. We call the coupling operators Sα of a Davis generator L mixing if the thermal
state ρβ is the unique fixed point of L. In this case, tmix denotes the mixing time of L, that
is, the smallest time t such that Tt(σ) is guaranteed to be sufficiently close to the desired
thermal state ρβ for any initial state σ.

There are several sufficient conditions guaranteeing the uniqueness of the fixed point. For
instance, it can be shown that the thermal state ρβ is the unique fixed point of the Davis
generator L, if the matrix algebra generated by the coupling operators Sα is the full matrix
algebra (this statement follows from [Spo77]; see also the discussion in [Nig19] for an overview
of other sufficient conditions).

The Lindbladian L of the Davies generator can also be written in terms of a collection of
jump operators {Lω,α}ω,α:

L(σ) =
∑
ω,α

Lω,ασL
†
ω,α − 1

2
(
L†

ω,αLω,ασ + σL†
ω,αLω,α

)
(13)

where Lω,α =
√
G(ω)Sα(ω). Having brought the Davies generator into this form, we can

leverage existing results for Lindblad simulation [CW17].
In particular, say we can implement a block encoding of the operator OL that implements

the jump operators as follows:

OL(|0⟩ ⊗ |ψ⟩) =
∑
ω,α

|ω, α⟩ ⊗ Lω,α |ψ⟩ (14)

Then, given access to OL, we have technical tools to simulate the time evolution eLt. We use
the simulation algorithm from [LW22], which simplifies the simulation algorithm of [CW17]
and also generalizes their input models to block-encodings.

Proposition 5 (Lindblad simulation, adapted from [LW22]). Say L is a Davies gener-
ator acting on k qubits with m many jump operators Lω,α with ∥Lω,α∥ ≤ 1, and say we are
given access to oracles to the jump operators via the block encoding OL above. Then, for any
t ≥ 0 and any δsim > 0, there exists a quantum algorithm that implements a quantum channel
δsim-close in the diamond norm to etL, making

O

(
mt

log(mt/δsim)
log log(mt/δsim)

)
(15)

uses of the block encoding of OL, and

O

(
m2t

( log(mt/δsim)
log log(mt/δsim)

)2)
(16)

additional 1- and 2-qubit gates.
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In our adaptation of the theorem above from [LW22], we have replaced a quantity ||Lbe||
with a bound O(m) which follows from the fact that ||Lα,ω|| ≤ 1.

So, the central task is to implement a block encoding of OL for the Davies generator,
which essentially amounts to implementing block encodings of the Sα(ω) operators. Once
this is accomplished, we can simulate the evolution etmixL on any input state, and obtain an
approximation of the thermal state ρβ.

2.2 Rounding promises
Unfortunately, it is not possible to block encode the jump operators Sα(ω) of Davies generators
without prior knowledge of the spectrum of H. Ideally, we would like to implement a unitary
that performs the isometry: ∑

i

Πi ⊗ |λi⟩ , (17)

that is, computes a binary representation of the energy λi into a new register. However,
there are two unavoidable limitations. First, λi can only be estimated to precision ε using
only O(1/ε) many resources. So, unless we select ε to be less than the smallest gap between
any pair of energies, which requires at least O(dim(H)) many resources, we will be unable to
distinguish certain energies. We find that, leveraging a trick from Poulin and Wocjan [PW09],
this error can be dealt with formally.

However, the second limitation is more challenging to deal with. Rall [Ral21] observed
that for any energy estimation algorithm there will exist particular energies λi such that a
corresponding eigenstate |ψi⟩ will produce a superposition of estimates:

|ψi⟩ 7→ |ψi⟩ ⊗
(
α |λ̃i⟩ + β |λ̃′

i⟩
)

(18)

where α, β are complex coefficients and λ̃i, λ̃
′
i are two estimates of the energy λi. Essentially,

certain energies λi are indecisive about which direction they want to round, and end up being
rounded up or down in superposition.

The superposition of rounding directions creates cross terms between the rounding results
in the construction of approximate block encodings of the jump operators Sα(ω), which cause
errors in spectral norm of constant size no matter how high the precision of energy estimation,
at least using SVT-techniques. A new approach is needed.

To remove the superposition of rounding errors, Rall [Ral21] introduced the notion of
a ‘rounding promise’. Observing that certain λi are indecisive about their rounding, the
rounding promise simply asserts that these λi do not appear in H. This assumption on H is
very unphysical. In our work, we introduce a new notion of a rounding promise that can be
guaranteed without restricting the Hamiltonian, and makes a similar guarantee. The central
idea is similar: certain energies λi are disallowed. But instead of being an assumption on the
Hamiltonian itself, our rounding promises define subspaces of the Hilbert space.

Definition 6. A rounding promise M is a collection of s(M) many intervals [a(M)
x , b

(M)
x ] ⊆

[0, 1], enumerated by the label x ∈ {0, 1, . . . , s(M) − 1}, such that b(M)
x < a

(M)
x+1 for all x. We

always use the convention that the first interval starts at 0 and the last one ends at 1. A gap
of M is a connected open subinterval (b(M)

x , a
(M)
x+1) that spans the gap between two adjacent
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intervals [a(M)
x , b

(M)
x ] and [a(M)

x+1, b
(M)
x+1]. If we write λ ∈ M , we mean that λ is contained in the

union of all the intervals.
The promised eigenspace projector P (M)

x is the projector onto the eigenspaces of H =∑
i λiΠi whose eigenvalues lie in the interval [a(M)

x , b
(M)
x ], that is:

P (M)
x :=

∑
i

λi∈[a(M)
x ,b

(M)
x ]

Πi. (19)

The promised subspace projector P (M) is the projector onto the eigensubspaces of H
whose eigenvalues lie in M , that is:

P (M) :=
s(M)−1∑

x=0
P (M)

x . (20)

The promised subspace P(M) is

P(M) := image of P (M). (21)

Remark 7. When the rounding promise M is fixed, we often omit the superscript (M) to
abbreviate the notation. For instance, we write P instead of P(M) for the promised subspace
projector.

Rather than restricting the Hamiltonian itself, we have defined a subspace P(M) on which
energy estimation can be performed without superpositions of rounding errors. Further-
more, the rounding promise also conveniently specifies the estimates themselves: estimating

λ amounts to identification of the index x such that λ ∈ [a(M)
x , b

(M)
x ]. Indeed, we have the

following result:

Proposition 8 (Energy estimation given a rounding promise [Ral21]). Say M is a
rounding promise, say κ is the length of the smallest gap. Suppose also that the number
of intervals s(M) satisfies s(M) ≤ 2n+1, so each label can be thought of as a bit string x ∈
{0, 1}n+1.

Then, for any δest > 0, there exists a family of operators P̃x that approximate Px in the
sense that: ∥∥∥P̃xP

(M) − Px

∥∥∥ ≤ δest. (22)

In fact, Px, P̃x and P (M) commute. Moreover, say we have a block encoding of a Hamiltonian
H. Then, for any δest, there exists a quantum circuit that implements an isometry Ẽ(M)

satisfying:

Ẽ(M) =
∑

x

|x⟩ ⊗GP̃x
(23)

where the GP̃x
are isometries satisfying G†

P̃x
GP̃x

= P̃x. This circuit can be implemented using
O(n2κ−1 log

(
δ−1

est

)
) applications of the block encoding of H and 1- and 2-qubit gates.

We prove this in Appendix B. The factor of O(n2) can be removed with some additional
care using techniques from [Ral21], but we keep it here to simplify the algorithm. This factor
corresponds to the O(log2(β/ε)) in the performance in Theorem 1.
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3 Algorithm overview
While we cannot use Davies generators to exactly prepare the Gibbs state ρβ on the entire

space, we can prepare the promised Gibbs states ρ
(M)
β which are restricted to a particular

promised subspace P(M).

Definition 9. Let M be a rounding promise. For each x, let m(M)
x denote the midpoint of the

interval [ax, bx]. For β ≥ 0, the promised Gibbs state ρ(M)
β is the density matrix supported

only on the promised subspace P(M) such that

ρ
(M)
β ∝

∑
x

exp
(

− βm(M)
x

)
P (M)

x . (24)

The promised partition function Z(M)
β is the normalization factor

Z(M)
β :=

∑
x

exp
(

− βm(M)
x

)
Tr
(
P (M)

x

)
. (25)

With this idea in place, we can give an informal high-level overview of our algorithm. Each
of the major challenges in the algorithm’s construction is treated in a section of this paper.

First, promised thermal states are in general not close to the ideal thermal state. However,
we find that a suitable ensemble of promised thermal states is satisfactory.

Claim 10 (Section 4). The desired thermal state ρβ for the Hamiltonian H can be approxi-
mated by an average of promised thermal states ρ(Mj)

β for suitably chosen rounding promises
Mj, where j ∈ {0, . . . , 2r − 1}. In particular, let ρ∗ be the ensemble average over the promised
thermal states of the Mj. Then, if we perform energy estimation to n bits of precision:

∥ρ∗ − ρβ∥1 ≤
√
β · 2−n + 2 · 2−r (26)

The main idea is that the rounding promises Mj have to be chosen such that each eigen-
value λi of the Hamiltonian H is contained in at least 2r − 1 rounding promises Mj . That
way any individual eigenspace can be missing with probability at most 2−r.

Second, we must restrict the dynamics of a Davies generator to a promised subspace. This
‘promised Davies generator’ will then be used to prepare the promised thermal states.

Definition 11 (Promised Davies generator). Say L is a Davies generator on the full
Hilbert space with coupling operators Sα. Say M is a rounding promise, and we are given an
‘attenuation operator’ A(M) that commutes with the Hamiltonian and satisfies:∥∥∥A(M)(I − P (M))

∥∥∥ = 0. (27)

Then, the promised Davies generator L(M) is a Lindblad operator defined by the jump
operators Lν,α given by:

L(M)
ν,α =

√
G(ν)S(M)

α (ν). (28)
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Its Bohr frequencies ν are differences of the form m
(M)
x − m

(M)
y , where m(M)

x and m
(M)
y

are the midpoints of the intervals [ax, by] and [ay, by] ∈ M , respectively. Its jump operators
S

(M)
α (ν) are given by

S(M)
α (ν) =

∑
x,y

m
(M)
x −m

(M)
y =ν

PxS
(M)
α Py. (29)

Finally, the coupling operators S(M)
α are given by

S(M)
α = A(M)SαA

(M). (30)

In Section 4 we will construct the attenuation operator A(M) as well as show that the
promised Davies generator has the following properties:

Claim 12 (Section 5). Say L is a Davies generator on the full Hilbert space with coupling op-
erators Sα. Then, for any rounding promise M , there exists a promised Davies generator
L(M) with the following properties:

• If an input state σ is supported only on P(M), the output state etL(M)(σ) will be as well.

• The unique fixed point of L(M) is the promised thermal state ρ(M)
β .

• Numerical simulations indicate that the mixing time t̃mix of L(M) is not too much slower
than that of L.

The purpose of the attenuation operator A(M) is to ensure that the output of the Lindblad
evolution according to L(M) is confined to the promised subspace. Then, so long as time
evolution starts in an initial state σ̃(M) that is approximately supported on the promised
subspace P(M), then the output state will be as well.

The attenuation operator can make the mixing time of the Lindblad evolution slower.
First, even in the ideal case when A(M) = P (M), the elimination of certain energy eigenspaces
may result in slower mixing. Second, it is not possible to project onto the promised subspace
perfectly, for similar reasons that it is not possible to estimate energies without superpositions
of rounding errors. We solve this problem by attenuating some of the eigenspaces in the
promised subspace as well. This may also result in slower mixing. We show via numerical
study that neither of these effects make the mixing time too much worse in practice.

Remark 13 (Well-rounded Hamiltonian). Note that the promised Davies generator L(M)

is block diagonal with respect to the orthogonal decomposition H = P(M) ⊕P(M)⊥. It acts as 0
on P(M)⊥, and acts on P(M) as the Davies generator with respect to the promised Hamiltonian
H(M) :=

∑
xm

(M)
x P

(M)
x and coupling operators S(M)

α (where we view all operators as restricted
to the promised subspace P(M)).

Third and finally, we show how to construct an approximate block encoding OL(M) for
each promised Davies generator. This lets us leverage Proposition 5 to simulate the Lindblad
dynamics and prepare the promised thermal states.
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Claim 14 (Section 6). Say we are given block encodings of some coupling operators Sα, and
one of the rounding promises M ∈ {M0, . . . ,M2r−1}. Suppose we perform energy estimation
to n bits of precision. Then, there exists a quantum algorithm that implements time evolution
for time t according to L(M) to any precision δL > 0 in the diamond norm using:

O
(
γ−1 · n223n+rt · polylog(t/δL)

)
(31)

invocations to the block encoding of H, where γ is an attenuation coefficient introduced in
Section 5. We accomplish this by constructing and simulating time evolution according to an
approximate promised Davies generator L̃(M).

4 Averaging together promised thermal states
By selecting a rounding promise M restricting to a promised subspace P(M), we have gained
the ability to approximately prepare promised Gibbs states ρβ

(M). These Gibbs states have
support only on P(M), and thus may be far from the true thermal state ρβ. In this section
we show how to construct several rounding promises Mj ∈ {M0, . . . ,M2r−1}, such that the
ensemble average over the ρβ

(Mj)’s is provably close to ρβ.
Furthermore, to prepare an approximation of ρβ

(Mj), we require an initial state σ that is
also approximately supported only on P(Mj). This state is then fed as input to the promised
Davies generator, whose dynamics are trivial outside of P(Mj). We also show how to prepare
these initial states in this section: it is achieved by measuring a POVM called the ‘left-right
POVM’ on an arbitrary initial state.

The left-right POVM splits the computation into two branches, each corresponding to a
family of left rounding promises L̄, Lj and right rounding promises R̄, Rj . We use M as a
symbol to denote either L or R depending on which branch we are in. An overview of the
algorithm as a whole is as follows:

Step 1. Take an arbitrary initial state σ, and measure the left-right POVM defined in Sec-
tion 4.1. Depending on the measurement outcome, the resulting state σ̃(M) will be ap-
proximately supported on P(M̄), where M̄ ∈ {L̄, R̄} is one of two ‘fine-grained’ rounding
promises.

Step 2. Pick an index j ∈ {0, ..., 2r − 1} uniformly at random. This index determines a
‘coarse-grained’ rounding promise Mj , which is either Lj or Rj depending on the mea-
surement outcome of the left-right POVM. These are defined in Section 4.2. Since the
Mj are coarse-grainings of M̄ , the input state σ̃(M) is supported only on P(Mj) for any
j.

Step 3. Use the promised Davies generator to approximately prepare ρβ
(Mj). This is dis-

cussed in Sections 5 and 6.

Analysis. Let ρ∗M be the ensemble average over the index j that we selected in step 2 and
used to prepare ρβ

(Mj). We show that for both M ∈ {L,R}, the density matrix ρ∗M

is close in trace distance to the ideal thermal state ρβ. We perform this analysis in
Section 4.3.

This protocol is represented diagrammatically in Fig. 1.
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Initial

State

Step 1:

Left-Right POVM

σ

Step 2:

Select Coarse-Grain

σ  ∈L

σ  ∈R

(L)

(R)

σ  ∈L(L)

j

σ  ∈R(R)
j

Step 3:

Apply Promised

Davies Generator

ρ
(L )j

β

ρ
(R )j

β

Analysis:

Ensemble

Over j

ρ*R

ρ*L ρ≈ β

ρ≈ β

Figure 1: Sketch of a protocol that leverages promised Davies generators to prepare an approximation
ρ∗M of an ideal thermal state ρβ (for M ∈ {L,R}). In the figure above, ρ ∈ M̄ is a shorthand for ‘ρ is
approximately supported entirely on P(M̄)’, which we define more rigorously in Definition 15.

4.1 The Left-Right POVM
The Left-Right POVM has the purpose of producing a quantum state σ̃(M) which is guaranteed
to be approximately supported on one of the two fine-grained rounding promises M̄ ∈ {L̄, R̄}
depending on the measurement outcome. In this section we show how to implement this
POVM, and prove that the post-measurement state has the desired property. We define this
notion rigorously now:

Definition 15. Say M is a rounding promise and σ̃ a density matrix. We say σ̃ is δsup-
approximately supported on M if

Tr
(
σ̃P (M)

)
≥ 1 − δsup. (32)

In other words, if we measure the projector P (M) in order to project into the promised subspace
P(M), we succeed with probability ≥ 1 − δsup.

The construction depends on two parameters: n and r. Here n is the number of bits
of precision for energy estimation, and r determines the number of coarse-grained rounding
promises, which is 2r. The implementation of the left-right POVM as well as energy measure-
ment using Proposition 8 will require O(2n+r) applications of the block encoding of H. This is
because all the rounding promises in this construction have a minimum gap size κ = 2−n−r−2.

The quantities 2−n and 2−r correspond to two different errors on the final state. The
quantity 2−n corresponds to the accuracy of energy estimation, and 2−r is the probability
with which any particular energy is excluded from the ensemble. We will show in Theorem 24
that if output state is ρ∗, then we have the guarantee is ∥ρ∗ − ρβ∥1 ≤

√
β2−n + 2 · 2−r. In our

final construction in Section 6 we will select 2n ∼ β/ε2 and 2r ∼ 1/ε, achieving an accuracy
of ∼ ε.

As we present the construction, we recommend following along with Fig. 2. The main idea
is that we would like to eliminate small regions of the spectrum via the Left-Right POVM,
which is defined by an operator PLR whose spectrum is sketched in Fig. 2. When PLR has
no support on an eigenstate, and we observe the POVM outcome corresponding to PLR, then
the output state has no support on that eigenstate. Consequently the output state satisfies
the rounding promise L̄. Similarly, the rounding promise R̄ is defined by the eigenstates on
which PLR has eigenvalue 1. The key property of L̄ and R̄ that we require for the remainder
of the construction is that there are 2n+r many evenly spaced gaps in the spectrum. Later,
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Figure 2: Sketch of the rounding promises from this section with n = 2, and r = 1. The diagram
features a sketch of the function pLR(λ) that defines the projector PLR from Lemma 17, a sketch of the
fine-grained rounding promises from Definition 16, and a sketch of the coarse-grained rounding promises
from Definition 21. The numbers above the intervals in the coarse-grained promises indicate the index x.

we will define coarse-grained rounding promises that close all but 2n of these gaps at random,
so that the probability of any individual energy being excluded by the coarse-grained promise
is at most 2−r.

Definition 16 (The fine-grained rounding promises). For n, r ∈ Z+, let the rounding
promises L̄ and R̄ be obtained by taking the full interval [0, 1] and removing some subintervals
(a′, b′). Specifically:

To construct L̄, delete
(

k

2n+r+2 ,
k + 1

2n+r+2 ,

)
for k ∈ {0, . . . , 2n+r − 1}. (33)

To construct R̄, delete
(
k + 2

2n+r+2 ,
k + 3

2n+r+2 ,

)
for k ∈ {0, . . . , 2n+r − 1}. (34)

Let the [ax, bx] denote the resulting connected components. These closed intervals define the
rounding promise in L̄ and R̄ respectively.

To prepare a state supported only on L̄ or R̄, we need to take our input state σ and
remove all the support on the eigenspaces in the deleted regions above. To this end, we
construct a block encoding of an operator PLR that makes PLRσPLR be supported only on L̄
and (I − PLR)σ(I − PLR) be supported only on R̄.

Lemma 17 (Left-right projection operator). For any n, r ∈ Z+ and any δsup > 0, there
exists a Hermitian operator PLR that satisfies

∥∥P 2
LRΠi

∥∥ ≤ δsup/3 for λi ̸∈ L̄, and satisfies∥∥(I − P 2
LR)Πi

∥∥ ≤ δsup/3 for λi ̸∈ R̄. This operator has a block encoding that can be imple-
mented using O((n+ r)2n+r log

(
δ−1

sup

)
) invocations of a block encoding of H.
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Proof. See Appendix B. We will ensure PLR commutes with the Hamiltonian, and takes the
form PLR =

∑
i pLR(λi)Πi for a function pLR that is plotted in Fig. 2.

It remains to show how to turn PLR into a POVM, and how to implement that POVM
using a quantum circuit. The starting point for the implementation is the block-measurement
theorem from [Ral21]. This theorem takes a block encoding of an operator A satisfying
|A2 − Π| ≤ δ for some projector Π, and uses it to implement a quantum channel 4

√
2δ-close

in ⋄-norm to the isometry:

|1⟩ ⊗ Π + |0⟩ ⊗ (I − Π). (35)

This does not quite suffice for us, since PLR is not a projector. But, if we allow ourselves to
introduce a constant amount of postselection, then we can implement a very similar operation
that suffices for our purposes.

Lemma 18 (Postselective block-measurement). Say A is a Hermitian matrix with a
block encoding UA. Then there exists a quantum circuit with postselection using one UA and
one U †

A that implements the map σ → VAσV
†

A/Tr(VAσV
†

A), where:

VA := |1⟩ ⊗A2 + |0⟩ ⊗ (I −A2). (36)

The postselection succeeds with probability at least 1/2.

Proof. Say the block encoding UA has k ancillae, that is
(〈

0k
∣∣∣⊗ I

)
UA

(∣∣∣0k
〉

⊗ I
)

= A. We
consider the following circuit:

|0⟩∣∣∣0k
〉

UA

•
U †

A

postselect
∣∣∣0k
〉 (37)

where the CNOT above denotes the operator X ⊗ |0k⟩⟨0k| + I ⊗ (I − |0k⟩⟨0k|). When the
postselection succeeds, this implements VA as desired. It remains to bound the postselection
probability, which is:

Tr(VAσV
†

A) = Tr(A2σA2 + (I −A2)σ(I −A2)) (38)
= Tr(σ · (A4 + (I −A2)2)). (39)

Since A is Hermitian and x4 + (1 − x2)2 ≥ 1/2, we have A4 + (I −A2)2 ≥ I/2. So we succeed
with probability ≥ 1/2.

If we measure the top qubit after applying VA, we will implement a POVM defined by the
operator A.

All the tools are in place to define and implement the left-right POVM and demonstrate
that it guarantees that the post-measurement state σ̃(M) has the desired property of being
approximately supported on M̄ . One caveat is that the procedure only works if the proba-
bility of the observed outcome is bounded away from 0 by a constant. This is because the
normalization of the state that occurs post-measurement may blow up the support outside
the promised subspace. Fortunately, such a lower bound on the outcome probability is easily
attained as we will see later.
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Proposition 19 (Left-right POVM). For any n, r ∈ Z+ and any δsup > 0, there exists
a two-outcome POVM with the following property. We label the two outcomes ‘L’ and ‘R’,
and for any input state σ let the output state be called σ̃(M) for M ∈ {L,R}. Say pM is the
probability of the M outcome, and suppose we obtain an outcome with pM ≥ 1/3. Then the
output state σ̃(M) is δsup-approximately supported on M̄ .

Furthermore, there exists a quantum circuit that implements the POVM with success prob-
ability ≥ 1/2 using O(2n+r) invocations of a block encoding of H.

Proof. The circuit is just an invocation of postselective block-measurement from Lemma 18
with the left-right projection operator PLR from Lemma 17. After successfully applying the
isometry VPLR we measure the label qubit and output ‘L’ in the 0 case and ‘R’ in the 1
case. This immediately gives the bound on the circuit complexity and success probability. It
remains to show that the output state has the desired property.

The probabilities of the measurement outcomes are:

pL := Tr(P 2
LRσP

2
LR) and pR := Tr((I − P 2

LR)σ(I − P 2
LR). (40)

The corresponding output states are:

σ̃(L) := P 2
LRσP

2
LR/pL and σ̃(R) := (1 − P 2

LR)σ(I − P 2
LR)/pR. (41)

Another way of writing the results of Lemma 17 is:∥∥∥P 2
LR(I − P (L̄))

∥∥∥ ≤ δsup/3 and
∥∥∥(I − P 2

LR)(I − P (R̄))
∥∥∥ ≤ δsup/3. (42)

Having set the scene, we are ready the compute the probability of the output register being
approximately supported on P(M̄). We use the inequality Tr(XY ) ≤ Tr(X)Tr(Y ) that holds
for all positive semidefinite matrices X and Y . We obtain:

Tr(pLσ̃
(L) · (I − P (L̄))) = Tr(P 2

LRσP
2
LR · (I − P (L̄))) (43)

= Tr(σ · P 2
LR(I − P (L̄))P 2

LR) (44)
≤ Tr(σ) · (δsup/3)2 ≤ δsup/3 and (45)

Tr(pRσ̃
(R) · (I − P (R̄))) = Tr((I − P 2

LR)σ(I − P 2
LR) · (I − P (R̄))) (46)

= Tr(σ · (I − P 2
LR)(I − P (R̄))(I − P 2

LR)) (47)
≤ Tr(σ) · (δsup/3)2 ≤ δsup/3. (48)

So for M ∈ {L,R}, we have:

pM · Tr
(
σ̃(M)P (M̄)

)
≤ δsup/3. (49)

Since we assumed pM ≥ 1/3, we have Tr
(
σ̃(M)P (M̄)

)
≤ δsup as desired.

Achieving pM ≥ 1/3 is very easy: we just repeat the protocol a couple of times and pick
the outcome we saw the most frequently.
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Corollary 20 (Selecting a high-probability outcome). For any δfail, δsup > 0 there exists
a procedure that produces a quantum state σ̃(M) that, for some random M̄ ∈ {L̄, R̄}, is δsup-
approximately supported on M̄ with failure probability at most δfail. Here, ‘failure’ refers
to selecting an outcome M̄ with pM < 1/3. This procedure requires at most 20 · log

(
δ−1

fail

)
many re-preparations of the input state σ and implementations of the left-right POVM from
Proposition 19.

Proof. The procedure is as follows. LetN be the smallest odd number greater than 20 log(δfail).
We repeat the left-right POVM from Proposition 19 a total of N times, preparing a new initial
state σ each time. We let M be the most frequently observed outcome, and return the output
state of any of our attempts that measured the M result.

We fail if pM < 1/3. Let K be the number of times we observed the M outcome. Then,
using the Chernoff-Hoeffding theorem, the probability that we observe K/N > 1/2 despite
the fact that pM < 1/3 is:

Pr[K/N > 1/2] ≤ Pr[K/N > E[K]/N + 1/6] ≤ exp(2N(1/6)2) ≤ δfail. (50)

4.2 Coarse-grained rounding promises
After having obtained a state σ̃(M) that (on average) is approximately supported on a fine-
grained rounding promise M̄ , the next step of the algorithm is to select a coarse-grained
rounding promise Mj ∈ {M0, ...,M2r−1}. Because M̄ ⊂ Mj for all Mj , we automatically have
that σ̃(M) is approximately supported on each of the Mj .

The purpose of the coarse-grained rounding promises Mj is to ensure that the ensemble
average ρ∗M of the promised thermal states ρβ

(Mj) is close to the ideal thermal state ρβ.

This would not be true if we just prepared the two states ρβ
(M̄) instead and considered their

ensemble average, as we will explain now.
Recall that the main mechanism of the rounding promise is to eliminate certain energy

eigenspaces. On the one hand, this enables energy estimation without superpositions of
rounding errors. On the other hand, since certain energies are eliminated, an individual
promised thermal state could never guaranteed be close in trace norm to ρβ.

In an ensemble average ρ∗M over promised thermal states ρβ
(Mj) however, we can guar-

antee that the probability of each individual energy being eliminated is small (≤ 2−r). We
achieve this condition by selecting each of the Mj with probability 1/2r, and showing each
energy is eliminated by at most one of the Mj ’s. We will show in the next section that this
suffices to guarantee that ∥ρ∗M − ρβ∥ ≤

√
β2−n + 2 · 2−r.

An ensemble over ρ
(M̄)
β does not have this property: if an energy λi is eliminated by,

say, L̄, then the probability of the eigenspace being eliminated in the ensemble is pL. If we
leave the initial state arbitrary, then pL could be as large as 1. But even if we set σ to the
maximally mixed state, thereby ensuring pL = pR = 1/2, the probability of eliminating the
energy is still constant, resulting in a constant-size error. To guarantee an error of at most ε,
we require O(ε−1) many rounding promises. We will show that they have width at most 2−n,
so the error from energy rounding will be at most ∼ 2−n.

We require one more property of the Mj ’s: recall from Definition 9 that the promised

thermal state’s eigenvalues are ∝ exp
(
−βm(Mj)

x

)
, where mx is the midpoint of the interval
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[ax, bx]. This is because when we perform energy estimation according to Proposition 8, all of
the energies in the interval [ax, bx] are rounded to mx. To avoid introducing too much error
here, we must ensure that the intervals are not too wide.

The construction of the Mj is also visualized in Fig. 2. The intuition for the construction
is as follows. We want to achieve M̄ ⊂ Mj , so we construct the Mj my merging gaps between
the intervals of M̄ . As discussed above, the widths of the intervals in M̄ are ∼ 2−n−r, and we
want the widths of the intervals of Mj to be ∼ 2−n. This can be achieved by merging all but
every 2r’th gap. The promise Mj is defined by keeping every gap with index = j modulo 2r.

Definition 21 (The coarse-grained rounding promises). For n, r ∈ Z+ and M ∈ {L,R},
let the rounding promises Mj ∈ {M0, ...,M2r−1} be constructed by taking the fine-grained
rounding promise M̄ from Definition 16 and merging some of the gaps.

By merging the x’th gap, we mean the following transformation on a rounding promise:
if the promise contains the intervals [ax, bx] and [ax+1, bx+1], then we take any intervals
[a′, bx], [ax+1, b

′] for some a′, b′, and replace them with [a′, b′]. If [a′, bx] is the final inter-
val, then we replace it with [a′, 1]. Finally, if x = 0, then we take the first interval [a′, b′] and
replace it with [0, b′].

Then, Mj is obtained by starting with M̄ and merging all the x’th gaps where x ̸=
j mod 2n+r.
Lemma 22 (Properties of the coarse-grained rounding promises). First, if σ̃(M) is
δsup-approximately supported on M̄ , then it is also approximately supported on all the Mj’s.

Second, say λ ∈ [0, 1] is any energy. Then at most one of the Mj’s does not contain it.
Here is another way of saying this: let 1λ∈Mj

be 1 if λ ∈ Mj and 0 otherwise. Then:

2−r
2r−1∑
j=0

1λ ̸∈Mj
≤ 2−r. (51)

Finally, each interval [ax, bx] ∈ Mj satisfies bx − ax ≤ 2−n.
Proof. For the first claim, since the gap merging procedure ensures that M̄ ⊂ Mj , we have
that P (M̄) ≤ P (Mj). Consequently, following Definition 15:

Tr(σ̃(M)P (Mj)) ≥ Tr(σ̃(M)P (M̄)) ≥ 1 − δsup. (52)

For the second claim, we first consider what would happen if we merged all the gaps in
M̄ : since the gap-merging procedure includes cases for the first and last interval, this would
just result in the promise {[0, 1]}. So that means that for each Mj the only energies that are
missing are those present in the gaps (bx, ax+1) where x = j mod 2n+r. For every gap index
x, there is a unique j for which this equation holds.

For every λ there are two cases. If we have λ ∈ M̄ , then since M̄ ⊂ Mj we also have
λ ∈ Mj for all Mj . Otherwise, since λ ̸∈ M̄ , λ must be contained in some gap of M̄ . By the
above, that gap is contained in all but one of the Mj , so λ must be contained in all but one
of the Mj ’s.

Finally, we must show that the intervals in the Mj are not too wide. The intervals in M̄
all have width 3/4 · 2−n−r, and are 1/4 · 2−n−r apart. If we close all but every 2r’th gap, then
the intervals will have width at most:

2r · 3/4 · 2−n−r + (2r − 1) · 1/4 · 2−n−r ≤ (3/4 + 1/4) · 2−n ≤ 2−n. (53)
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4.3 Ensemble analysis
In this subsection we prove that the ensembles ρ∗M are close to the ideal thermal state ρβ.

The error comes from two sources: from the accuracy of energy estimation (via n), and
from number of rounding promises (via r). We first deal with the error from the accuracy of

energy estimation by defining a new notion of an ‘exact’ promised thermal state ρ̂
(Mj)
β .

Definition 23. Let M be a rounding promise. Let the exact promised partition func-
tion Ẑ(M)

β and exact promised thermal state ρ̂(M)
β be defined similarly as their non-exact

versions, just leaving λi intact rather than swapping them out with the midpoints mx of the
intervals containing them.

Ẑ(M)
β :=

∑
i

1λi∈M exp(−βλi), and (54)

ρ̂
(M)
β :=

∑
i

1λi∈M Πi exp(−βλi)/Ẑ(M)
β . (55)

These exact promised thermal states are still restricted to the promised subspace, but
unlike the regular promised thermal states ρβ

(Mj) their energies are unrounded and left intact.

Thus, the difference between ρ̂
(Mj)
β and ρβ

(Mj) captures the error from energy estimation only.

We will show that
∥∥∥ρ̂(Mj)

β − ρβ
(Mj)

∥∥∥
1

≤
√
β2−n. Then, we consider the ensemble ρ̂∗M of the

states ρ̂
(Mj)
β . It follows that

∥∥∥ρ̂∗M − ρ∗M
∥∥∥

1
≤
√
β2−n.

Second, we bound the error stemming from the elimination of certain energies in the
rounding promises. In the previous subsection, we established that the probability that any
particular energy λ is missing from Mj is at most 1/2r. Through careful consideration of the

promised partition functions Zβ
(Mj), exact promised partition functions Ẑ(Mj)

β and the ideal

partition function Zβ, we use this property to show that
∥∥∥ρ̂∗M − ρβ

∥∥∥ ≤ 2 · 2−r.

Combining these two facts yields the main theorem of this subsection:

Theorem 24 (Accuracy of the final ensemble). Consider the following ensembles of
density matrices:

ρ∗M := 1
2r

2r−1∑
j=0

ρ
(Mj)
β for M ∈ {L,R}. (56)

Then, we have
∥∥∥ρ∗M − ρβ

∥∥∥
1

≤
√
β2−n + 2 · 2−r,

Proof. Combining Lemmas 27 and 28 with the triangle inequality, we obtain
∥∥∥ρ∗M − ρβ

∥∥∥
1

≤√
β2−n + 2 · 2−r for both M ∈ {L,R}.

We start with the analysis of the rounding errors via the exact promised thermal states.
To prove that these are close together, we leverage a fact from [PW09]:

Lemma 25 (Comparing thermal states via their Hamiltonians [PW09, Appendix C]).
Say H and H ′ are two Hamiltonians. Let ρβ := e−βH/Tr

(
e−βH

)
and ρ′

β := e−βH′
/Tr

(
e−βH′

)
be their Gibbs states, respectively. Then, if F (σ, σ′) =

∥∥∥√σ√
σ′
∥∥∥

1
is the fidelity:

F (ρ, ρ′) ≥ exp
(
−β|H −H ′|

)
. (57)
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This tool is convenient because a naive analysis of the trace distance yields an contribution
from every eigenvalue, which accumulates into a total error proportional to the dimension. By
considering the spectral distance in the Hamiltonian instead, we avoid the exponential blowup
in the error. However, this trick is a bit tricky in our case since, when viewed as operators
on the full Hilbert space, ρβ

(Mj) is not full rank. But states of the form e−βH/Tr(e−βH) are
always full rank whenever H is.

To remedy this issue, we recall an observation made in Remark 13, where we noticed
that if we view ρβ

(Mj) as a density matrix over P(Mj) only, then it can be written as

e−βH(Mj )
/Tr(e−βH̄(Mj )

) where H(Mj) is the promised Hamiltonian. We will leverage this view-
point where we restrict to P(Mj) for Definition 26 and Lemma 25.

Definition 26. Let M be a rounding promise. Let the exact promised Hamiltonian
Ĥ(M) be the part of H with support on the promised subspace P(M). But unlike the non-exact
promised Hamiltonian H(M), the eigenvalues are unchanged. It is given by:

Ĥ(M) :=
∑

i

λiΠi. (58)

Here, we view this operator as Ĥ(M) ∈ L(P(M)).

Lemma 27 (Rounding errors from energy estimation). For M ∈ {L,R} consider the
following ensemble over exact promised thermal states:

ρ̂∗M := 2−r
∑

j

ρ̂
(Mj)
β . (59)

This density matrix satisfies
∥∥∥ρ̂∗M − ρ∗M

∥∥∥
1

≤
√
β2−n.

Proof. Recall from Lemma 22 that each of the intervals [ax, bx] of the Mj satisfies bx − ax ≤
2−n. Thus, if λi ∈ [ax, bx], we have |λi − mx| ≤ 2−n−1 where mx is the midpoint of [ax, bx].
Consequently, we have

∥∥∥Ĥ(Mj) −H(Mj)
∥∥∥ ≤ 2−n−1.

Following Lemma 25, we have F (ρ̂(Mj)
β , ρ

(Mj)
β ) ≥ e−β2−n , so, exploiting the fact that

∥σ − σ′∥1 ≤
√

1 − F (σ, σ′)2, we have:

∥∥∥ρ̂(Mj)
β − ρ

(Mj)
β

∥∥∥
1

≤
√

1 − F (ρ̂(Mj)
β , ρ

(Mj)
β )2 ≤

√
1 − e−2β2−n−1 ≤

√
β2−n. (60)

Finally, we average this error over the two ensembles:

∥∥∥ρ̂∗M − ρ∗M
∥∥∥

1
=

∥∥∥∥∥∥2−r
∑

j

(
ρ̂

(Mj)
β − ρ

(Mj)
β

)∥∥∥∥∥∥
1

≤ 2−r
∑

j

∥∥∥ρ̂(Mj)
β − ρ

(Mj)
β

∥∥∥
1

≤
√
β2−n. (61)

We move on to the error stemming from the elimination of energies in the promises Mj .

Lemma 28 (The average of exact promised thermal states approximates the ther-
mal state). For M ∈ {L,R}, we have

∥∥∥ρ̂∗M − ρβ

∥∥∥
1

≤ 2 · 2−r.
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Proof. Letting di := Tr(Πi) be the occupation numbers, we have:

∥∥∥ρ̂∗(M) − ρβ

∥∥∥
1

=
∑

i

di

∣∣∣∣∣∣2−r
∑

j

1λi∈Mj
exp (−βλi) /Ẑ

(Mj)
β − exp(−βλi)/Zβ

∣∣∣∣∣∣ (62)

≤
∑

i

di

∣∣∣∣∣∣∣∣∣2
−r

∑
j

λi ̸∈Mj

(0 − exp(−βλi)/Zβ)

∣∣∣∣∣∣∣∣∣ (63)

+
∑

i

di

∣∣∣∣∣∣∣∣∣2
−r

∑
j

λi∈Mj

(
exp (−βλi) /Ẑ

(Mj)
β − exp(−βλi)/Zβ

)∣∣∣∣∣∣∣∣∣ . (64)

Here, for each λi, we split the rounding promises Mj into two categories: those not
containing λi, for which ρ̂

(M)
β has eigenvalue 0, and those containing λi, for which ρ̂

(M)
β has

eigenvalue exp (−βλi) /
ˆZ(Mj)

β . After applying the triangle inequality to these two groups,
these correspond to the first and second terms in the above sum, respectively. We will show
that both of these terms are bounded by 2−r, so the overall bound is 2 · 2−r as desired.

The first term is bounded by:

∑
i

di

∣∣∣∣∣∣∣∣∣2
−r

∑
j

λi ̸∈Mj

(0 − exp(−βλj)/Zβ)

∣∣∣∣∣∣∣∣∣ ≤ 2−r · 1
Zβ

∑
i

di exp(−βλi) = 2−r · Zβ

Zβ
= 2−r. (65)

So all that is left is the second term. Observe that Ẑ(Mj)
β ≤ Zβ which implies that

1/Ẑ(Mj)
β − 1/Zβ ≥ 0. This allows us to remove the absolute value:

∑
i

di

∣∣∣∣∣∣∣∣∣2
−r

∑
j

λi∈Mj

(
exp (−βλi) /Ẑ

(Mj)
β − exp(−βλi)/Zβ

)∣∣∣∣∣∣∣∣∣ (66)

=
∑

i

di exp (−βλi) ·

∣∣∣∣∣∣2−r
∑

j

1λi∈Mj

(
1/Ẑ(Mj)

β − 1/Zβ

)∣∣∣∣∣∣ (67)

=
∑

i

di exp (−βλi) · 2−r
∑

j

1λi∈Mj

(
1/Ẑ(Mj)

β − 1/Zβ

)
. (68)

Now we can bound the two terms corresponding to the difference 1/Ẑ(Mj)
β − 1/Zβ indi-
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vidually. The term with 1/Ẑ(Mj)
β is is just 1:

∑
i

di exp (−βλi) · 2−r
∑

j

1λi∈Mj

(
1/Z(Mj)

β

)
(69)

= 2−r
∑

j

[∑
i

di exp (−βλi) 1λi∈Mj

] (
1/Z(Mj)

β

)
(70)

= 2−r
∑

j

Z(Mj)
β

(
1/Z(Mj)

β

)
= 1. (71)

The term with −1/Zβ can be bounded by leveraging that for any λi, at most one M (j)

doesn’t contain it, as shown in Lemma 22. That is, 2−r ∑
j 1λi∈Mj

≥ 1 − 2−r.

−
∑

i

di exp (−βλi) · 2−r
∑

j

1λi∈Mj
(1/Zβ) (72)

≤ −
∑

i

di exp (−βλi) · (1 − 2−r) (1/Zβ) (73)

= −Zβ · (1 − 2−r) (1/Zβ) = −(1 − 2−r). (74)

So a bound on the second term is 1 − (1 − 2−r) = 2−r. So, each of the two terms is at most
2−r, so the total error is at most 2 · 2−r.

5 Lindblad dynamics on the promised subspace
In the previous section we required the following capability: to take a state σ(M) that is
supported on a rounding promise M , and to transform it to the promised thermal state
ρβ

(M). Once we have this capability, we can prepare good approximations to the true thermal
state ρβ.

We attain this capability by running a promised Davies generator L(M) on the system,
which we defined in Definition 11. We constructed L(M) by starting with a regular Davies
generator L and truncating it so that its dynamics are restricted to P. The basic idea is to
consider the coupling operators Sα of the original Davies generator, and to conjugate them
with an attenuation operator A(M) to obtain:

S(M)
α := A(M)SαA

(M) (75)

Then, L(M) is defined the exact same way as L, just with Sα
(M) instead of Sα. The other

difference is that L is defined with respect to the ideal Hamiltonian H =
∑

i λiΠi, and L(M)

with respect to the promised Hamiltonian H(M) =
∑

xmxΠx.
In this section we detail the construction of the attenuation operator A(M) and how that

the resulting promised Davies generator has some desirable properties. Ideally, we would like
to have A(M) = P (M), but due to limitations of singular value transformation, we cannot
achieve this. This results in two challenges.

The first challenge is leakage: we cannot perfectly eliminate the transfer of probability
mass from P to P⊥; we can only suppress it by a factor δleak. Fortunately, this error is both
exponentially suppressible, and its ramifications on the final output error can be quantified
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formally. We give a construction of an approximate attenuation operator Ã(M) that has
support at most δleak on P⊥. The operator A(M) itself has no support on P⊥ at all, ensuring
that L(M) does not leak. The leakage error can be dealt with by studying its approximate
implementation L̃(M) which we construct in Section 6.

The second challenge, which is more significant, is attenuation. Since A(M) is implemented
via singular value transformation, it takes the form A(M) =

∑
i a

(M)(λi)Πi for some continuous
function a(M) : [0, 1] → [0, 1]. We have already achieved that a(M)(λ) = 0 for λ ̸∈ M .
Ideally, we would like to also have a(M)(λ) = 1 for λ ∈ M , but this means that a(M) has a
discontinuity at the boundaries of M . The function a(M) must be continuous, so we need to
smoothly interpolate from 0 to 1 near the edges of the intervals ofM . Formally, we can define
a truncated rounding promise MT whose intervals are a little bit narrower than those of M ,
and then ensure a(M)(λ) = 1 for λ ∈ MT . However, this choice means that the operator also
attenuates certain eigenvectors of H whose eigenvalues are close to the edges of the intervals
of M . This attenuation might slow the rate of convergence of L(M).

Having highlighted the trade-offs of the construction, we formally define the attenuation
operator A(M) and its approximation Ã(M).

Lemma 29 (Attenuation operators). Consider any rounding promise M with minimum
gap width κ whose intervals are also at least κ wide. Then, for any leakage error δleak > 0,
and attenuation factor γ there exists an attenuation operator A(M) and an approximate
attenuation operator Ã(M). They both commute with the Hamiltonian, and take the form:

A(M) =
∑

i

a(M)(λi)Πi and Ã(M) =
∑

i

ã(M)(λi)Πi (76)

for some functions a(M), ã(M) : [0, 1] → [0, 1]. Let MT be a κγ-truncated rounding promise
where if [ax, bx] ∈ M , then [ax + κγ, bx − κγ] ∈ MT . Then, a(M), ã(M) : [0, 1] → [0, 1] satisfy:

if λ ̸∈ M then a(M)(λ) = 0 and ã(M)(λ) ≤ δleak, (77)
if λ ∈ MT then a(M)(λ) = 1 and ã(M)(λ) ≥ 1 − δleak, (78)

otherwise a(M)(λ) = ã(M)(λ). (79)

Consequently, we have ∥A(M) − Ã(M)∥ ≤ δleak, and ∥A(M)(I − P (M))∥ = 0 as required by
Definition 11. Furthermore, there exists a block encoding of Ã(M) with circuit complexity
O
(
κ−1γ−1 log

(
s(M)δ−1

leak

))
.

The proof is in Appendix B. We will show how to deal with leakage errors in Section 6. This
section is dedicated to assessing the impact of truncation and attenuation on the dynamics of
L(M). Our goal is to show that L(M) is mixing (recall Definition 4) and that the mixing time
tmix is not too much slower than that of L.

On a positive note, we emphasize that truncation to P as well as attenuation cannot cause
L(M) to fail to converge onto the promised thermal state unless the coupling operators Sα

are extremely contrived. For example, one way L could be mixing while L(M) could fail to
be so is if the Sα encode a particular random walk over the energy eigenspaces. Specifically,
if the random walk is over a bipartite graph where one half of the eigenspaces are in P and

the other half are in P⊥, then a Davies generator based on Sα may be mixing, while S
(M)
α
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will not be. But construction of such a coupling operator requires careful knowledge over the
energy eigenspaces. The chances of accidentally selecting such an Sα in practice are slim.

The main problem is that the projection of Sα to Sα
(M) will slow the rate of mixing, and

that attenuation only makes this problem worse. We assess the severity of this problem by
performing numerical simulations on a particular physical system: the transverse field Ising
model. Let (n1, n2) be the width and height of 2d-grid of qubits, and let v be the strength of
the transverse field. Let i⃗ be indices in an n1 × n2 grid, let Xi⃗ and Z⃗i denote Pauli X and Z

on the qubit at grid position i⃗, and let i⃗ ∼ j⃗ denote that the two grid positions are adjacent.
Then, the Hamiltonian we consider in this section is:

H =
∑
i⃗∼j⃗

Z⃗iZj⃗ + v
∑

i⃗

Xi⃗. (80)

We study the dynamics of Davies generators defined with respect to this Hamiltonian, as
well as the coupling operators Xi⃗ and Z⃗i for all grid positions i⃗. To assess the mixing time
tmix we compute the spectral gap ∆ of the Lindbladian.

In Fig. 3 we plot spectral gap as a function of the attenuation factor γ for various pa-
rameters. In all our experiments, we verified that the ideal Davies generator L had the ideal
thermal state ρβ as its unique fixed point, and that the promised Davies generators L(Mj) had

the promised thermal state ρ
(Mj)
β as their unique fixed point. We analyze their exact versions

with A(M) rather than Ã(M) and Px rather than P̃x.
We find that in the ideal case of γ = 0, the ideal Davies generator and the promised

Davies generators have about the same convergence rate - the promised Davies generators are
a little slower. So while there is some slowdown in mixing time from projection, the slowdown
is largely due to attenuation. We find that setting reasonably small values of γ achieves
convergence rates similar to the γ = 0 case. Furthermore, this slowdown only appears to
be significant for certain rounding promises Mj . One interpretation of our technique in this
paper is that we trade mixing time for a provable accuracy guarantee on the final thermal
state. So, some amount of slowdown is acceptable in exchange for the rigor.
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Impact of Attenuation on the Spectral Gap
for a Transverse Field Ising Model with
on 2   3 Qubits with Field Strength 1.0
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Figure 3: Analysis of the spectral gap of the Davies generators of the transverse field Ising model from
Eq. (80). We set β = 10.0 throughout. We see that the convergence rates of the promised Davies
generators are a little slower than the ideal Davies generator as γ → 0. While the convergence rate
slows down significantly with large γ, selecting reasonably small values of γ achieves a convergence time
just as fast as the unphysical case of γ = 0. There is also significant variation among the promises
Mj . The software that produced these data is available at: https://github.com/qiskit-community/
promised-davies-generator.
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6 Implementing Lindblad dynamics
The goal of this section is to show how to simulate the evolution of the promised Davies
generator for time t given a block encoding of its jump operators. This block encoding can
be implemented by energy estimation. This construction also involves the coupling operator
projected onto the promised subspace. Both energy estimation and the projection are not
perfect, and they lead to errors in the block-encoded jump operators. We begin with a lemma
that shows that a small perturbation of the jump operator will not change the Lindbladian
by much. Then we give the detailed construction and prove the main theorem.

For simplicity, in this section we assume that there is only one coupling operator so that
we can drop the index α in for the jump operators Lν,α and the coupling operators Sα, and
simply write Lν for the jump operators of a promised Davies generator (Definition 11), and
write S for the coupling operator. Our analysis can be easily generalized to the case of more
coupling operators: the number of jump operators just grows by the factor of the number of
the coupling operators.

Furthermore, it is reasonable to suppose that ∥S∥ ≤ 1. First, this is generally the case
in practice: the coupling operator S is usually selected to be a unitary transformation that
scrambles the energy eigenbasis. Even if S were a block encoded operator, it would require a
unitary implementation, so the only way to achieve ∥S∥ ≥ 1 would be via some virtual scale
factor. Second, in the analysis of Hamiltonian simulation eiHt, it is usually assumed that
∥H∥ ≤ 1, since we can always absorb a rescaling of the Hamiltonian into the time t. The
exact same argument applies for the simulation of Davies generators.

To begin with, we show that the distance between Lindbladians in terms of the diamond
norm can be bounded by the distances of their jump operators in terms of the spectral norm.

Lemma 30 (Approximating Lindblad evolution via jump operators). Say Lν ∈
L(H(M)) are jump operators defining a Lindbladian L, and say there are m many of them.
Say some L̃ν ∈ L(H) similarly define a Lindbladian L̃, and say these satisfy:

∥L̃ν − Lν∥ ≤ δL. (81)

Say we also have ∥Lν∥ ≤ 1. Then, for any t > 0:

∥L̃ − L∥ ⋄ ≤ 4mδL + 2δ2
L (82)

Proof. First of all, by Eq. (81) and the triangle inequality, we have

∥L̃ν∥ ≤ ∥Lν∥ + δL. (83)

Now, recall that

L(ρ) =
∑

ν

LνρL
†
ν − 1

2
(
L†

νLνρ+ ρL†
νLν

)
, and (84)

L̃(ρ) =
∑

ν

L̃νρL̃ν − 1
2
(
L̃†

νL̃νρ+ ρL̃†
νL̃ν

)
. (85)

Let ρ be the matrix that achieves the induced trace norm of ∥L − L̃∥ 1, i.e.,

∥L − L̃∥ 1 = ∥L(ρ) − L̃(ρ)∥ 1. (86)
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We have

∥L − L̃∥ 1 ≤
∑

ν

∥∥∥LνρL
†
ν − L̃νρL̃

†
ν

∥∥∥
1

+ 1
2

∥∥∥L̃†
νL̃νρ− L†

νLνρ
∥∥∥

1
+ 1

2

∥∥∥ρL̃†
νL̃ν − ρL†

νLν

∥∥∥
1

(87)

≤
∑

ν

∥Lν∥δL + ∥L̃ν∥ δL + ∥L̃νL̃ν − L†
νLν∥ (88)

≤
∑

ν

2(∥Lν∥δL + ∥L̃ν∥ δL) (89)

≤ 4mδL + 2δ2
L, (90)

where we have used the fact that ∥ABC∥1 ≤ ∥A∥∥B∥1∥C∥ for matrices A,B and C.
To extend this bound to the diamond norm, we consider the identity map I : L(H(M)) →

L(H(M)). We have

L ⊗ I(ρ) =
∑

ν

(Lν ⊗ I)ρ(L†
ν ⊗ I) − 1

2
(
(L†

νLν ⊗ I)ρ+ ρ(L†
νLν ⊗ I)

)
, and (91)

L̃ ⊗ I(ρ) =
∑

ν

(L̃ν ⊗ I)ρ(L̃†
ν ⊗ I) − 1

2
(
(L̃†

νL̃ν ⊗ I)ρ+ ρ(L̃†
νL̃ν ⊗ I)

)
. (92)

Then it is easy to obtain that

∥L − L̃∥ ⋄ = ∥L ⊗ I − L̃ ⊗ I∥ 1 ≤ 4mδL + 2δ2
L, (93)

using the fact that ∥A⊗ I∥ = ∥A∥ for any matrix A.

The Lindbladian we try to simulate is the promised Davies generator L(M), which involves
the promised coupling operator S(M) = A(M)SA(M). However, in our construction, we im-
plement an approximate attenuation operator S̃(M) = Ã(M)SÃ(M) (see Section 5). Based on
the distance between A(M) and Ã(M) given by Lemma 29, we prove a bound on the distance
between S(M) and S̃(M) as follows.

Lemma 31. Given a rounding promise M , let S(M) and S̃(M) be as defined in Section 5. For
any leakage error δleak > 0, it holds that∥∥∥S(M) − S̃(M)

∥∥∥ ≤ 2δleak. (94)

Proof. Recall that S(M) = A(M)SA(M), and S̃(M) = Ã(M)SÃ((M). By Lemma 29, we have∥∥∥A(M) − Ã(M)
∥∥∥ ≤ δleak. (95)

To prove the desired bound, we leverage
∥∥∥A(M)

∥∥∥ ≤ 1 and
∥∥∥Ã(M)

∥∥∥ ≤ 1 to show:∥∥∥S(M) − S̃(M)
∥∥∥ =

∥∥∥A(M)SA(M) − Ã(M)SÃ(M)
∥∥∥ (96)

=
∥∥∥A(M)SA(M) −A(M)SÃ(M) +A(M)SÃ(M) − Ã(M)SÃ(M)

∥∥∥ (97)

≤ δleak + δleak = 2δleak. (98)

Note that we have assumed that ∥S∥ ≤ 1 as in the beginning of this section.
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Now, we have all the tools to prove the main theorem and present our quantum algorithm
for simulating the Davies generator.

Theorem 32 (Implementation of the Davies generator given a rounding promise).
For some rounding promise M , say L(M) is an promised Davies generator as defined in Defi-
nition 11. Then, for any δL, t > 0, there exists a quantum algorithm implementing a channel
δL-close in diamond norm to etL(M). If κ is the minimum gap of M , M has s(M) many
intervals, and γ is the desired attenuation factor for the S̃(M), then this algorithm uses

O

(s(M))2t
log
(
s(M)t/δL

)
log log

(
s(M)t/δL

)
 (99)

queries to the block encoding of S,

O

(
t · κ−1 · γ−1 · (s(M))2 log

(
s(M)

)
· log2(s(M)t/δL)

log log
(
s(M)t/δL

)) (100)

queries to the block encoding of H, and

O

(s(M))4t

 log
(
s(M)t/δL

)
log log

(
s(M)t/δL

)
2 (101)

additional 1- and 2-qubit gates.

Proof. We aim to invoke Proposition 5, so we need an oracle OL̃. This lets us approximately
apply the map etL̃. We then show that the L̃ν defining L̃ are close to the Lν defining L(M),
allowing us to invoke Lemma 30.

Recall the approximate energy estimation isometry Ẽ(M) from Proposition 8, which ex-
tracts estimates according to P̃x satisfying |P̃xP

(M) −Px| ≤ δest via isometries GP̃x
satisfying

G†
P̃x
GP̃x

= P̃x. We define the block-encoded operator:

V
(M)

± :=
±

Ẽ(M)
•

Ẽ(M)†
(102)

where the controlled ± refers to adding/subtracting mx
(M) to/from the value of the target

register (recall Remark 13, the control register has the value of x), and the kets on the right
side of the circuit denote postselection onto that state. Next, obtain a block encoding of:

G :=
∑

ν

√
G(ν) ⊗ |ν⟩⟨ν| . (103)

Finally, let OL̃ be given by:

OL̃ := V
(M)

− V
(M)

+
G

S̃(M)
(104)
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and hence OL̃ implements some L̃ν in the following manner:

OL̃(|0⟩ ⊗ |ψ⟩) =
∑

ν

|ν⟩ ⊗ L̃ν |ψ⟩ . (105)

Let’s find an expression for the L̃ν . We begin by observing that:

V
(M)

± =
∑

ν

∑
x

|ν ±mj
(M)⟩⟨ν| ⊗G†

P̃x
GP̃x

=
∑

ν

∑
x

|ν ±mj
(M)⟩⟨ν| ⊗ P̃x. (106)

That way:

OL̃(|0⟩ ⊗ |ψ⟩) =
∑
x,y

√
G(m(M)

x −m
(M)
y )

∣∣∣m(M)
x −m(M)

y

〉
⊗ P̃xS̃

(M)P̃y |ψ⟩ (107)

=
∑

ν

√
G(ν) |ν⟩ ⊗

∑
x,y

m
(M)
x −m

(M)
y =ν

P̃xS̃
(M)P̃y |ψ⟩ . (108)

We see that:

L̃ν =
√
G(ν)

∑
x,y

m
(M)
x −m

(M)
y =ν

P̃xS̃
(M)P̃y. (109)

Observing |G(ν)| ≤ 1 and recalling the definition of S(ω), all that is left to do is to leverage
Proposition 8 and Lemma 31 to bound the distance between L̃ν and Lν .

First observe that ∥P̃x∥ ≤ 1 which follows from the fact that P̃x is obtained from singular
value transformation. By Proposition 5, we have

∥∥∥∥∥∥∥∥∥
∑
x,y

m
(M)
x −m

(M)
y =ν

PxS
(M)Py −

∑
x,y

m
(M)
x −m

(M)
y =ν

P̃xP
(M)S(M)P (M)P̃y

∥∥∥∥∥∥∥∥∥ (110)

=

∥∥∥∥∥∥∥∥∥
∑
x,y

m
(M)
x −m

(M)
y =ν

PxS
(M)Py − P̃xP

(M)S(M)Py + P̃xP
(M)S(M)Py − P̃xP

(M)S(M)P (M)P̃y

∥∥∥∥∥∥∥∥∥
(111)

≤ 2(s(M))2δest. (112)

Note that P (M)S(M)P (M) = S(M). The above inequality implies that∥∥∥∥∥∥∥∥∥
∑
x,y

m
(M)
x −m

(M)
y =ν

PxS
(M)Py −

∑
x,y

m
(M)
x −m

(M)
y =ν

P̃xS
(M)P̃y

∥∥∥∥∥∥∥∥∥ ≤ 2(s(M))2δest. (113)
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Now, using Lemma 31, we obtain∥∥∥∥∥∥∥∥∥
∑
x,y

m
(M)
x −m

(M)
y =ν

P̃xS
(M)P̃y −

∑
x,y

m
(M)
x −m

(M)
y =ν

P̃xS̃
(M)P̃y

∥∥∥∥∥∥∥∥∥ (114)

=

∥∥∥∥∥∥∥∥∥
∑
x,y

m
(M)
x −m

(M)
y =ν

P̃x(S(M) − S̃(M))P̃y

∥∥∥∥∥∥∥∥∥ (115)

≤ (s(M))2δleak. (116)

Combining Eqs. (113) and (116), we have∥∥∥Lν − L̃ν

∥∥∥ ≤ (s(M))2(2δest + δleak). (117)

So we have the desired property with (s(M))2(δleak + 2δest). Letting δL := (s(M))2(δleak +
2δest) and invoking Lemma 30 with m = (s(M))2, we have

∥eLt − eL̃t∥ ⋄ ≤ t∥L − L̃∥ ⋄ (118)

≤ t ·
[
4(s(M))2(δleak + 2δest) + 2(δleak + 2δest)2

]
(119)

= 16(s(M))2t(δleak + 2δest), (120)

where the first inequality follows from the observation that for all integers k ≥ 0,

∥eLt − eL̃t∥ ⋄ = ∥(eLt/k)k − (eL̃t/k)k∥ ⋄ ≤ k∥eLt/k − eL̃t/k∥ ⋄ ≤ ∥L − L̃∥ ⋄ +O(t/k). (121)

Here the first inequality follows from the subadditivity of the diamond norm [Wat18, Proposi-
ton 3.48], and the last inequality is due to Taylor expansion.

We assume S is given as a block encoding with normalizing constant 1 since ∥S∥ = 1. To
use Proposition 5, it suffices to set

δleak = O

(
δL

(s(M))4t

)
, and δest = O

(
δL

(s(M))4t

)
(122)

to δL-approximately simulate eL(M)t by simulating eL̃(M)t. Observe that ∥Lν∥ ≤ 1. Let k be
the number of system qubits. The simulation algorithm costs

O

(s(M))2t
log
(
s(M)t/δL

)
log log

(
s(M)t/δL

)
 (123)

queries to OL̃ and

O

(s(M))4t

 log
(
s(M)t/δL

)
log log

(
s(M)t/δL

)
2 (124)
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additional 1- and 2-qubit gates. Note that the number of queries to OL̃ is also the number of
innovations to S.

To implement OL̃, we invoke Proposition 8 with precision parameter δest and Lemma 29
with precision parameter δleak. Each application of OL̃ has the following number of invocations
of UH :

O

(
κ−1 log

(
s(M)

)2
log
(
δ−1

est

)
+ κ−1γ−1 log

(
s(M)δ−1

leak

))
(125)

=O
(
κ−1 log

(
s(M)

)2
log
(
s(M)tδ−1

L

)
+ κ−1γ−1 log

(
s(M)

)
log
(
s(M)tδ−1

L

))
(126)

=O
(
κ−1γ−1 log

(
s(M)

)2
· log

(
s(M)tδ−1

L

))
. (127)

To achieve the final number of queries to the block encoding of H, we observe that the
rounding promises Mj have κ−1 ∈ O(2n+r) and s(M) ∈ O(2n). Plugging these in, and ac-
counting for the cost of the left-right POVM from Lemma 17 we obtain:

O
(
γ−1 · n223n+rt · polylog(t/δL)

)
. (128)

This establishes Claim 14. Now we recall Theorem 24 which states that the final output state
ρ∗M satisfies: ∥∥∥ρ∗M − ρβ

∥∥∥
1

≤
√
β2−n + 2 · 2−r. (129)

To achieve ∥ρ∗M − ρβ∥ 1 ≤ ε, we select n = log2(β(ε/2)−2) and r = log2(4/ε). Plugging these
into the query complexity, we get:

O
(
γ−1 · t · β3ε−7 · polylog(t/δL) · log2(β/ε)

)
. (130)

This establishes Theorem 1.

7 Some open questions
Our result achieved a time complexity that scales linearly in the mixing time tmix. However,
the performance with respect to the inverse temperature β and accuracy ε is Õ(β3ε−7) which
has plenty of room for improvement. One potential path that may yield an accuracy of
Õ(βε−2) is to remove the linear dependence on the number of jump operators in the Lindblad
simulation algorithm from Proposition 5. Proposition 5 demands block encodings of the
individual jump operators Lj , but the oracle OL we prepare may actually be much more
powerful than this. To see this, first note that if we are given access to the isometry

∑
j |j⟩⊗Kj ,

then implementing the channel is trivial as we already have the Stinespring dilation. In
our algorithm, we implemented an oracle in the form of

∑
j |j⟩ ⊗ Lj , which is close to the

Stinespring dilation we want because for the infinitesimal approximation channel in [CW17],
all but one Kraus operators are proportional to Lj . That one special Kraus operator involves
all the Lj ’s. Does there exist any special treatment of this special Kraus operator so that we
can leverage the special structure of the oracle

∑
j |j⟩⊗Lj to get rid of the O(m) dependence?1

1As remarked earlier, after the first version of this manuscript was made public, recent work [CKBG23]
resolved this question in the affirmative.
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A central goal in our work is to attain a rigorous bound on the accuracy of the final
output state. To this end, we assume that we are given a lower bound on the mixing time
tmix, so that we know for how long the dynamics of the Davies generator must be simulated
to achieve a high-accuracy output state. But this assumption is rarely the case in practice.
Furthermore, the attenuation discussed in Section 5 may slow the mixing time and exasperate
this problem. Is there a technique that can detect if the Davies generator has been run for
long enough? One approach might be to purify the dynamics of the Lindblad simulation, and
then use amplitude estimation to compare the resulting pure output state to an ideal thermal
state purification. A reflection operator around a purification of the thermal state could be
obtained via the techniques from [WT23].

The only piece of our method that eludes rigorous mathematical treatment is the impact
of attenuation on mixing time t̃mix. Certainly the dependence of γ−1 in the circuit complexity
the synthesis attenuation operators A(M) is optimal, due to lower bounds on approximation
of threshold functions with polynomials. But perhaps given additional knowledge about the
Hamiltonian, there may be other approaches for selecting coupling operators Sα that do not
leak out of a given promised subspace.
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the Institute of Computational and Data Science (ICDS) and a National Science Foundation
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A Glossary
This manuscript features many quantities and mathematical symbols, so give a brief descrip-
tion of some of these with references to the relevant part of the text.

Hamiltonian. H is decomposed into eigenvalues λi and eigenspace projectors Πi via
∑

i λiΠi.
Our goal is the prepare the thermal state ρβ at inverse temperature β. See Definition 2.

Rounding promise. M ⊂ [0, 1] defines a promised subspace P(M) and a projector onto that
subspace P (M). M consists of intervals [ax, bx] with corresponding promised eigenspace

projectors P
(M)
x . See Definition 6. We can perform energy estimation with respect to

approximate promised eigenspace projectors P̃
(M)
x using Proposition 8. We suppress the

superscript (M) when a promise is clear from context.

Lindbladian. L is a superoperator defining a continuous time quantum Markov process
describing open system dynamics. It is defined by the jump operators Lω,α. See Eq. (13).

Davies Generator. A particular choice of jump operators Lω,α =
√
G(ω)Sα(ω) that yields

thermalizing dynamics. ω is among the Bohr frequencies of H: the set of pairwise
energy differences. The filter function G(ω) biases the dynamics towards certain energy
differences, and the coupling operators Sα ‘scramble’ the Hilbert space. See Definition 3.
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Initial state. Our simulation of thermalizing dynamics starts in an arbitrary initial state σ.
After measuring the left-right POVM defined by PLR, we obtain an initial state σ̃(M)

satisfying a rounding promise M ∈ {L̄, R̄}. See Section 4.1.

Attenuation. We require coupling operators S(M) that do not ‘leak’ out of the promised
subspace P(M). We achieve this by sandwiching them between attenuation operators
A(M) with the same support as P (M), but also some eigenvalues in P(M) are attenuated
to be less than 1 which slows the mixing time. The attenuation coefficient γ controls the
number of these eigenvalues, but an approximate implementation Ã(M) of A(M) requires
circuit complexity O(γ−1). See Section 5.

Promised thermal states. When the Hamiltonian H is truncated onto P(M) we obtain
the well-rounded Hamiltonian H(M) with eigenvalues m

(M)
x and eigenspace projectors

P
(M)
x , see Remark 13. On P(M), it has the promised thermal state ρ

(M)
β and promised

partition function Z(M)
β , see Definition 9. In section Section 4.3, it is convenient to

define ‘exact’ versions of these ρ̂
(M)
β , Ẑ(M)

β that are still truncated to P(M) but are based
on the eigenvalues λi of H.

Mixing time. We assume that the ideal Davies generator L with jump operators Lω,α =√
G(ω)Sα(ω) requires the mixing time tmix in order to transform an arbitrary input

state into something close to ρβ. Due to attenuation, the promised Davies generator

L(M) with jump operators Lω,α =
√
G(ω)S(M)

α (ω) will have a slower mixing time t̃mix.
See Definition 11.

B Polynomial construction
Throughout the paper, we required the construction of block encodings. Proposition 8 gave
operators Px that indicate the eigenspaces of a particular interval [ax, bx] of a rounding promise
M , and a unitary U (M) that computes the binary expansion |x⟩ accordingly. Lemma 17 gave
an operator PLR can be used to force either the L̄ or R̄ rounding promise via POVM, by
making PLR small in P(L̄) and large in P(R̄). Finally, Lemma 29 gave an attenuation operator
A(M) that vanishes outside of P(M), but is simultaneously as large as possible within P(M).

These operators Px, PLR, and A(M) have a lot in common: they all commute with the
Hamiltonian, and can hence be seen as

∑
i f(λi)Πi for some function f . Furthermore, the

requirements on f are always that f(λ) = 0 or f(λ) = 1 for λ in certain regions. We
construct all of these operators through singular value transformation, which lets us construct
such operators via polynomial approximations of f .

The requirements on the operators ensure that there are always gaps between the regions
of λ where f(λ) = 0 or f(λ) = 1. This is essential for polynomial approximation of f , since
polynomials are always continuous. The degree of the polynomial scales with the reciprocal of
the width of the gap. Our starting point for the polynomial construction is a highly accurate
polynomial approximation of a step function.

Lemma 33 (Polynomial approximation of a step function ([LC17, Appendix A])).
For any κ, δ > 0, there exists an odd polynomial Θκ,δ of degree O(κ−1 log

(
δ−1)) such that
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∀λ ∈ [−2, 2] we have 0 ≤ Θκ,δ(λ) ≤ 1 and:

if λ ≤ −κ/2, then Θκ,δ(x) < δ; (131)
if κ/2 ≥ λ, then 1 − δ ≤ Θκ,δ(λ). (132)

Given a polynomial approximation of a single transition from f(λ) = 0 to f(λ) = 1, we
can approximate an arbitrary sequence of transitions by shifting and adding multiple such
polynomials together. Above, we guaranteed that the approximation of the step function
holds for λ ∈ [−2, 2], so that we can shift the polynomial by up to 1 and still have good
approximation on the interval [−1, 1].

Lemma 34 (Construction of approximate projection polynomials). Say we have a
collection of intervals {[ax, bx]} in [0, 1] with ax < bx and bx < ax+1, and each interval is
labeled with a bit cx ∈ {0, 1}. Say furthermore that each of the intervals is at least κ far apart,
that is, bx + κ < ax+1.

Then, for any δ > 0 there exists a polynomial P (λ) such that:

∀x, if ∀λ ∈ [ax, bx], then |P (λ) − cx| ≤ δ. (133)

Furthermore, the polynomial satisfies 0 ≤ P (λ) ≤ 1. Say there are K many ‘flips’, that is,
indexes x where cx ̸= cx+1. Then the polynomial is of degree O(κ−1 log

(
Kδ−1)).

Proof. We will construct P (λ) by adding together several Θκx,δ/K for various values of κx,
all of which satisfy κx ≥ κ. Since adding several polynomials doesn’t change the degree, the
resulting polynomial P (λ) has degree O(κ−1 log

(
Kδ−1)).

There will be one Θκx,δ/K for each flip, that is, each pair of intervals with cx ̸= cx+1. Let
tx := (bx + ax+1)/2 be the midpoint between two intervals, and let κx = ax+1 − bx ≥ κ be the
distance between them. We construct:

P (λ) := c1 +
∑

x
cx ̸=cx+1

Θκx,δ/K(λ− tx) ·
{

+1 if cx < cx+1
−1 if cx > cx+1

. (134)

It remains to prove that P (λ) satisfies the desired property. By Lemma 33 and the choice
of tx, κx it is guaranteed that Θκx,δ/K(λ− tx), is always either ≤ δ/K or ≥ 1 − δ/K outside
of the region [bx, ai+x]. So, for any interval [ax, bx] we have that any of the Θκx,δ/K(λ− tx) is
within δ/K of 0 or 1. Thus, for the purposes of analyzing P (λ), let us pretend for the rest of
the proof that they are exactly 0 or 1. In doing so, we will be wrong by at most K · δ/K = δ.

Let us consider any particular interval [ax, bx]. We want to argue that for any λ in this
interval, P (λ) = ci. We achieve this through induction in K. The base case is very easy: if
K = 0, then all the cx are equal, so we can just set P (λ) = c1.

Now, consider only the first K − 1 switches, and let P ′(λ) be the polynomial only from
these. If cx is the last x such that cx ̸= cx+1, then P ′(λ) satisfies λ ∈ [ay, by] =⇒ P ′(λ) = cy

for y ≤ x, and λ ∈ [ay, by] =⇒ P ′(λ) = 1 − cy for y > x. The construction of P (λ) depends
on if cx+1 = 0 or cx+1 = 1. If cx+1 = 0, then λ ∈ [ax+1, bx+1] =⇒ P ′(λ) = 1, so we need to
subtract 1 for λ > bx, which is achieved by subtracting Θκx,δ/K(λ−tx) from P ′(λ). Otherwise,
if cx+1 = 1, then λ ∈ [ax+1, bx+1] =⇒ P ′(λ) = 0, so we need to add 1 for λ > bx, which is
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achieved by adding Θκx,δ/K(λ− tx). The conditions cx+1 = 0 and cx+1 = 1 are equivalent to
cx > cx+1 and cx < cx+1 respectively. Consequently:

P (x) = P ′(x) + Θκx,δ/K(x− tx) ·
{

+1 if cx < cx+1
−1 if cx > cx+1

. (135)

It remains to invoke singular value transformation in order to construct operators with this
polynomial as their spectrum. The polynomial we have constructed has mixed parity, which
is acceptable because we perform singular value transformation on a Hermitian operator. The
method from [GSLW19] splits the polynomial into its even and odd parts and combines them
together via a linear combination of block encodings. This introduces an extra factor of 1

2 .
Since we only care about making eigenvalues either close to 0 or 1, we can use a simple version
of oblivious amplitude amplification via the Chebyshev polynomial T3 to remove this extra
factor.

Lemma 35 (Construction of projectors via singular value transformation). Say H
is a Hermitian matrix with −1 ≤ H ≤ 1, and we are given a block encoding UH of H. Say H
has the eigendecomposition H =

∑
i λiΠi. Say P (λ) is a degree-d polynomial that, for some

δ and for certain regions {[ax, bx]} satisfies λ ∈ [ax, bx] =⇒ |P (λ) − cx| ≤ δ for cx ∈ {0, 1},
and furthermore satisfies 0 ≤ P (λ) ≤ 1 for all λ ∈ [−1, 1].

Then, there exists a quantum circuit UP̄ (H) which is a block encoding of a matrix P̄ (H)
defined by:

P̄ (H) :=
∑

i

P̄ (λi)Πi. (136)

where P̄ is a function that satisfies λ ∈ [ax, bx] =⇒ |P̄ (λ) − cx| ≤ 2δ. This circuit makes d
many uses of controlled-UH , and has circuit complexity O(d) overall.

Proof. Our starting point is Theorem 56 of [GSLW19], which allows us to construct a block
encoding of

1
2P (H) :=

∑
i

1
2P (λi)Πi. (137)

To get rid of the factor of 1
2 , let T3(λ) be the third Chebyshev polynomial of the first kind,

and use Corollary 18 of [GSLW19] to construct a block encoding of:

−T3

(1
2P (H)

)
:=
∑

i

−T3

(1
2P (λi)

)
Πi. (138)

Observe that −T3(0) = 0 and −T3(1
2) = 1, and also that −T3(δ/2) ≤ 2δ and −T3((1−δ)/2) ≥

1 − 2δ. So if we let P̄ (λ) := −T3
(

1
2P (λ)

)
then −T3

(
1
2P (H)

)
is the P̄ (H) we wanted to

construct. Since P (λ) has degree d, and −T3(λ) has degree O(1), the total circuit complexity
and number of invocations to controlled-UH is O(d) overall.
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Now we are ready to synthesize the operators we need in order to prove Proposition 8,
Lemma 17, and Lemma 29.

We start with the energy estimation result from Proposition 8, which is adapted from
[Ral21]. This work gives a construction for energy estimation that attempts to minimize the
constant factors in polynomial degree as well as ancilla count. We do not concern ourselves
with these, and just give an asymptotic bound that also has an extra factor of n in the
complexity. A similar method also appears in [MRTC21].

Proof of Proposition 8. Say UA is a block encoding with k ancilla qubits of a Hermitian op-
erator A. For y ∈ {0, 1}k we define Ay := (⟨y| ⊗ I)UA( |0k⟩ ⊗ I), so that:

UA

(
|0k⟩ ⊗ I

)
=
∑

y

|y⟩ ⊗Ay. (139)

Then, let GA := |0k⟩⊗A and ḠA :=
∑

y∈{0,1}k\{0k} |y⟩⊗Ay and apply a generalized Toffoli
gate to synthesize the isometry:|1⟩ ⊗ |0k⟩⟨0k| + |0⟩ ⊗

∑
y∈{0,1}k\{0k}

|y⟩⟨y|

UA

(
|0k⟩ ⊗ I

)
(140)

= |1⟩ ⊗GA + |0⟩ ⊗ ḠA. (141)

Clearly G†
AGA = A2. We also have Ḡ†

AḠA =
∑

y∈{0,1}k\{0k}A
†
yAy = I −A2 following from

the unitarity of UA.
Our goal is to compute |x⟩, where x is the index of the interval [ax, bx] containing λ. We

will repeatedly use the above isometry to compute |x⟩ one bit at a time. To do so, we make
use of Lemmas 34 and 35 to synthesize δj-accurate projectors for each bit of x — call them
P̃ (j) for the approximate projector for the j’th bit.

If we apply the above construction involving UA above for each of P̃ (j), we construct an
isometry Ẽ(M) that achieves Ẽ(M) =

∑
x |x⟩ ⊗ GP̃x

with the desired properties. We observe
that:

GP̃x
:=

n+1∏
j=1

{
GP̃ (j) if xj = 1
ḠP̃ (j) if xj = 0 . (142)

Since the P̃ (j) commute, we can evaluate:

P̃x := G†
P̃x
GP̃x

=
n+1∏
j=1

{
G†

P̃ (j)GP̃ (j) if xj = 1
Ḡ†

P̃ (j)ḠP̃ (j) if xj = 0
=

n+1∏
j=1

{
(P̃ (j))2 if xj = 1

I − (P̃ (j))2 if xj = 0 . (143)

It remains to show that
∥∥∥P̃xP

(M) − Px

∥∥∥ ≤ δest. The j-th bit has 2j many flips. We take

δj := δest/2 · 2−j such that
∥∥∥P̃ (j)P (M) − P (j)

∥∥∥ ≤ δj , with P (j) being the ideal projector onto
the j’th bit. That way the total error in spectral norm is at most δest ·

∑n+1
j=1 2−j ≤ δest. Each

projector has complexity O
(
κ−1 log

(
2jδ−1

j

))
. The total complexity is:

κ−1
n+1∑
j=1

log
(
2jδ−1

j

)
= κ−1

n+1∑
j=1

log
(
4j · 2δ−1

est

)
= O

(
κ−1n2 log

(
δ−1

est

))
. (144)
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Next, we construct the operator that underlies the left-right POVM. To follow this argu-
ment, we refer again to Fig. 2 which gives a sketch of L̄, R̄ as well as the function approximated
by Lemma 34.

Proof of Lemma 17. The operator PLR is constructed using Lemmas 34 and 35: all we need
to do is select the intervals [ax, bx] and the labels cx. Recall that the goal was to ensure that
∥P 2

LRΠi∥ ≤ δsup for λi ̸∈ L̄ and ∥(I − P 2
LR)Πi∥ ≤ δsup for λi ̸∈ R̄. Recall Fig. 2. The intervals

of interest are the gaps of L̄ and R̄, for which we set cx = 0 and cx = 1 respectively. If we
invoke Lemma 34 with precision δ = δsup/6, then for λi ̸∈ L̄ we have ∥P 2

LRΠi∥ ≤ δ2 ≤ δsup/3
and for λi ̸∈ R̄ we have ∥(I − P 2

LR)Πi∥ ≤ 1 − (1 − δ)2 ≤ δsup/3 as desired.
From the construction of L̄ and R̄ in Definition 16, we see that each of the intervals

are exactly 2−n−r−2 apart, and there are 2n+r+1 of them. Since the intervals alternate with
cx = 0 and cx = 1, there are O(2n+r) many switches. So, the implementation requires
(n+ r)2n+r log

(
δ−1

sup

)
many invocations of the block encoding of H.

Finally, we construct the attenuation operator A(M) and its approximation Ã(M). We
demand that A(M) vanishes outside of the rounding promise M , and is close to 1 in inside
of a truncated rounding promise MT . For all the other eigenspaces, the approximation Ã(M)

and A(M) agree. This means that we can use the construction of Ã(M) to define what A(M)

should be outside these regions.

Proof of Lemma 29. As usual, we use Lemmas 34 and 35 to construct the block encoding of
Ã(M). This construction results in a function ã(M) which lets us define a(M) and hence A(M)

via the requirements in Lemma 29.
We need to ensure that ã(M)(λ) ≤ δleak for λ ̸∈ M , and that ã(M)(λ) ≥ 1 − δleak for

λ ∈ MT . This immediately shows what intervals to use for Lemma 29: the intervals with
cx = 0 are the gaps of M , and the intervals with cx = 1 are the intervals of MT .

There are 2 ‘flips’ per interval of M , so there are O(s(M)) flips total. Since MT was
obtained by taking M and shrinking the intervals by κγ on each side, the gap width for
the purposes of Lemma 29 is κγ. Accordingly, the polynomial degree and hence the query
complexity are O

(
κ−1γ−1 log

(
s(M)δ−1

))
.

C The Approximate Lindbladian
We describe here a method that does not try to force any rounding promises to make energy
estimation unambiguous. Rather this method works directly with approximate jump operators
that arise from imperfect energy estimation of the Hamiltonian H on the entire Hilbert space
H.

We consider a general energy estimation unitary V (±) that acts as

V (±) =
∑

i

Πi ⊗
∑

x

f(λi, λ̃x) |z⟩⟨z ± λ̃x| , (145)

where λi’s are the energies of H and Πi’s the projectors onto the corresponding eigensub-
spaces, and λ̃x’s denote the possible outcomes produced by the energy estimation method.
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The summation over x means that any energy estimation method necessarily produces super-
positions of energy estimates. Typically, the magnitude of f(λi, λ̃x) decreases with increasing
distance between the true energy λi and the approximate energies λ̃x.

For instance, when energy estimation is based on phase estimation the unitary U =
exp(iH), the estimates are simply n-bit binary fractions λ̃x = x/2n and the amplitudes
f(λi, λ̃x) are given by

f(λi, λ̃x) = 1
2n

exp
(
πi 2n(λi − λ̃x)

)
exp

(
πi (λi − λ̃x)

) . (146)

The spread of f(λi, λ̃x) can be made narrower with the help of median amplification.
We now construct an oracle OL̃ encoding jump operators of an approximate Lindbladian

L̃ using a general estimation unitary V (±) as in Eq. (145). We consider the case that there is
only one coupling operator S. OL̃ is given by the circuit:

OL̃ := V (−) V (+)
G

S
(147)

where G denotes a block encoding of:

G :=
∑

ν

√
G(ν) ⊗ |ν⟩⟨ν| . (148)

To describe the jump operators that are encoded by the above circuit, we define the
approximate Bohr frequencies ν to be differences of the form λ̃x − λ̃y. The approximate jump
operators L̃(ν) are given by

L̃(ν) =
√
G(ν) S̃(ν), (149)

where

S̃(ν) =
∑
x,y

λ̃x−λ̃y=ν

∑
i,j

f(λ̃x, λi)f(λ̃x, λj)ΠiSΠj (150)

=
∑
x,y

λ̃x−λ̃y=ν

A(x)SA(y)†. (151)

Unfortunately, the operators

A(x) =
∑

i

f(λ̃x, λi)Πi (152)

that “sandwich” the coupling operator S are not projectors as in the case for Davies generators.
Thus, it is not possible to interpret the operators L̃(ν) as jump operators of a Davies generator
with respect to some Hamiltonian that is close to the original Hamiltonian. Therefore, it is
much more difficult to determine the fixed point of the corresponding Lindbladian L̃, which
is given by

L̃(ρ) =
∑

ν

G(ν)
[
S̃(ν)ρS̃(ν)† + 1

2
(
S̃(ν)†S̃(ν)ρ+ ρS̃(ν)†S̃(ν)

)]
. (153)
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This ‘approximate Davies generator’ L̃ is challenging to analyze. It is intuitive that this
Davies generator’s steady state must be somewhat close to the ideal thermal state: the error
due to the finite precision of energy estimation can be dealt with in the same way as for
the promised Davies generators, and the ‘rounding errors’ stemming from energies located at
x/2n + 1/2n+1 also only shift the accuracy of the estimate slightly.

To our knowledge, no method exists for rigorously proving a bound on the distance between
this Lindblad operator’s steady state and the true thermal state. A potential candidate for
a proof technique via ‘approximate detailed balance’ appeared in [TOV+11, CB21], where it
was leveraged to prove the accuracy of the quantum Metropolis algorithm. But it is not clear
how to translate this technique to Davies generators.

How severe are these rounding errors? In practice, it may be the case that the steady
state of approximate Davies generator is close to the ideal thermal state. Here, we present
some evidence that it may be difficult to prove such a claim without an assumption on the
Hamiltonian. We construct an ‘adversarial’ Hamiltonian that places its eigenvalues exactly at
the locations where the rounding errors are maximized. Specifically, its energies are located
at:

λi = i+ α/2
2n

(154)

where 0 ≤ i < 2n is an integer and α ∈ [0, 1] is an ‘adversariality parameter’. When α = 0,
then energy estimation is perfect and the operators A(x) are projectors exactly. But as α
increases, the eigenvalues are shifted so that they are rounded up or down with increasing
entropy. This Hamiltonian is specifically designed to capture these rounding errors alone: the
energies are spaced out evenly with exactly the precision of the energy estimation protocol.

Fig. 4 shows the error in preparing the ideal thermal state when using the approximate
Davies generator with this adversarial Hamiltonian. We see that at α = 0 the method
computes the thermal state exactly. But as α increases we see significant errors. If we
amplify the accuracy of the energy measurement using median amplification, then the errors
appear only for larger α. But no amount of amplification can remove the error for α = 1.

Since the approximate Davies generator is significantly simpler and may be less costly
to implement than our scheme of random promised Davies generators, a proof technique
establishing rigorous accuracy bounds on this Davies generator may result in a substantially
improved algorithm for thermal state preparation.
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