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Leishmania major-derived
lipophosphoglycan influences
the host’s early immune
response by inducing
platelet activation and DKK1
production via TLR1/2

Olivia C. Ihedioha1, Anutr Sivakoses1, Stephen M. Beverley2,
Diane McMahon-Pratt3 and Alfred L. M. Bothwell1*

11Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States,
2Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St.
Louis, MI, United States, 3Department of Epidemiology of Microbial Diseases, Yale School of Public
Health, New Haven, CT, United States
Background: Platelets are rapidly deployed to infection sites and respond to

pathogenic molecules via pattern recognition receptors (TLR, NLRP). Dickkopf1

(DKK1) is a quintessential Wnt antagonist produced by a variety of cell types

including platelets, endothelial cells, and is known to modulate pro-

inflammatory responses in infectious diseases and cancer. Moreover, DKK1 is

critical for forming leukocyte-platelet aggregates and induction of type 2 cell-

mediated immune responses. Our previous publication showed activated

platelets release DKK1 following Leishmania major recognition.

Results: Here we probed the role of the key surface virulence glycoconjugate

lipophosphoglycan (LPG), on DKK1 production using null mutants deficient in

LPG synthesis (Dlpg1- and Dlpg2-). Leishmania-induced DKK1 production was

reduced to control levels in the absence of LPG in bothmutants and was restored

upon re-expression of the cognate LPG1 or LPG2 genes. Furthermore, the

formation of leukocyte-platelet aggregates was dependent on LPG. LPG

mediated platelet activation and DKK1 production occurs through TLR1/2.

Conclusion: Thus, LPG is a key virulence factor that induces DKK1 production

from activated platelets, and the circulating DKK1 promotes Th2 cell polarization.

This suggests that LPG-activated platelets can drive innate and adaptive immune

responses to Leishmania infection.
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Introduction

Cutaneous leishmaniasis (CL) is a zoonotic protozoan disease

caused by over 15 different parasite species of Leishmania (1).

Current data suggest that more than 1 billion people are at risk of

cutaneous leishmaniasis, and more than 1 million new cases occur

each year in approximately 90 countries worldwide (2). Cutaneous

leishmaniasis is endemic in many regions of the world, including

the Mediterranean, North Africa, Central America, the Middle East,

and northern parts of South America (3). Most of the detected cases

of leishmaniasis in the United States are amongst travellers to

endemic regions (4). Therapeutic treatment for managing

cutaneous leishmaniasis involves the use of a limited number of

drugs, known to cause serious side effects (5). Thus, therapeutic

approaches that promote healing and reduce drug toxicity are

highly desired. Combinatorial therapy involving a combination of

immunomodulatory molecules with current therapies has the

potential of limiting drug toxicity (6). Therefore, there is a need

to identify immunomodulatory mechanisms and compounds that

will serve as a therapeutic target for controlling leishmaniasis.

Identifying immunomodulatory molecules for controlling

leishmaniasis requires understanding Leishmania surface

component interaction with host immune cells.

Platelets are known to play a role in hemostasis and for their

essential contribution to protection against infectious pathogens

(7). By interaction with macrophage cells, monocytes, neutrophils,

lymphocytes, and the endothelium, platelets are therefore

important executors during inflammatory and immune responses

(8, 9). The membrane glycoprotein CD62P, a member of the

selectin family, is expressed on activated platelets (10) and is

redistributed from the secretory a-granules (11). PSGL-1, one of

the best-characterized selectin ligands, is mainly expressed in

leukocytes (12). Leukocyte platelet aggregation formed by

adhesion between activated platelet and mature leukocyte is

mediated by CD62P and PSGL-1 (13–15). The formation of

leukocyte platelet aggregation (LPA) is necessary for effective

migration to the infection site (16), which might be induced by L.

major surface membrane components.

Surface membrane components of pathogens (virus, bacteria,

parasite) are important in initiation of infection and interaction with

the host. The Leishmania parasite has a surface coat (glycocalyx) that

is composed of glycosylated proteins and lipids that are crucial for the

parasite’s survival, replication and pathogenesis in the insect vector

and mammalian hosts (17, 18). These glycoconjugates on the parasite

coat are differentially expressed in the different developmental stages

of the Leishmania parasite (18). Of these molecules,

lipophosphoglycan (LPG) and proteophosphoglycan (PPG) show

structural similarities through the presence of the canonical

phosphoglycan repeating units (Gal-Man-PO4) (19, 20). Thus,

there is a strong potential for cross-activity of these shared motifs

in biochemical or cell biological tests of purified molecules. This

limitation can be overcome using Leishmania major rendered

genetically deficient in either or both LPG or PPG. Parasites

specifically lacking LPG1 were obtained through homologous gene

replacement, deleting the LPG1 galactofuranosyl transferase required

for synthesis of a critical linkage within the LPG glycan core domain
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(21). These mutants otherwise express normal levels of other surface

virulence glycoconjugates including GPI anchored proteins, PPG and

glycoinositolphospholipids (GIPLS) (22). Similarly, homologous gene

replacement of LPG2 encoding the Golgi GDP-mannose nucleotide

sugar transporter completely ablate PG repeat synthesis, rendering

parasites deficient in both intact LPG and PPG (23). Extensive studies

using these mutants have shown that LPG plays critical roles in

pathogenesis and parasite survival, through the evasion of

complement-mediate lysis, preventing natural killer T cells from

recognizing the Leishmania-infected macrophage, suppression of

oxidative burst response, macrophage-mediated killing and

modulation of host immune responses (24–26). Further, LPG has

the ability to alter dendritic cell function, which affects the host’s

immunological responses by blocking antigen presentation and

promoting an early IL-4 response (27).

We demonstrated activated platelets release of DKK1 following

recognition of L. major (28). In that report, we found that DKK1 is

maintained at a high concentration in L. major infected mice, and

that depletion of platelets resulted in the complete loss of the DKK1

response to infection (28). Further inhibition of DKK1 activity

resulted in a significant reduction in cells recruited to the site of

infection. The DKK1 response was shown to be critical to the

development of the Th2 response to infection through the induction

of MAPK and mTOR signaling pathways. It has been reported that

platelet-derived DKK1 is elevated in different diseases following the

recognition of pathogen-associated molecular patterns through

receptors other than TLR activation. However, no one so far has

related DKK1 elevation to platelet-TLR activation or has identified

leishmanial-associated molecules involved in DKK1 production.

In the current study, we expand upon our initial observations to

demonstrate that Leishmania major-mediated platelet activation is

initiated via the TLR1/2 signalling pathway, by the specific

engagement of the leishmanial virulence factor, lipophosphoglycan

(LPG). Overall, our studies demonstrate that LPG plays a critical role

in Th2 induction, polymorphonuclear neutrophil (PMN) recruitment

and the establishment of infection, through engagement and

activation of platelets.
Experimental procedures

Mice

BALB/c mice (6 weeks old) were purchased from the Jackson

Laboratory. All mice were housed at the University of Arizona

Animal Care Facilities. All mouse protocols were approved by the

Arizona University Institutional Animal Care and Use Committee

(IACUC) in accordance with the Association for Assessment and

Accreditation of Laboratory Animal Care International (AAALAC).
Parasite strains and infection protocol

The L. major mutants (Dlpg1- and Dlpg2-) and add-backs

(Dlpg1-/+LPG1 and Dlpg2-/+LPG2) were derivatives of WT L.

major LV39 clone 5 background. They were made by
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1257046
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ihedioha et al. 10.3389/fimmu.2023.1257046
homologous gene targeting and maintained in selective media as

described previously (22, 23, 29, 30). Leishmania major parasites

were maintained at 26°C in M199 culture medium (Thermo Fisher

Scientific) supplemented with 20% heat-inactivated FBS (Thermo

Fisher Scientific)), 20 mM HEPES (Sigma-Aldrich) and 50 ug/ml

gentamycin (Thermo Fisher Scientific). Prior to using parasites for

infection, metacyclic promastigotes were isolated from stationary-

phase cultures using density gradient centrifugation (31, 32).

Metacyclic promastigotes were washed three times in cold

phosphate-buffered saline (PBS) (Thermo Fisher Scientific) by

centrifugation, resuspended in PBS at 2X108/ml and 10 ml
containing 2x106 metacyclic promastigotes were injected into the

top of the right hind footpad.
Measurement of lesion size and estimation
of parasite burden

Lesion size was measured weekly with Vernier calipers and

determined by subtracting the size of the uninfected from that of the

infected footpad. Parasite burden in the infected footpad was

estimated by limiting dilution analysis as previously described (33).
Platelet preparation and
P-selectin expression

Blood was drawn by retro-orbital bleeding under isoflurane

anesthesia (MWI Animal Health) into tubes containing 3.2% citrate

buffer (G-Biosciences) from naïve mice or at days 3, 14 and 42 PI.

Platelets were prepared as previously described (34). In brief, blood

was diluted with 250 ml of modified Tyrode’s-HEPES buffer (134

mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl, 12 mM NaHCO3, 20

mM HEPES, 5 mM glucose, and 1 mM MgCl2, pH 7.3) and

centrifuged at 250 x g for 15 minutes at room temperature.

Platelet-rich plasma was removed, and platelets were then isolated

by centrifugation at 900 × g for 30 min. Plasma was collected for

DKK1 ELISA.

In vitro stimulation of platelets was done using various stock

concentrations of soluble leishmania antigen (SLAG) (1:25, 1:50,

1:200, 1:400), Pam2CSK4, Pam3CSK4 (InvivoGen), LPS

(Escherichia coli O111:B4-Sigma) and control isotype antibodies

(IgG1, IgG2a and IgG2b) (Invitrogen). DKK1 inhibition was done

using anti-TLR4, anti-TLR2, anti-TLR1/2, anti-TLR2/6, anti-TLR1/

2/6 antibody (Invitrogen), and Go 6976 PKC-alpha inhibitor

(Abcam) before incubation for 1 hr at room temperature.

Platelets were isolated by centrifugation at 550 x g for 10 minutes,

and the supernatant was collected for DKK1 ELISA. For SLAG

preparation, L. major parasites were prepared at 5 × 108 parasites/

ml in M199 medium (without FCS). SLAG was prepared by

repeated five freeze and thaw cycles at -80°C and room

temperature, respectively. SLAG supernatant was collected after

centrifugation at 1500rpm for 20 minutes and stored at -80°C. For

detection of LPG expression, Western Blot of SLAG (7 µg) was

resolved by SDS-PAGE electrophoresis using 10% PAGE; molecules

were transferred to PVDF membrane using the iBlot 2 semi-dry
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blotting system (Thermofisher Scientific Inc.). The membrane was

blocked with 5% powdered milk in Tris Buffered Saline (TBS) and

incubated for 1 hour at room temperature. Blots were probed with

WIC 79.3 antibody (1:1000). After washing in TBS supplemented

with 0.05% Tween 20 (TBST), the membrane was incubated for 1 h

with anti-mouse IgG conjugated with Horseradish peroxidase

(1:7500-Invitrogen) and the reaction was visualized using Pico

PLUS Chemiluminescent substrate kit (Thermo Fisher Scientific).

Signals were acquired using ChemiDoc Imaging System (Bio-Rad).

For FACS analyses, isolated platelets (10x106/ml) were washed

at 550 x g for 10 minutes in the presence of PGE1 (140 nM; Sigma-

Aldrich) and indomethacin (10 mM; Thermo Fisher Scientific).

Platelets were resuspended to the required density in modified

Tyrode’s-HEPES buffer (Sigma-Aldrich) and rested for 30 minutes

at 37°C in the presence of 10 mM indomethacin prior to staining.

Staining for P-selectin expression was done using PE-conjugated

CD41 (BioLegend) (to determine platelet purity) and APC-

conjugated CD62P (Invitrogen; a marker of P- selectin). Stained

platelets (1 × 106/ml in Tyrode’s-HEPES buffer; 100 ml) were

analyzed using a BD FACSCanto flow cytometer; analysis was

done using FlowJo software. A total of 10,000 events per sample

were collected. The mean fluorescent intensity of P-selectin was

compared among the different groups in the overlay.
Leukocyte-platelet aggregation

Leukocyte-platelet aggregation assessment was performed as

described previously with minor modifications (28). Briefly, 100 ml
blood was collected via the retro-orbital sinus into tubes containing

3.2% citrate buffer. Peripheral blood (10 µl) was stained with PE-

conjugated anti-mouse CD41 antibody and Pacific blue conjugated

CD45 antibody (BioLegend) for 10 mins in the dark at room

temperature. Fix/red blood cell lysis solution (eBiosciences) was

added and incubated for 15 min in the dark at room temperature.

Samples were analyzed by flow cytometry within 4 to 6 hours. Live

gating was performed on leukocyte-sized events to exclude single

platelets. Leukocytes were identified by their forward and side

scatter characteristics and CD45 expression. The CD41+

subpopulation identified leukocyte-platelet aggregates.
DKK1 ELISA

Enzyme-linked immunosorbent assays were performed using a

mouse DKK1 ELISA kit (Thermo Fisher Scientific) to determine the

concentration of DKK1 in plasma and cell culture supernatants

according to the manufacturer’s protocol.
Statistical analyses

The in vivo expression of P-selectin and DKK1 production was

analyzed using one-way ANOVAwith Bonferroni’s post hoc test. Also,

in vitro DKK1 production and P-selectin expression following SLAG

stimulation was analyzed using one-way ANOVA with Bonferroni’s
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post hoc test. Comparison of neutralizing antibody inhibition of

platelet DKK1 induced by SLAG obtained from WT, addback and

mutant parasites was done statistically using Student’s t-test. Likewise,

a comparison of PKC-alpha inhibition of DKK1 induced by SLAG

obtained from WT, addback and mutant parasites was done

statistically using one-way ANOVA with Bonferroni’s post hoc test.

In addition, lesion size, parasitic load and percentage of LPA was

analyzed using one-way ANOVA with Bonferroni’s post hoc test. Data

presented as means ± standard errors were performed using

GraphPad Prism software (GraphPad Software, San Diego, CA, USA).
Results

Dlpg1- and Dlpg2- parasites induce
minimal expression of P-selectin
in platelets

Platelets are rapidly deployed to sites of infection where they can

modulate immune/inflammatory processes by secreting cytokines,

chemokines, and other inflammatory mediators (35). P-selectin is an

adhesion receptor for leukocytes expressed by activated platelets (36).

To investigate the possible effects of LPG1- and or LPG2-dependent

molecules on platelet activation in vivo, expression of P-selectin was

determined from platelets obtained from mice that had been infected

byWT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 parasites for
varying periods of time. Relative to the WT controls, P-selectin

expression was significantly suppressed in platelets obtained from

Dlpg1- and Dlpg2- mutant infected mice on days 3, 14 and 42 PI. As

expected, mice infected with “add-back’ control parasites

(Dlpg1-/+LPG1 and Dlpg2-/+LPG2) manifested restoration of P-
Frontiers in Immunology 04
selectin expression similar to those infected with WT parasites

(Figures 1A–F).

We also characterized P-selectin expression in vitro using

SLAG-stimulated platelets obtained from naïve mice. Stimulation

of platelets obtained from naive mice with SLAG derived from

Dlpg1- and Dlpg2- parasites induced poor P-selectin expression. In

contrast, platelets stimulated with SLAG derived from WT,

Dlpg1-/+LPG1 and Dlpg2-/+LPG2 parasites induced robust P-

selectin expression (Figures 2A, B). Taken together, these data

suggest that the inability of Dlpg1- and Dlpg2- parasites to induce

P-selectin expression arises from a lack of LPG1 or LPG2 dependent

products. As Dlpg2- parasites lack all phosphoglycan-containing

glycans (LPG, PPG and others) while Dlpg1- lacks only LPG, the

lack of a significant difference between Dlpg1- and Dlpg2- mutants

indicates that platelet activation and P-selectin expression are

primarily regulated by LPG.
Dlpg1- and Dlpg2- parasites are less
efficient in inducing DKK1 production
in platelets

We previously showed that activated platelets release DKK1

following recognition of L. major (28). Furthermore, DKK1 is

maintained at a high concentration in L. major infected mice;

depletion of platelets resulted in the complete loss of DKK1 (28).

To identify the L. major ligand involved in DKK1 production, we

first compared the effect of LPG1 and LPG2 gene-dependent

molecules in plasma DKK1 production at days 3, 14 and 42 PI.

We confirmed a significantly decreased production of plasma

DKK1 in Dlpg1- and Dlpg2- mutant infected mice compared to
B C

D E F

A

FIGURE 1

Dlpg1- and Dlpg2- induce minimal P-selectin expression in activated platelets. BALB/c mice were challenged with infective metacyclic promastigote (2 x
106 parasites, n = 5) of WT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 strains via the footpad. Control mice (n = 5) were given 0.9% NaCl saline.
Blood was collected via retro-orbital sinus at days 3, 14 and 42 PI. Isolated platelet samples were analyzed by flow cytometry for P-selectin expression.
In all the experiments, WT-infected and non-infected mice served as positive and negative controls, respectively. Each dot indicates the expression of P-
selectin by CD41+ cells (A–F). Results are presented as mean (± SEM) and are representative of 3 independent experiments. One-way ANOVA with
Bonferroni’s post hoc test was performed to analyze the data *p < 0.05, **p < 0.01, ***p < 0.001, ‘ns’ indicates not significant (p > 0.05).
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WT controls, but in Dlpg1-/+LPG1 and Dlpg2-/+LPG2 infected

mice, DKK1 production was restored (Figures 3A–F). Compared

to days 3 and 14 PI, there was a reduction in the concentration of

DKK1 produced by activated platelets on day 42 PI.

Impaired DKK1 production from the Dlpg1- and Dlpg2- were
further confirmed via an in vitro stimulation of platelets with SLAG

obtained from Dlpg1- and Dlpg2- parasites. Consistent with the

plasma DKK1, in vitro stimulation of naïve platelets with SLAG

obtained from Dlpg1- and Dlpg2- parasites failed to induce

significant production of DKK1, in contrast a significant level of

DKK1 was released by platelets stimulated with SLAG derived from

WT L. major (Figures 4A, B) or the genetically reconstituted

organisms. Since the levels of DKK1 produced in Dlpg1- and

Dlpg2- infected mice are comparable, these data suggest that
Frontiers in Immunology 05
activated platelets release DKK1, a process which depends on the

leishmania-derived LPG virulence factor; PPG does not appear to

additionally contribute to platelet activation.
Significant reduction in lesion size
and parasitic burden observed in Dlpg1-
and Dlpg2- infected mice was restored
in mice infected with Dlpg1-/+LPG1
and Dlpg2-/+LPG2 parasites

The Dlpg1- and Dlpg2- parasites had a greatly delayed formation

of lesions compared with WT controls, whereas lesions produced by

the Dlpg1-/+LPG1 and Dlpg2-/+LPG2 parasites showed minimal
B C

D E F

A

FIGURE 3

Dlpg1- and Dlpg2- parasites induce less plasma DKK1 production from the platelets. Six-week-old female BALB/c mice were challenged with
infective metacyclic promastigote (2 x 106 parasites, n = 5) of WT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 strains via the footpad. Control
mice (n = 5) were given 0.9% NaCl Saline. Blood was collected via retro-orbital sinus at days 3, 14 and 42 PI. Plasma samples were analyzed by ELISA
For DKK1 production (A–F). In all experiments, WT-infected and non-infected mice served as positive and negative controls, respectively. Results are
presented as mean +/- SEM of replicate wells and are representative of 3 independent experiments. One-way ANOVA with Bonferroni’s post hoc
test was performed to analyze the data *p < 0.05, **p < 0.01, ***p < 0.001, ‘ns’ indicates not significant (p > 0.05).
BA

FIGURE 2

Less efficient expression of P-selectin from Dlpg1- and Dlpg2- SLAG-activated platelets. Platelets isolated from naïve mice were incubated with
various concentrations of SLAG (derived from WT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 strains) for 1hr. Platelet samples were analyzed
by Flow cytometry for P-selectin expression. In all the experiments, WT-SLAG activated and non-activated platelets served as a positive and negative
control, respectively. Column graphs (A, B) indicate the expression of P-selectin by CD41+ cells. Results are presented as mean +/- SEM of replicate
wells and represent 3 independent experiments. Data are presented by comparing DKK1 production from the non-SLAG and SLAG (derived from
WT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 strains) activated platelets. One-way ANOVA with Bonferroni’s post hoc test was performed to
analyze the data *p < 0.05, **p < 0.01, ***p < 0.001, ‘ns’ indicates not significant (p > 0.05).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1257046
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ihedioha et al. 10.3389/fimmu.2023.1257046
delay and resembled WT controls (Figures 5A, B). In addition, the

parasitic burden was significantly decreased in Dlpg1- and Dlpg2-
infected mice compared to WT controls, and restoration of the LPG1

and LPG2 genes resulted in parasite survival, which is comparable

with the WT controls (Figures 5C, D). The pattern of lesion size in

the footpads and parasitic burdens of mice infected with genetically

deficient Leishmania (LPG1 or LPG2 gene) were comparable

(Figures 5A–D). These data are consistent with previous

publications concerning the virulence of these lpg mutant parasites

(25, 29, 37). Repetition of this experiment serves as a confirmation of

these results for the mutant lines used in the study.
Frontiers in Immunology 06
Decrease production of DKK1 in
SLAG-stimulated platelets in the
presence of PKC-alpha inhibitor and
anti-TLR1/2 antibody

Platelets express functional TLR2/4 and MyD88, which

participate in platelet responsiveness to infection (38). We

previously showed that activated platelets release DKK1 following

recognition of L. major and PKC-alpha inhibitor or neutralization

of TLR2 blocks secretion of DKK1 from SLAG-stimulated human

platelets (28). PKC-alpha inhibitor is known to block the TLR2/
B

C D

A

FIGURE 5

Dlpg1- and Dlpg2- parasites differ from specific add-backs and WT parasites in their capacity to induce lesions and increase the parasite burdens.
The infected foot from each mouse in WT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 parasite-infected groups were measured for lesion size
weekly using a vernier caliper (A, B), and parasite burden (at day 42 PI) was determined by limiting dilution assay (C, D). Results are presented as
mean +/- SEM. For Figures (A, B), mice in all the infected groups were compared with the non-infected group and data analysis was done using
one-way ANOVA with Bonferroni’s post hoc test *p < 0.05, **p < 0.01, ***p < 0.001, ‘ns’ indicates not significant (p > 0.05).
BA

FIGURE 4

Poor induction of DKK1 from Dlpg1- and Dlpg2- SLAG-activated platelets. Platelets from naïve mice were incubated with various concentrations of SLAG
(derived from WT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 strains) for 1hr. Cell culture supernatant samples were analyzed by ELISA for DKK1
production as shown in the column graphs (A, B). In all experiments, WT-SLAG activated, and non-activated platelets served as positive and negative
controls, respectively. Results are presented as mean +/- SEM of replicate wells and represent 3 independent experiments. Data are presented by comparing
the DKK1 production from non-SLAG and SLAG (derived from WT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 strains) activated platelets. One-way
ANOVA with Bonferroni’s post hoc test was performed to analyze the data *p < 0.05, **p < 0.01, ***p < 0.001, ‘ns’ indicates not significant (p > 0.05).
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MyD88 signalling pathway (39). An important feature of TLR2 is

the ability to form heterodimers with its co-receptors (TLR1 and

TLR6). Therefore, to confirm that TLR1/2/6 recognizes

Leishmania-derived LPG and initiates the production of DKK1,

neutralizing antibodies were used to inhibit the function of these

specific TLRs in the presence of SLAG. Exposure of Dlpg1- and

Dlpg2- SLAG-stimulated platelets to blocking anti-TLR1/2/6

antibodies showed no significant effect, but significant inhibition

of DKK1 production by anti TLR1/2/6 antibodies was observed in

WT, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 SLAG treated platelets

(Figures 6A, B). To determine the level of DKK1 inhibition by

the neutralizing antibodies, platelets were treated with neutralizing

antibodies (anti-TLR2, TLR1/2 and TLR2/6) or control isotype

antibodies (IgG2a and IgG1) in the presence of WT-derived SLAG.

Results showed that neutralization of TLR1/2/6 with an anti-TLR1/

2/6 mAb markedly reduced SLAG-induced DKK1 production in

platelets compared with control isotype antibodies. Relative to

DKK1 inhibition by anti-TLR2 blocking antibody, addition of

anti-TLR1 (TLR1/2) antibody significantly deceased DKK1

production, while addition of anti-TLR6 antibody had no

significant effect (Figure 6C). This suggests that only TLR1/2

played a primary role in LPG induced DKK1 production.

Previous studies reported that inhibition of TLR2 and 4

attenuates inflammatory response and parasite burden in

cutaneous leishmaniasis (40). Therefore, to determine whether

TLR4 contributes in DKK1 production after LPG recognition by

platelets, platelets were treated with anti-TLR4 neutralizing
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antibody or control isotype antibody (IgG2b) in the presence of

WT-derived SLAG. Results showed that neutralization of TLR4,

with an anti-TLR4 mAb failed to reduce SLAG-induced DKK1

production. Also, there was no change in DKK1 production in

platelets treated with the control isotype antibody. This suggests

that TLR4 played no role in LPG induced DKK1 production

(Figure 6C). To confirm the specificity of this data, we assessed

the possibility of other PAMPs (not directly related to LPG) to

induce DKK1 release. Platelets treated with LPS (TLR4) and

Pam2CSK4 (TLR2/6) failed to elicit DKK1 production. However,

Pam3CSK4 (TLR1/2) slightly induced DKK1. This suggests that

LPS and Pam2CSK4 lack the ability to induce DKK1 production

(Figure S3). To verify that SLAG preparations of the mutant lines

lack LPG, Western blot assay of SLAG preparations confirms the

absence of LPG in Dlpg1- derived SLAG and the presence of LPG in

the SLAG of the WT and lpg1 add-back lines (Figure S1).

In addition, when platelets were incubated with SLAG obtained

from WT, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 parasites in the

presence of varying concentrations of PKC-alpha inhibitor, a

significant reduction in secretion of DKK1 was observed at higher

dose concentrations of PKC-alpha inhibitor. In contrast, DKK1

production from Dlpg1- and Dlpg2- SLAG-stimulated platelets

exhibited some degree of inhibition by the PKC-alpha inhibitor at

the higher concentrations (Figures 6D, E), but this was confirmed to

be background platelet DKK1 that is being inhibited, as the non-

stimulated platelets show a comparable level of inhibition (Figure

S2). This suggests that the recognition of leishmania-derived LPG
B C

D E

A

FIGURE 6

Anti-TLR1/2 antibody and PKC-alpha inhibitor significantly decreased DKK1 production in SLAG-activated platelets. Inhibition of DKK1 by neutralizing
antibodies (10 mg/ml) following 1hr incubation with SLAG (derived from WT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 strains) activated
platelets. SLAG concentration is 1:50. In all experiments, Pam2CSK4 (10 mg/ml), Pam3CSK4 (10 mg/ml) and unstimulated samples served as a positive
and negative control, respectively (A, B). Inhibition of DKK1 by neutralizing antibodies (10 mg/ml) following 1hr incubation with WT SLAG (1:50)
activated platelets (C). Inhibition of DKK1 by PKC-alpha inhibitor (100nM, 500nM and 1000nM) following 1hr incubation with SLAG (derived from WT,
Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 strains) activated platelets (D, E). Results are presented as mean +/- SEM of replicate wells and
represent 3 independent experiments. For Figures (A, B), Student’s t-test was performed, while one-way ANOVA with Bonferroni’s post hoc test was
performed to analyze the data in Figures (C–E). *p < 0.05, **p < 0.01, ***p < 0.001, ‘ns’ indicates not significant (p > 0.05). Note that the DKK1
production from Dlpg1- and Dlpg2- SLAG-stimulated platelets was found to be background platelet DKK1, as non-stimulated platelets showed
comparable levels of DKK1 release/PKC-alpha inhibition (Figure S2).
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and induction of DKK1 from activated platelets may occur via the

TLR1/2-MyD88 pathway.
The lack of LPA formation induced by
Dlpg1- and Dlpg2- parasites is restored in
addback parasite (Dlpg1-/+LPG1 and
Dlpg2-/+LPG2) infected mice

Platelet-leukocyte interactions are indispensable events in

hemostasis and inflammation (41, 42). Under inflammatory

conditions, platelets interact with leukocytes, thus promoting

their recruitment by the formation of platelet leukocyte aggregates

via the interaction of PSGL-1 and P-selectin (28, 43). The

consequence of this interaction enables leukocytes to fulfill their

multiple cell-intrinsic functions and immunological tasks. We

showed previously that pre-treatment of mice with DKK1

inhibitor 24 hours prior to infection with L. major reduced the

elevation of LPA formation at 4 h post-infection (28). Furthermore,

repeated administration of DKK1 inhibitor led to significant

reduction in cellular recruitment at the site of infection and to the

draining lymph node. These findings suggest that leukocyte platelet

aggregation and infiltration of leukocytes to the infection site is

driven by DKK1 production.

Given that DKK1 production in mice infected with Dlpg1- and
Dlpg2- parasites was impaired, we considered the possibility that the

loss of LPG1 and LPG2 gene-dependent molecules might decrease

LPA formation in blood obtained from Dlpg1- and Dlpg2- mutant

infected mice (Figures 7). Relative to the WT-infected mice, LPA

circulating in the blood was comparable to those observed in

Dlpg1-/+LPG1 and Dlpg2-/+LPG2 infected mice, but this

aggregate was significantly impaired in Dlpg1- and Dlpg2- infected
groups at day 3 PI. In addition, the LPA level formed in response to

infection with Dlpg1- parasites is comparable to those formed in

response to infection with Dlpg2- parasites (Figures 7A–E). This
Frontiers in Immunology 08
suggests that LPG-activated platelets enhance P-selectin expression,

resulting in platelet leukocyte aggregation.
Discussion

The interactions between Leishmania and host cells have

fundamental effects on the disease outcome (44). Leishmaniasis is

thought to be initiated by direct parasitization of neutrophils and

monocytic cells following parasite deposition into the skin (45–47).

However, it has been demonstrated that platelets can be stimultated

by Leishmania through activation of complement to produce

PDGF, which is a potent inducer of CCL2 (MCP1). MCP-1

promotes the recruitment of a subpopulation of effector

monocytes to the infection site. Complement was found to be

essential for the generation of platelet PDGF, which was found

for the first 30-60 minutes at the site of L. major infection (48).

Complement activation is also known to generate chemotactic

peptides (C5a, C3a), recruiting polymorphonuclear cells (PMN),

which are critical for the establishment of infection. Further, C5a

has been shown recently to be important for PMN trafficking to the

draining lymph node (49). We have previously shown that DKK1

released from activated platelets in response to L. major infection

promoted a Th2 inflammatory response and leukocyte-platelet

aggregation (28); this is important biologically for the recruitment

or migration of PMNs across the vasculature (36, 50, 51). Further,

inhibition of DKK1 in vivo or platelet depletion resulted in

reduction in IL-4, IL-10 and L. major parasite burden as well as

cellular recruitment to the draining lymph node and site of

infection. These studies suggest that platelets are likely one of the

first cells to initiate innate immune responses to Leishmania, and

are important in determining the outcome of infection (48, 52, 53).

Therefore, the primary aim of this study was to determine the

Leishmania surface molecules involved in platelet activation and in

the subsequent DKK1 production from activated platelets that
B C

D E

A

FIGURE 7

Dlpg1- and Dlpg2- parasites are ineffectual in inducing LPA formation. BALB/c mice were challenged with infective metacyclic promastigote (2 x 106

parasites, n = 5) of WT, Dlpg1-, Dlpg2-, Dlpg1-/+LPG1 and Dlpg2-/+LPG2 strains via the footpad. Control mice (n = 5) were given 0.9% NaCl saline.
Blood was collected via retro-orbital sinus at day 3 PI. Blood samples were analyzed by flow cytometry for LPA. Representative flow cytometry dot
plots showing the analyses of LPA performed on day 3 PI (A). Representative dot plots shown in (B, C) are from concatenated samples of each
experimental group, and the corresponding graphs (D, E) indicate the percentage of LPA molecules by CD45+ cells. A dot plot of each sample in all
the experimental groups is presented in Figure S4 (A, B). In all the experiments, WT-infected and non-infected mice served as a positive and
negative control, respectively. Results are presented as mean (± SEM). One-way ANOVA with Bonferroni’s post hoc test was performed to analyze
the data *p < 0.05, **p < 0.01, ‘ns’ indicates not significant (p > 0.05).
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could help account for the pathological type 2 inflammation

observed in mice infected with L. major (28). We focused initially

on the glycoconjugates LPG and PPG and compared the

contribution of L. major Dlpg1- and Dlpg2- parasites on platelet

activation and subsequent DKK1 production in infected mice. Data

show that the absence of PPG and LPG in the Dlpg2- mutant and

deletion of LPG alone in the Dlpg1- mutant significantly influence

the activation of platelets by impairing the expression of P-selectin

and DKK1 production compared to the responses obtained from

WT and add-back L. major infected mice. In addition, the

percentage of LPA at day 3 PI in both Dlpg1- and Dlpg2- mutant

infected mice was significantly lower than those obtained from WT

controls. In contrast, mice infected with Dlpg1- and Dlpg2- parasites
complemented with the LPG1 and LPG2 genes (Dlpg1-/+LPG1 and
Dlpg2-/+LPG2) manifested a phenotype similar to those infected

withWT parasites. As Dlpg1- and Dlpg2- parasite infections result in
relatively similar poor pathogenicity, implying that the deletion of

PPG glycoconjugates did not influence the activation of platelets,

instead LPG is the key molecule responsible for platelet activation.

Leishmania LPG has been reported to induce inflammation

through TLR2 and 4 in macrophages and other cells (54–58).

Notably, although there is considerable structural variation in

leishmanial LPG between species (59), activation of TLR2 by LPG

appears to be found across the genus (L. (V.). braziliensis, L.

mexicana, L.infantum, L. major) (24, 57, 60–62). Although TLR4

activation does not lead to DKK1 release from platelets,the finding

that platelet TLR2 mediates the induction of DKK1 suggests that

this mechanism may play a role in the initiation of infection and

pathogenesis of other Leishmania species (63–65).

However, previous studies have demonstrated that the LPG

virulence factor is expressed and promotes the establishment of

infection by metacyclic promastigotes in host cells; LPG expression

significantly diminishes in amastigote stage (66–69). This suggests,

as level of LPG expression declines in the mammalian host, it would

have little/no critical function as the disease progresses. Since the

expression of LPG decreases in the amastigote phase, it is unclear

how P-selectin and DKKI observed in the WT and add-back

infected mice on days 14 and 42 PI remained elevated. This may

be associated with multiple factors. One possibility is the presence

of residual membrane-anchored LPG, which might prolong platelet

activation and DKK1 production. Previous studies showed that the

down-regulation of the promastigote-specific virulence factor LPG

varies in different host cell environments (68). Thus, the elevated

DKK1 and P-selectin expression observed on days 14 and 42 PI

could also be associated with prolonged retention of LPG virulence

factor in platelets, or macrophages or possibly dendritic cells.

Alternatively, studies demonstrate that TNF-alpha exerts its

effects through TNF-RI expressed on megakaryocytes to activate

platelets (70–74). Thus, the continuity of platelet activation and

DKK1 production observed at later phase of infection may be

associated with TNF-alpha activated platelets. Further, presence

of Leishmania antigens and induction of immunoglobulins have

been shown to induce the formation of circulating immune

complexes (75). Antigen-antibody complexes are capable of

activating platelets via interaction with FcgRIIa (76–78). Hence, as

infection progresses the immune complexes formed could lead to
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sustained platelet activation and DKK1 release. Upon activation,

platelets release certain complement components including C1q,

C3, C4, and C5b-9 (79, 80), and they also express receptor for C3a,

C5a, C1q and C4 (81–84). Previous studies reported that C3a/C5a

and C1q binds to their respective ligands and enhance platelet

activation (85, 86). This suggests that C3a and C1q may prolong

platelet activation and DKK1 production. Inflammatory responses

induced could also provide alternate modes for platelet activation.

Collagen is a unique agonist and a potent activator for platelets (87).

Glycoproteins Ia/IIa, glycoprotein VI and integrin a2b1, has been
identified as the major platelet receptor for collagen (87–89). This

indicates that collagen-activated platelets may as well provide a

possible mechanism of sustained platelet activation. The WT,

addback and mutant infected mice released DKK1 at day 42 PI,

but the level of P-selectin expression was impaired in the mutant

infected mice. Thus, DKK1 prodution and platelet activation

dissociate at the later phase of infection. This suggests that by day

42 PI, the surviving amastigotes could be inducing the DKK1 via an

alternate pathway (which may or may not be platelet-mediated).

The mechanism of the sustained DKK1 release is not clear but of

interest and requires further investigation.

Leishmania infection triggers cascades of events in

macrophages that influence the ensuing immune response. One

of the most crucial initial signaling events is interleukin-12

production by the infected macrophage, resulting in subsequent

induction of Th1 response and production of interferon-gamma

(IFN-g) required to kill the pathogen (90–92). Unlike most

microbial pathogens, Leishmania promastigotes have developed

immune evasion strategies that prevent immediate “classical”

macrophage proinflammatory activation (93). These strategies

include engaging suppression-associated macrophage surface

receptors such as complement receptor 3 (CR3) (94). Earlier

studies of macrophages from CR3-deficient mice demonstrated

that CR3 engagement is required for IL-12 suppression during

Leishmania infection (95). In addition, Leishmania is known to

delay antimicrobial activity in infected macrophages by inhibiting

host defence mechanisms such as protein kinase C activation (96),

and upregulation of inducible nitric oxide synthase following IFN-g
stimulation (92, 97). Thus, infected macrophages response to IFN-g
is repressed. Furthermore, it has been shown that Leishmania

donovani-infected U937 cells exhibit decreased activation of the

IFN-g receptor (98, 99), and L. donovani amastigotes negatively

influence the expression of major histocompatibility complex class

II (MHC-II) following IFN-g stimulation (99). Most importantly,

Leishmania has been demonstrated to suppress TLR4-mediated

proinflammatory cytokine production in BMDMs (100). Thus,

these studies show that Leishmania evades the host immune

response by inhibiting macrophage activation. Although

Leishmania parasites interact and infect various host cell types-

macrophages, neutrophils and dendritic cells are arguably the most

important cells that regulate the outcome of infection (44, 101).

However, there is limited information on the recruitment of these

cells to the site of infection. Our study highlighted that DKK1

released by LPG-activated platelets regulates leukocyte platelet

aggregation required for infiltration of leukocytes to the infection

site. This is consistent with our earlier study that showed that
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inhibition of DKK1 diminished macrophage accumulation at the

infection site, impaired Th2 polarization, and dampened parasitic

load (28). This suggests that LPG-activated platelets might be the

primary cells that significantly influence the initiation and outcome

of infection.

In conclusion, our studies establish the importance of L. major-

derived LPG in the induction of DKK1, which may serve as a novel

immunomodulatory molecule regulating LPA formation (PMN

recruitment) and chronic Th2 inflammatory response. This

observation stresses the need to evaluate further the mechanism

through which DKK1 facilitates leukocyte migration and LPA

formation at the infection site.
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AA, Delgado-Domıńguez J, Salaiza-Suazo N, et al. NKT cell activation by Leishmania
mexicana LPG: Description of a novel pathway. Immunobiology (2017) 222(2):454–62.
doi: 10.1016/j.imbio.2016.08.003

61. Sacramento LA, Da Costa JL, De Lima MH, Sampaio PA, Almeida RP, Cunha FQ,
et al. Toll-like receptor 2 is required for inflammatory process development during
Leishmania infantum infection. FrontMicrobiol (2017) 8:262. doi: 10.3389/fmicb.2017.00262

62. Polari LP, Carneiro PP, Macedo M, MaChado PR, Scott P, Carvalho EM, et al.
Leishmania Braziliensis infection enhances toll-like receptors 2 and 4 expression and
triggers TNF-a and IL-10 production in human cutaneous leishmaniasis. Front Cell
Infect Microbiol (2019) 9:120. doi: 10.3389/fcimb.2019.00120

63. Ibraim IC, de Assis RR, Pessoa NL, Campos MA, Melo MN, Turco SJ, et al. Two
biochemically distinct lipophosphoglycans from Leishmania Braziliensis and Leishmania
infantum trigger different innate immune responses in murine macrophages. Parasites
vectors (2013) 6(1):1–11. doi: 10.1186/1756-3305-6-54

64. Ray S, Maunsell JH. Different origins of gamma rhythm and high-gamma
activity in macaque visual cortex. PloS Biol (2011) 9(4):e1000610. doi: 10.1371/
journal.pbio.1000610
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