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Objective: Type 2 diabetes mellitus (T2DM) is an endocrine-related disease with

an increasing incidence worldwide. Male sexual dysfunction is common in

diabetic patients. Therefore, we designed a Mendelian randomization (MR)

study to investigate the association of type 2 diabetes and 3 glycemic traits

with testosterone levels.

Methods: Uncorrelated single nucleotide polymorphisms (SNPs) associated with

T2DM (N = 228), fasting insulin (N = 38), fasting glucose (N = 71), and HbA1c (N =

75) at the genome-wide significance were selected as instrument variables.

Genetic associations with testosterone levels (total testosterone, TT,

bioavailable testosterone, BT, and sex hormone-binding globulin, SHBG) were

obtained from the UK Biobank studies and other large consortia. Two-sample MR

analysis was used to minimize the bias caused by confounding factors and

response causality. Multivariable MR analysis was performed using Body mass

index (BMI), Triglycerides (TG), LDL cholesterol (LDL), and adiponectin to adjust

for the effects of potential confounders.

Results: Type 2 diabetes mellitus was associated with the decrease of total

testosterone (b: -0.021,95%CI: -0.032, -0.010, p<0.001) and sex hormone

binding globulin (b: -0.048,95%CI: -0.065, -0.031, p<0.001). In males, total

testosterone (b: 0.058, 95% CI: 0.088, 0.028, p < 0.001) decreased. In females,

it was associated with an increase in bioavailable testosterone (b: 0.077,95%CI:
0.058,0.096, p<0.001). Each unit (pmol/L) increase in fasting insulin was

associated with 0.283nmol/L decrease in sex hormone-binding globulin (95%

CI: -0.464, -0.102, p=0.002) and 0.260nmol/L increase in bioavailable

testosterone (95%CI: -0.464, -0.102, p= 0.002). In males, sex hormone

binding globulin decreased by 0.507nmol/L (95%CI: -0.960, -0.054, p= 0.028)

and bioavailable testosterone increased by 0.216nmol/L (95%CI: 0.087,0.344, p=

0.001). In females, sex hormone binding globulin decreased by 0.714 nmol/L

(95%CI: -1.093, -0.335, p<0.001) and bioavailable testosterone increased by

0.467nmol/L (95%CI: 0.286,0.648, p<0.001). Each unit (%) increase in HbA1c was

associated with 0.060nmol/L decrease in sex hormone-binding globulin (95%CI:
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-0.113, -0.007, p= 0.026). In males, total testosterone decreased by 0.171nmol/L

(95%CI: -0.288, -0.053, p=0.005) and sex hormone binding globulin decreased

by 0.206nmol/L (95%CI: -0.340, -0.072, p=0.003). Total testosterone increased

by 0.122nmol/L (95%CI: 0.012,0.233, p=0.029) and bioavailable testosterone

increased by 0.163nmol/L (95%CI: 0.042,0.285, p=0.008) in females.

Conclusions: Using MR Analysis, we found independent effects of type 2

diabetes, fasting insulin, and HbA1c on total testosterone and sex hormone-

binding globulin after maximum exclusion of the effects of obesity, BMI, TG, LDL

and Adiponectin.
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Introduction

With the improvement of nutritional status, type 2 diabetes

mellitus has gradually become one of the major threats to human

health (1). The number of adults with diabetes increased from 108

million to 422 million between 1980 and 2014 (2), with type 2 diabetes

accounting for more than 90% of these cases (3). Diabetes has become

one of the top three diseases in the world, and the global prevalence is

increasing (4). Traditional cross-sectional studies suggest that gonadal

function and testosterone levels are decreased in 33%-57% of patients

with type 2 diabetes (5). At present, there are clinical studies on the

intervention of blood glucose status in type 2 diabetic patients by

exogenous testosterone supplementation (6). However, observational

studies have limitations such as misclassification and reverse causality.

At the same time, type 2 diabetes is a chronic metabolic disorder with a

long course and early occult symptoms, so the causal relationship

between type 2 diabetes and testosterone level is still unclear (7). There

are gender differences in testosterone levels, and the effect of type 2

diabetes on testosterone levels in different genders is still unclear. The

effects of various glycemic traits on testosterone levels are still

controversial. The effect of different diabetes treatment regimens on

altered testosterone levels is unknown. We aimed to investigate these

issues by means of Mendelian randomization.

Mendelian randomization (MR) is an epidemiological method

that enables causal inference by using single nucleotide

polymorphisms (SNPs) as instrumental variables of exposure (8).

Compared with observational studies, MR can reduce confounding

bias because the genetic alleles are randomly aligned at conception

and therefore not correlated with environmental and acquired

factors. Because the genotype cannot be altered by disease, the

MR design prevents reverse causality (9). Here, we performed a

two-sample MR study to comprehensively examine the association

of type 2 diabetes and glycemic traits (fasting insulin, fasting

glucose, and HbA1c) with testosterone levels.
02
Method

This two-sample MR analysis was designed to investigate type 2

diabetes and glycemic traits on testosterone levels, including total

testosterone (TT), bioavailable testosterone (BT) and sex hormone-

binding globulin (SHBG). Additional studies were conducted to

investigate the effects of different diabetes treatment regimens on

testosterone levels. This study was based on genome-wide

association studies (GWAS) and publicly available data from the

UK Biobank database and other large consortia, with no overlap

between study populations. The included studies were approved by

the relevant ethical review boards, and informed consent was

obtained from participants (Figure 1).
Selection of instrumental variables and
data sources

Type 2 diabetes and glycemic traits (fasting insulin, fasting

glucose, and HbA1c).

SNPs associated with type 2 diabetes and glycemic traits (fasting

insulin, fasting glucose, and HbA1c) were selected from GWAS

meta-analyses. These included 228,499 cases and 1,178,783 controls

from the Million Soldier Retirement Program, DIAMANTE, Japan

Bank of Biotechnology, and other studies (10). We selected SNPs

with P<5*10-8 and calculated linkage disequilibrium between SNPs

at each exposure by using the PLINK clustering method based on

the 1000 Genomes European panel. SNPs with linkage

disequilibrium (defined as R2 < 0.001 and clumping distance =

5000 kb) were excluded. Five SNPs that were also associated with

obesity (11) and three SNPs associated with BMI were removed,

leaving 228 SNPs to be used as instrumental variables for type 2

diabetes. 38 SNPs were used for fasting insulin, 71 SNPs for fasting

glucose, and 75 SNPs for HbA1c.
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Body mass index

Pooled data on BMI were obtained from a meta-analysis (12) of

23 studies, which involves 32,161 individuals of European

individuals whose populations did not overlap with the

UK Biobank.
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Triglycerides and LDL cholesterol

Pooled data on TG and LDL were obtained from a meta-

analysis (13) of 23 studies involving 94,595 individuals of

European individuals, whose populations did not overlap with the

UK Biobank.
FIGURE 1

Study design. MAGIC, Meta-analyses of glucose and insulin-related traits consortium.
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Adiponectin

The aggregate-level data on adiponectin were derived from a

meta-analysis (14) of 16 studies involving 45,891 European

individuals whose study populations did not overlap with the UK

Biobank data.
Medications for diabetes

A total of four different drugs were selected for analysis, namely

insulin, metformin, blood pressure medication, and statin

medication. Data on insulin and statin therapy were obtained

from FinnGen, which included 218,792 European individuals (15,

16). Data on metformin and blood pressure medication were

obtained from the UK Biobank, which included 462,933 and

249,710 European individuals, respectively (17, 18).
Testosterone levels

SNPs for TT, BT, and SHBG levels were obtained from publicly

available summary statistics (19). The database uses UK Biobank

data, which includes phenotypic and biospecimens collected from

approximately 500,000 individuals across the United Kingdom (20).

Testosterone and SHBG levels (nmol/L) were measured in 230,454

and 189,473 participants, respectively, using a one-step competition

assay and a two-step sandwich immunoassay. BT (nmol/L) was

calculated from total testosterone and albumin, which was also

measured by BCG analysis on a Beckman Coulter AU5800.

All data sources and instrumental variables are summarized in

Supplementary Tables 1, 2.
Statistical analysis

Inverse-variance weighted (IVW) was used as the main MR

method to estimate the causal relationship of type 2 diabetes and

glycemic traits with testosterone levels. We used a random-effects

model for all MR analyses because of the heterogeneity among the

databases used. Simultaneously, sensitivity tests were also

performed by weighted median, MR-Egger and MR-PRESSO to

test the robustness of the results and verify horizontal pleiotropy. If

more than 50% of the weights are derived from valid SNPs, the

weighted median method can provide valid MR estimates. The

embedded intercept of the MR-Egger regression analysis was used

to detect horizontal pleiotropy and to provide correct estimates

after correction for pleiotropy effects. Using MR-PRESSO to detect

and correct for possible outliers, the MR-PRESSO global test can be

used to estimate level pleiotropy caused by SNPs heterogeneity (21).

Horizontal pleiotropy that could distort causal inferences was

assessed by three sensitivity tests and the MR-Egger intercept test.

The strength of IVs was assessed by calculating the F-statistic using

the formula F= R2× (N −1 −K)/(1−R2) ×K, where R2 represents the

proportion of variance in the exposure explained by the genetic
Frontiers in Endocrinology 04
variants, N represents sample size, and K represents the number of

instruments (22). If the corresponding F-statistic was >10, it was

considered that there was no significant weak instrumental bias

(22). The power of the MR estimates was calculated using the online

calculator tool (23) provided by Stephen Burgess (24).

Heterogeneity of VIs was calculated using Cochran’s Q statistic.

At the same time, the potential sources of heterogeneity were

identified by “leave-one-out” analysis for each SNPs.

Testosterone levels were defined as continuous variables, and b
was used to assess the effect of type 2 diabetes and related glycemic

measures on testosterone levels. All analyses were two-tailed. We

used the R packages TwoSampleMR and MRPRESSO in R 4.1.3 for

the analysis.
Result

The study involved three different populations, i.e., patients

with type 2 diabetes regardless of gender, male patients with

diabetes and female patients with diabetes.

The relationship between the gene-predicted type 2 diabetes

and testosterone level (nmol/L) was as follows (Supplementary

Table 3).

Overall, type 2 diabetes was associated with decreased total

testosterone (b: -0.021,95%CI: -0.032, -0.010, p<0.001) and sex

hormone binding globulin (b: -0.048, 95%CI: -0.065, -0.031, p<0.001).
Similar trends were found in studies that differentiated between

genders. In male patients with type 2 diabetes, total testosterone (b:
-0.058, 95%CI: -0.088, -0.028, p<0.001) and sex hormone binding

globulin (b: -0.097, 95%CI: -0.134, -0.060, p<0.001) decreased. In
female patients with type 2 diabetes, sex hormone binding globulin

(b: -0.154, 95%CI: -0.193, -0.116, p<0.001) decreased, but

bioavailable testosterone (b: 0.077, 95%CI: 0.058, 0.096, p<0.001)
showed the opposite trend (Figure 2).

Pleiotropy analysis showed pleiotropic effects in male

bioavailable testosterone, female bioavailable testosterone, and

female sex hormone-binding globulin. This persisted even after

exclusion of outliers by MR-PRESSO test and hence making the

results of these three studies unreliable. We excluded these

indicators in the analyses below. All but the three studies did not

detect pleiotropy, and the results were robust with narrowed

confidence intervals after exclusion of outliers by MR-

PRESSO testing.

The results were robust after adjustment for BMI, TG, LDL, and

adiponectin, with no significant change in the overall trend. The

results are summarized in the Supplementary Table 4.
Glycemic traits and testosterone levels

The relationship between the gene-predicted increase in fasting

insulin level per unit (pmol/L) and testosterone level (nmol/L) was

as follows (Figure 3).

At the overall level, each unit increase in fasting insulin was

associated with a decrease in sex hormone-binding globulin of 0.283
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nmol/L (95%CI: -0.464, -0.102, p=0.002) and an increase

in bioavailable testosterone of 0.260 nmol/L (95%CI:

0.175,0.344, p<0.001).

In men, each unit increase in fasting insulin was associated with

a decrease in sex hormone-binding globulin of 0.507 nmol/L (95%

CI: -0.960, -0.054, p=0.028) and an increase in bioavailable

testosterone of 0.216 nmol/L (95%CI: 0.087, 0.344, p<0.001). In

women, each unit increase in fasting insulin level was associated

with a 0.714 nmol/L decrease in sex hormone-binding globulin

(95%CI: -1.093, -0.335, p<0.001) and a 0.467 nmol/L increase in

bioavailable testosterone (95%CI: 0.286, 0.648, p<0.001).

The relationship between the genetically predicted increase in

HbA1c per unit (%) and testosterone level (nmol/L) was as

follows (Figure 4).

At the overall level, each unit increase in HbA1c was associated

with a 0.060 nmol/L decrease in sex hormone binding globulin

(95%CI: -0.113, -0.007, p=0.026).

In men, each unit increase in HbA1c was associated with a

decrease in total testosterone of 0.171 nmol/L (95%CI: -0.055,

-0.053, p=0.005) and sex hormone-binding globulin of 0.206
Frontiers in Endocrinology 05
nmol/L (95%CI: -0.340, -0.072, p=0.003). In women, each

unit increase in HbA1c was associated with 0.122 nmol/L (95%

CI: 0.012,0.233, p=0.029) increase in total testosterone and

0.163 nmol/L (95%CI: 0.042,0.285, p=0.008) increase in

bioavailable testosterone.

No effect of fasting glucose on testosterone levels was found in

this study (Figure 5).

No pleiotropic effects were found in any of the above studies,

and the confidence intervals of the results were narrowed after

exclusion of outliers by the MR-PRESSO test. The results are

summarized in the Supplementary Tables 5–7.
Medications for diabetes

Multivariate Mendelian randomization analysis was performed

for the four drugs (insulin, metformin, blood pressure medication,

and statin medication). After adjustment for insulin therapy, the

difference in testosterone levels (including total testosterone,

bioavailable testosterone, and sex hormone-binding globulin)
FIGURE 2

Associations of genetic liability to the type 2 diabetes mellitus with testosterone. P values are for ORs (95% CIs). Se is standard error. * The P value
for pleiotropy is less than 0.05.
FIGURE 3

Associations of genetic liability to fasting insulin with testosterone. Beta is the relationship between per unit increase in fasting insulin (pmol/L) and
testosterone level (nmol/L). Se is standard error. P values are for ORs (95% CIs). * The P value for pleiotropy is less than 0.05.
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disappeared in all patients with diabetes, regardless of gender. At

the same time, the downward trend of testosterone level was curbed,

but showed an upward trend. Although this difference was not

statistically significant, we can at least assume that the hypo-

testosterone state was improved with insulin treatment. After

adjusting for metformin treatment, the overall difference in

testosterone levels in diabetic patients disappeared, except for

bioavailable testosterone and sex hormone binding globulin levels

in female patients. However, the results were not significantly

altered after adjustment for statin therapy and antihypertensive

medication alone. We summarized the relevant results in

the Table 8.
Discussion

Testosterone, an endogenous hormone, is the main male

hormone produced by the testis and the precursor of estrogen

synthesized by the female ovary (25). In males, it is mainly
Frontiers in Endocrinology 06
responsible for promoting the development and maintenance of

male sexual characteristics (26) and plays a significant role in the

development and maintenance of the male skeletal system (27). It is

responsible for the maintenance of sexual desire in females (28). In

general, low testosterone is thought to be closely related to sexual

dysfunction (29). Testosterone not only has a major effect on sexual

function, but also has effects on metabolism, mood, and cognition

(30, 31).

Many observational studies have shown that testosterone levels

in type 2 diabetic patients are lower than those in normal subjects

(32). Due to the limitations of observational studies, causality

cannot be fully determined, and confounding factors cannot be

well excluded from studies. The study is the first to examine this

issue using genetic tools. We investigated this issue using a large

sample of diabetes GWAS data and three glycemic traits as

exposure factors.

Fasting glucose represents short-term blood glucose, and

HbA1c represents blood glucose up to three months (33). We

also used the fasting insulin level as an exposure factor, which
FIGURE 5

Associations of genetic liability to fasting glucose with testosterone. Beta is the relationship between per unit increase in fasting glucose (nmol/L)
and testosterone level (nmol/L). Se is standard error. P values are for ORs (95% CIs). * The P value for pleiotropy is less than 0.05.
FIGURE 4

Associations of genetic liability to HbA1c with testosterone. Beta is the relationship between per unit increase in HbA1c (%) and testosterone level
(nmol/L). Se is standard error. P values are for ORs (95% CIs). * The P value for pleiotropy is less than 0.05.
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provides a proxy for the degree of insulin resistance (34).

Testosterone levels vary greatly between men and women (35), so

we also conducted sex-specific studies. In addition, we also adjusted

for common diabetes drugs and obtained the improvement of

testosterone decline with various treatment regimens.

Testosterone levels represent the sum of unbound as well as

bound testosterone in the circulation. Most circulating testosterone

is bound to SHBG and albumin, and only 2.0% to 4.0% of

circulating testosterone is unbound or free (36). Bioavailable

testosterone was defined as the sum of testosterone bound to

albumin and free testosterone. Total testosterone was numerically

equivalent to the sum of bioavailable testosterone and SHBG-bound

testosterone. At the same time, the free hormone hypothesis states

that the intracellular concentration and biological activity of

hormones depend on the concentration of free hormones and not

on the hormones in plasma bound to proteins (37).

The association between type 2 diabetes and testosterone levels has

previously been questioned for two reasons. First, cross-sectional

studies suggest a strong inverse association between testosterone and

obesity (38), which is often accompanied by abnormal lipid

metabolism in patients with diabetes. Therefore, it is not clear

whether the low testosterone status in diabetic patients is affected by

abnormal lipid metabolism. Second, patients with type 2 diabetes

always have lower SHBG levels (39). Testosterone levels are largely

affected by SHBG, especially as some studies have found no significant

difference in bioavailable testosterone levels in patients with diabetes

(40), which contrasts with the prevalence of sexual dysfunction in

patients with diabetes. These problems are due to the nature of

observational studies, which cannot well rule out confounding.

To address the first question, we found that the effect of diabetes on

testosterone was still significant after excluding obesity-related genes

and adjusting for BMI, lipid parameters (TG and LDL) and serum

adiponectin. Especially for male patients, it can be determined that

their total testosterone and sex hormone binding globulin showed a

statistically significant decrease. Clear results were obtained after

minimizing the effect of lipids and obesity. This effect is probably

due to hyperglycemia and insulin resistance (41) due to diabetes itself

and is independent of diabetic dyslipidemia. The analysis of three

glucose traits also provided better support for this conclusion.

To address the second issue, in this study, three different indices of

testosterone level were analyzed separately. Although a statistically

significant increase in bioavailable testosterone was found in total and

in women, this conclusion was not robust due to pleiotropy. Therefore,

our study cannot support an increase in bioavailable testosterone levels

in patients with diabetes, especially in studies that distinguish between

sex. We suspect that the combination of hyperglycemia and insulin

resistance is responsible for complex changes in bioavailable

testosterone levels that require further elucidation. But in any case,

there is no doubt that total testosterone and SHBG levels are

significantly decreased in diabetic patients.

It is important that we obtain more valuable results after

adjustment for conventional medications in the treatment of

diabetes. Blood pressure medication and statin medication did

not affect testosterone levels. However, our results were

significantly changed after adjustment for exogenous insulin

injection and oral metformin treatment. Especially after insulin
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injection treatment, the three indicators of testosterone level

showed an opposite upward trend. In this study, we found that

an increase in fasting insulin measures was associated with a

decrease in testosterone levels, particularly sex hormone-binding

globulin. Therefore, it can be concluded that injection of exogenous

insulin after the appearance of insulin resistance can still have a

positive effect on the low testosterone status caused by diabetes.

This is also consistent with the clinical observation (42).

For the treatment of diabetes, the current guidelines of most

countries do not recommend direct injection of exogenous insulin.

Our results suggest that oral administration of metformin and

injection of exogenous insulin may be a good way to improve low

testosterone status in diabetic patients.

Previously, animal models of diabetes and metabolic syndrome

have shown that hyperglycemia and insulin resistance play an

important role in causing hypogonadism (43, 44). Animal studies

confirm that mice with insulin receptor knockout exhibit

hypogonadotropic hypogonadism (45, 46). Cellular studies in rat

hypothalamic neurons have found that insulin plays a key role in

promoting GnRH secretion (47). In addition to its action on the

hypothalamus, insulin also acts directly on the liver to stimulate

SHBG production (48, 49).

It has also been noted that lifestyle or pharmacologic

management that improves insulin resistance increases

testosterone levels (5) It has also been suggested that testosterone

deficiency is associated with impaired gonadotropin response (50).

It has been found that long-term hyperglycemia may lead to

metabolic imbalance, inflammation, and oxidative stress, which

may lead to a decrease in testosterone level (51).

Our analysis was performed according to gender in our study,

and the changes in indicators of female patients often showed

opposite trends compared with those of male patients, especially

in total testosterone and bioavailable testosterone. This is consistent

with what we have observed clinically (52). We speculate that it may

be related to the fact that physiological amounts of estrogen in

women reduce insulin resistance (53).

In conclusion, we used Mendelian randomization to determine

the effects of T2DM, fasting insulin, and HbA1c on the three

testosterone levels after controlling for SNPs associated with obesity

and BMI and adjusting for confounding factors such as BMI, TG,

LDL, and serum adiponectin. Compared with fasting plasma glucose,

fasting insulin and Hb1Ac were more powerful predictors of SHBG

and total testosterone. Previously, the causal relationship between the

changes of sex hormones in diabetic patients has been controversial.

Combined with the characteristics of Mendelian randomization

studies, we believe that our study can solve this problem to a

certain extent. We also found that oral metformin and injection of

exogenous insulin improved the low testosterone status in diabetic

patients after adjusting the common treatment methods.
Limitations of our study

First, although we excluded the currently known FTO gene and

performed reanalysis with adjustment for BMI, TC, LDL, and

serum adiponectin, we could not completely rule out the effect of
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obesity on testosterone levels. Second, limited by GWAS, we

decided to use fasting insulin levels as a proxy for insulin

resistance. Although this indicator can represent insulin resistance

to a certain extent, it is not the gold standard of insulin resistance

(54), and it will also introduce some bias. Third, we used SNPS

pooled from the meta-analysis, which makes it difficult to calculate

f-values, so we cannot completely rule out the effect of weak

instrumental variables. Fourth, different measures of testosterone

levels can yield different results (55). Fifth, the pleiotropic effect

found in the analysis of biologically available testosterone levels is

fatal to the reliability of the results of the Mendelian randomization

analysis. We subsequently added analyses of different glycemic

measures, but more reliable methods are needed.
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