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Aging is a complex biological process involving multiple interacting mechanisms
and is being increasingly linked to environmental exposures such as wildfire
smoke. In this review, we detail the hallmarks of aging, emphasizing the role of
telomere attrition, cellular senescence, epigenetic alterations, proteostasis,
genomic instability, and mitochondrial dysfunction, while also exploring
integrative hallmarks - altered intercellular communication and stem cell
exhaustion. Within each hallmark of aging, our review explores how
environmental disasters like wildfires, and their resultant inhaled toxicants,
interact with these aging mechanisms. The intersection between aging and
environmental exposures, especially high-concentration insults from wildfires,
remains under-studied. Preliminary evidence, from our group and others,
suggests that inhaled wildfire smoke can accelerate markers of neurological
aging and reduce learning capabilities. This is likely mediated by the
augmentation of circulatory factors that compromise vascular and blood-brain
barrier integrity, induce chronic neuroinflammation, and promote age-associated
proteinopathy-related outcomes. Moreover, wildfire smoke may induce a
reduced metabolic, senescent cellular phenotype. Future interventions could
potentially leverage combined anti-inflammatory and NAD + boosting
compounds to counter these effects. This review underscores the critical need
to study the intricate interplay between environmental factors and the biological
mechanisms of aging to pave the way for effective interventions.
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1 Introduction

You are going to die (>95% confidence). Odds are strong that the cause of your death will
be age-related. Ample scientific evidence suggests that contaminants in our environment,
including air pollution (Pope et al., 2009), can not only contribute to the cause of death, but
also as a result shorten lifespan. However, there is also common thought that environmental
challenges (for instance caloric restriction and fasting) may enhance cellular and organismal
efficiency to promote longevity. A growing number of scientists believe this mortal fate can
be altered, and death might not be a guarantee, as certain organisms and cells have been
effectively “immortalized”. “Why humans age” is a timeless question, with recorded answers
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dating back to Aristotle’s theory of aging. His comprehension of
biology was understandably limited, and he was tethered with
terminology that was more romanticized and metaphorical. Yet,
he surmised that the aging process coincides with the growth and
decay of lungs, the exhaustion of heat in the heart, and a general
cooling as we become geriatric (Aristotle, 2023). Unfortunately, the
question of “why we age” was largely disregarded by the scientific
community for nearly 1,000 years thereafter.

During the Darwinian era of science, researchers believed that
aging was a natural aspect of evolution, with intervention being an
impossibility. Furthermore, most humans during this period of
history died of infectious diseases, deeming scientific
investigation in aging as unnecessary. These feelings of
indifference would change in the early 1900’s after scientists
realized that mortality rate of diseases increased in concert with
age. Through intervention studies, the caloric restriction theory
showed promise in slowing down the process of aging and
extending lifespan (Holehan and Merry, 1986).

Fortunately, humans have significantly advanced our ability to
both investigate biological mechanisms and alter the natural
outcomes of life. In the early 1970’s and 1980’s, nematodes were
employed by Dr. Michael R. Klass and others to determine genetic
variations that could prolong lifespan. To date, the list of longevity-

associated genes has risen to 115 in total, spanning 25 species (Yu
et al., 2021; Bin-Jumah et al., 2022). Aging research sprawled
outward in all directions, looking for any and every way possible
to increase longevity. One group even found that the removal of
gonads will increase lifespan (Hsin and Kenyon, 1999).

Some trends (thankfully) never made it to the clinic. But,
through a massive undertaking, consistencies emerged,
mechanisms of aging were theorized, and some have been
popularized. We now understand that human longevity is
modestly heritable - somewhere between 12% and 25% (Herskind
et al., 1996; Kaplanis et al., 2018; Ruby et al., 2018; van den Berg et al.,
2017; van den Berg et al., 2019)- with family clusters showing a
further increase in longevity incidence (Pedersen et al., 2017).
Enhancements for these families include insulin sensitivity
(Wijsman et al., 2011) and lipid metabolism, leading to healthy
lipid levels in the circulatory system (Vaarhorst et al., 2011).
Additionally, some families are observed to have more robust
immune systems and metabolisms, leading to extensions in
longevity (Andersen et al., 2012; Ash et al., 2015). However, the
question of “why humans age” still persists, with our current best
guesses revolving around the López-Otín et al. (2013) publication of
the 9 hallmarks of aging in 2013; updated to 15 hallmarks in 2022
(Schmauck-Medina et al., 2022) (Figure 1).

The original hallmarks fall into 3 main categories of damage-
causing (primary), response to damage (antagonistic), and those
that manifest via the aging phenotype (integrative). Primary
hallmarks that cause damage include genomic instability,
telomere attrition, epigenetic alterations, and loss of proteostasis.
From antagonistic damaging stimuli, our bodies can be subjected to
deregulated nutrient sensing, mitochondrial dysfunction, and
cellular senescence. With accumulated damage, we manifest the
aging phenotype through stem cell exhaustion and altered
intercellular communication. Strangely, the hallmarks themselves
are not guaranteed as “causes of aging” but could also be viewed as
“the reason for mortality.” To illustrate, we will frame this argument
through the lens of common model organisms and their “reason for
mortality.” Typically, cancer is the leading cause of mortality across
mouse strains (70%–90%) (Leibiger and Berggren, 2006; Brady and
Attardi, 2010; Feng et al., 2011; Ng et al., 2015; Zhao et al., 2018b).

A meta-analysis was performed on the putative longevity
interventions in mouse models, which revealed >80% of
interventions are linked to cancer inhibition (Keshavarz et al.,
2022). As such, those longevity interventions linked to cancer
incidence prevention could be viewed as “mortality reduction”
rather than “aging interventions”. Just as the cause of death in
mice is typically cancer, reductions in intestinal stem cell function
can be linked to the cause of death in Drosophila melanogaster (Rera
et al., 2012). From genetic manipulation studies, several longevity
genes have been targeted to reduce intestinal stem cell
hyperproliferation, which resulted in an extended lifespan
(Waters and Kaye, 2002; Mahesh and Kaskel, 2008; van Heemst,
2010; Xing, 2010; Vijayakumar et al., 2011; López-Otín et al., 2016;
Bartke, 2019). In yeast, increases to extrachromosomal circular
DNA elements (eccDNA) have been linked with mortality
(Sinclair and Guarente, 1997). This was reversed through sirtuin
activation, resulting in lifespan extension. For C. elegans, the natural
cause of death is not fully understood. Studies have recently pointed
toward a positive correlation between active pharyngeal pumping

FIGURE 1
Graphical abstract: the hallmarks of aging and environmental
contributors. Adapted from the original and updated hallmarks of
aging, the circular plot illustrates the concepts known to contribute to
aging thus far and the potential influences of environmental
toxicants. The circle immediately out from the center illustrates the
main categories. Primary hallmarks are the causes of damage, and
include telomere attrition, epigenetic alterations, loss of proteostasis,
and genomic instability. Antagonistic hallmarks are responses to
damage, and include mitochondrial dysfunction, cellular senescence,
and deregulated nutrient sensing. Integrative hallmarks manifest via
the aging phenotype and include stem cell exhaustion and
communication breakdown. The Hallmarks were updated after a
2022 Aging Research and Drug Discovery meeting. The most outer
circle illustrates the environmental toxicants that are known to affect
each of the primary, antagonistic, integrative, or updated hallmarks.
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with longevity (de Zelicourt et al., 2016). These results were
expanded by observing two types of death. Namely, an infected
pharynx leading to early mortality, and pharyngeal atrophy leading
to longevity (Zhu et al., 2002). Regardless, with recent advances in
Caenorhabditis elegans lifespan study automation (Felker et al.,
2020) and high throughput data analysis pipelines (Small et al.,
2020), the “reason for mortality” could soon come into focus.

While a great deal of effort–and progress–has been made in
recent years understanding the basic molecular and cellular
pathways that promote aging, the role of environmental stressors
has not yet entered into the “hallmarks of aging” lexicon. When
examining aging from a bottom-up approach, it is a complicated,
multidimensional issue with contributions from all levels of cellular
health. To fully grasp this, one would need to understand the aging-
associated input and interactions from the molecular level of each
cell, build that understanding in a stepwise manner to the level of
tissue organization, and deconvolute the crosstalk from an
individual layer before interlayer dependencies could be
understood. Adding the implications of xenobiotic agents/
chemicals to this mix is an exponential increase in complexity.
Fortunately, scientific advancements are not restricted to an all-or-
nothing approach. From the top-down perspective, research has
shown that chemicals in our environment exist that can impact each
and every hallmark of aging.

For example, exposure to heavy metals can induce oxidative
stress, linking exposure to the aging hallmarks of mitochondrial
dysfunction and DNA damage. These same metals can directly
inhibit DNA repair. Therefore, these metals can be implicated in
the hallmarks of epigenetic alteration, genomic instabilty, loss of
proteostasis, and compromised autophagy. There have also been
direct epidemiological links between air pollution and a decrease in
life expectancies. Notably, C. Adren Pope et al. and others found
that a reduction in air pollution of 10 μg/m3 was associated with an
increased mean life expectancy of 0.17 years (Pope et al., 2009;
Correia et al., 2013). For context, wildfires consistently generate air
pollution levels well in excess of 100 μg/m3 for weeks at a time.
Others have sought to determine mechanistic understandings, and
found DNA damage events in the lung (Kaur et al., 2021), vascular
endothelial activation (Aragon et al., 2016) and
neuroinflammatory effects in the brain (Haghani et al., 2020;
Scieszka et al., 2022). This inexorable linkage between the
environment and each hallmark of aging is explored in more
detail below.

2 Primary hallmarks of aging: genomic
instability, telomere attrition,
epigenetic alterations and clocks, and
loss of Proteostasis

2.1 Genomic instability

Genomic instability is defined as an increased susceptibility to
mutational frequency and other genetic alterations during cellular
division. Genomic instability is a prerequisite for many cancers, is
modestly heritable, clearly vulnerable to environmental toxicants,
and increases with age (Vijg and Suh, 2013; Vijg and Montagna,
2017). Regarding cancer, the systems in charge of genomic PMCRS

(preventative maintenance, checks, repair, and service) have failed,
causing dysregulated cellular division. The heritability of genomic
instability mainly arises from conferred mutations in DNA repair
enzymes themselves, or other molecules that stabilize cellular
processes during division (NCI Dictionary of Cancer Terms -
NCI, 2011). However, genomic instability can also arise from
environmental toxicant exposures, including heavy metals like
chromium, cadmium, and arsenic (Langie et al., 2015; Balali-
Mood et al., 2021; Medina et al., 2022). Specifically, arsenic is
known to cause epigenetic changes, disruptions to DNA base
excision repair and nonhomologous end joining, increases to
oxidative stress, abnormal apoptotic signaling, impaired lineage
commitment of hematopoietic progenitors, and
immunosuppression through autophagy alteration (Bolt et al.,
2010a; Bolt et al., 2010b; Bolt et al., 2012; Bolt and Klimecki,
2012; Medina et al., 2017; Medina et al., 2020; Medina et al.,
2021; Parvez et al., 2017; Zhou et al., 2020). Mechanistically,
arsenic biotransformation can cause s-adenosylmethionine
depletion leading to epigenetic alterations, while different forms
of downstream monomethylarsonic acid and dimethylarsinic acid
cause increases to ROS generation, leading to DNA damage and
mitochondrial dysfunction (Minatel et al., 2018). Biotransformation
products of arsenic are also known to compete with zinc finger
domains in transcription factors and DNA repair enzymes, such as
such as GATA-1, GATA-2, PARP-1, XPC, APE1, OGG-1, XRCC,
and ERCC (Minatel et al., 2018; Medina et al., 2022). The
simultaneous damage of DNA and inhibition of repair
mechanisms can lead to pathogenic outcomes like cancer, or cell-
cycle inhibiting results that lead to senescence or apoptosis, among
others.

Somewhat paradoxically, genomic instability can also confer
cellular stability. Of note, extrachromosomal circular DNA
(eccDNA) is a type of circular, double-stranded DNA element
within the nucleus. Studies have found that these exist in healthy
(Møller et al., 2018), cancerous (Fan et al., 2011), and aged cells
(Hull et al., 2019), with many concluding that these elements drive
tumor formation (Turner et al., 2017) due to enhanced chromatin
accessibility (Wu et al., 2019). However, Shoura et al. (2017) found
eccDNA in worm germ line cells, which begs the question of
heritability. In humans, some eccDNAs originate from telomeres
(t-circles) and from centromeres (Zuo et al., 2022). The
consistency between these two are that they both consist of
tandem repeats, but the functionality of tandem repeats remains
unknown, with recent work suggesting translational possibilities
(Al-Turki and Griffith, 2023). In cell culture, t-circles were
required for healthy telomere maintenance (Neumann et al.,
2013), and excreted eccDNAs have been found in vitro. Here,
they are reported as messengers that mousee and human cells
recognize (Wang et al., 2021b). Based on the accepted eccDNA
formation mechanisms, one could speculate that lucky cells might
acquire gain-of-function eccDNAs that confer longevity. This is
based on the recently found gain of function enhancement to
transcription factor repair fidelity (Xu et al., 2021). Alternative to
genomic instability, the heritability of genomic stability is woefully
understudied. In fact, the majority of studies were only able to
identify a small number of genes with variations. Namely, variants
for APOE and FOXO3A (Nygaard et al., 2014; Flachsbart et al.,
2017) that could confer longevity in individuals across generations.
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The variants in APOE and FOXO3A genes have been shown to play
a role in regulating DNA repair and oxidative stress response,
respectively. However, the complexity of the human genome and
the interactions between different genetic and environmental
factors make it challenging to fully understand the heritability
of genomic stability.

2.2 Telomere attrition

Perhaps one of the best-studied hallmarks of aging, telomere
attrition has been linked to somatic aging (Vaiserman and
Krasnienkov, 2021) and artificially extending telomeres has been
found to reverse signs of aging in rodents (Jaskelioff et al., 2011).
However, the predictive framework and ability to reverse telomere-
related aging effects have seen mixed results. Succinctly put, the
replicative ability of cells has a limit, and this limit has been
eponymously named the Hayflick Limit (Hayflick and Moorhead,
1961) after a series of experiments performed by Leonard Hayflick in
1961. Embryonic stem cells activate the gene for telomerase reverse
transcriptase, an enzyme that extends the end-caps of chromosomes,
called telomeres. However, most adult stem cells lack telomerase
expression.

After each cellular replication, telomeric DNA shortens by
50–200 base pairs due to incomplete lagging strand synthesis
(Srinivas et al., 2020). DNA polymerases are unable to fully
replicate the 3′ DNA sequence, leading to “the end-replication
problem” (Watson, 1972; Olovnikov, 1973). Telomere length is
highly heterogeneous between tissue types. It has also been
shown that telomeres are highly susceptible to oxidative damage
(Oikawa and Kawanishi, 1999), meaning lifestyle choices and
environmental exposures can directly affect the length of cellular
telomeres. Regardless, successive cellular divisions by stem cells will
eventually lead to full telomere attrition, resulting in cell cycle arrest.
As such, the length of telomeres was thought to be associated with
the biological somatic age of humans, and has been proposed as a
key driver of aging (von Zglinicki et al., 2021). These studies reached
a fever pitch when the CEO of BioViva, Elizabeth Parrish, traveled to
Columbia for a gene therapy injection designed to activate her cells’
telomerase gene. BioViva claimed that her immune cells showed a
reduction in “telomeric age” of 20 years in some cases.
Unfortunately, this study lacked US government approval, had
an n = 1, and was not widely promoted within the academic
community.

Regarding environmental exposures, air pollution has been
shown to shorten telomere length in several cell types, including
leukocytes, placenta, and lung epithelial cells (Zhao et al., 2018a;
Chang-Chien et al., 2021), which directly correlates with accelerated
aging (Pieters et al., 2016), and cognitive decline in the elderly
(Colicino et al., 2017). Alarmingly, prenatal exposure to air pollution
resulted in shorter leukocyte telomere length at birth (Lee et al.,
2020; Durham et al., 2022). One follow-up study showed these
prenatally exposed children had a significant increase in repeated
wheeze tests 4 years later. How the lungs of unborn children are
subject to leukocyte telomere effects was not discussed. However,
these results are a stark reminder of the interconnectedness of organ
systems and the continued linkage of environmental exposures with
aging.

2.3 Epigenetic alterations and clocks

By root definition, an epigenetic alteration is an alteration that is
above the genetic code. These alterations do not change the genetic
code itself but alter the expression of genes through modifications to
bases in heterochromatin and euchromatin, leading to increased or
decreased accessibility. Histone tails can be rapidly modified before,
during, and after the cell cycle via methylation, acetylation,
ubiquitination, and phosphorylation on different amino acid
residues. Conversely, the DNA has a relatively stable presence of
methyl groups, noncoding RNAs (ncRNA) bound to methyl groups,
or ncRNAs bound to the DNA sequence itself (Figure 2). Histones
can also be methylated, but it is much less common. All of these
alterations serve to change the effects of transcription, DNA
accessibility, and mitotic bookmarks.

For a brief history, evidence of transcriptional changes based on
epigenetic alterations began in the 1960’s through direct DNA and
RNA comparisons at different timepoints during whale pregnancy
(Berdyshev et al., 1967). However, the ability to directly measure the
methylation status of particular DNA loci was not popularized until
the 1980s through the use of methylation-sensitive restriction
enzymes. These loci are often referred to as CpG islands, which
are defined as clusters of Cytosine-phosphate-Guanine
dinucleotides and are the target of DNA methyltransferases.

Due to the DNA methylome being relatively stable, methyl
group additions play a critical role in gene silencing. These can
be additions in gene promoter regions, which affect transcription
factor binding, or alterations to histones and their tails, resulting in
heterochromatin (Esteller, 2008). Regarding histone tails, >60 post-
translational modifications have been identified (Sterner and Berger,
2000; Cuthbert et al., 2004; Nowak and Corces, 2004; Nathan et al.,
2006; Nelson et al., 2006; Shilatifard, 2006; Berger, 2007; Goldberg
et al., 2007). Regarding ncRNAs, they can act independently or in
addition to other epigenetic modifications to silence genes or
maintain gene silencing. For an in-depth review of these topics,
there are a plethora of publications available (Sterner and Berger,
2000; Cuthbert et al., 2004; Nowak and Corces, 2004; Nelson et al.,
2006; Shilatifard, 2006; Trojer and Reinberg, 2006; Berger, 2007;
Goldberg et al., 2007; Jones and Baylin, 2007; Ruthenburg et al.,
2007; Gal-Yam et al., 2008).

Regarding environmental exposures, air pollution has been
shown to modulate the epigenetic landscape differentially
throughout lifespan based on the onset and duration of exposure
(Ferrari et al., 2019). Broadly, prenatal exposures have been linked
with global alterations, with specific focus on long interspaced
nuclear elements 1 (LINE-1) and its function of telomere
reprogramming during embryo development (Wang et al., 2021a;
Kohlrausch et al., 2022); childhood alterations are varied and are
increased with asthma; and adult alterations are fewer than those
seen during childhood but are greatly increased by disease states. For
an overview adapted from Ferrari et al. (2019), see Table 1. With
respect to functional outcomes, air pollution-induced epigenetic
changes have been associated with lung cancer (Li et al., 2017),
COPD (Leclercq et al., 2017), cardiovascular disease (Chen et al.,
2018), atherosclerosis (Chi et al., 2016), Alzheimer’s disease
(Calderón-Garcidueñas et al., 2020), accelerated biological aging
(Ward-Caviness et al., 2016) and many others (Wilhelm-Benartzi
et al., 2011; Janssen et al., 2013; Liu et al., 2015; Breton et al., 2016;
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Byun et al., 2016; Motta et al., 2016; Ding et al., 2017; Solaimani et al.,
2017; Li et al., 2018; Maghbooli et al., 2018; Miller et al., 2018;
Rodosthenous et al., 2018; Callahan et al., 2019; Goodson et al., 2019;
Gruzieva et al., 2019; Cantone et al., 2020; Eze et al., 2020; Ma et al.,
2020; Tsamou et al., 2020; Liang et al., 2021; Mukherjee et al., 2021).

Some of the contemporary excitement in epigenetics involves
epigenetic clocks. These clocks measure DNA methylation sites to
correlate a “biological” or “phenotypic” age to the “chronological”
age and are prized for their ability to measure longevity rejuvenation
therapeutic effectiveness. Although the field has developed many
aging clocks (Figure 3), their nuances have increased, and the causal
nature of these methylation sites is still incompletely understood.
Meaning, they originally sought to measure the biological age and
correlate it to chronological age to determine aging trajectories.
However, people have developed clocks for children, clocks for
women/men exclusively, clocks for cell culture, clocks to measure
physical fitness, clocks for blood, clocks for skin, and many have
repurposed clocks to measure exposome-based age accelerations.
These clocks will give you a snapshot of the current phenotypic age.
But they will not tell you whether these methylation sites are causing
a change in phenotypic age relative to chronological, or whether
these sites are the result of the change. Unsurprisingly, air pollution
particulate matter content, size, and location of population (high or
lower pollution) have altered clock results. For example, one group
sampled non-Hispanic white women aged 35–47 in the
United States (n = 2,764) and found age acceleration associated
with particulate matter <10 microns in diameter (PM10), with no
correlation between age and NO2, and heterogeneity per cluster
whenmeasuring PM2.5 correlations (White et al., 2019b). Contrarily,
the same group separated the US by multi-state regions and
subdivided further by county level. They found PM2.5 to be
associated with epigenetic age, while NO2 was inversely related,
and PM10 had no correlation (White et al., 2019a). These studies

offer intriguing findings, but also indicate the novelty of air pollution
within the aging research space. Other groups have investigated the
interaction of differential effects of environmental toxicants with
epigenetic outcomes, such as microplastics, cadmium, and arsenic
(Meakin et al., 2019; Zhang et al., 2020).

2.4 Loss of proteostasis

This hallmark describes the breakdown of protein building
machinery, an accumulation of misfolded proteins, and the link
to age-related diseases, like Alzheimer’s disease and related
dementias (ADRD). The loss protein homeostasis has
subcategories which can be divided into dysregulation/breakdown
of ribosomal pathways, chaperones, and protein degradation.

Regarding ribosomes, extrachromosomal ribosomal circular
DNA (ecrDNA) appears to be a key factor in the aging process
(Hull and Houseley, 2020). Within yeast, ecrDNA molecules were
discovered by Guarente’s group at MIT in 1997 (Sinclair and
Guarente, 1997). These consisted of ribosomal DNA repeats, and
titration of ecrDNA abundance was further proposed to limit the
lifespan of yeast mothers. This belief is widely regarded in the
literature as correct, however many studies have found no
correlation with ecrDNA abundance and lifespan (Heo et al.,
1999; Kim et al., 1999; Mays Hoopes et al., 2002; Merker and
Klein, 2002; Borghouts et al., 2004; Kaeberlein et al., 2005;
Ganley et al., 2009; Kwan et al., 2013). A second theory
regarding ecrDNA maintenance has been proposed as the main
driver of this yeast aging phenotype (Sinclair and Guarente, 1997).
Ribosomal DNA is repeated a large number of times in most
eukaryotes, with rDNA representing two of the largest repeats
within humans (Warmerdam and Wolthuis, 2019). However, the
nature of repeated DNA segments makes their replication more

FIGURE 2
Types of epigenetic modifications. DNA base pairs and histone tail amino acid residues can be altered without changing the DNA code itself. Histone
tails can bemethylated, acetylated, ubiquitinated, and phosphorylated. DNA can bemethylated as well, with the absence or addition of non-coding RNA.
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TABLE 1 Effects on methylation changes from pollution exposure at different stages of lifespan. Adapted from Ferrari et al. (2019).

Life stage ↑/↓* Genes Type Tissue Ref.

Preconception ↑ Global Mouse Sperm Yauk et al. (2008)

Pregnancy, first trimester ↑ LINE-1 Human Blood spots Breton et al. (2016)

Pregnancy, first trimester ↓ Global Human Placenta Janssen et al.
(2013)

Pregnancy, first trimester ↓ LINE-1 Human Placenta Cai et al. (2017)

Pregnancy ↓ LINE-1 Human Placenta Kingsley et al.
(2016)

Pregnancy ↑↓ 7 CpG sites (i.e., three located near PTPRN2, TMEM125, and
VPS4A genes, the other 4 sites mapped to non-genic regions)

Human Placenta Kingsley et al.
(2016)

Pregnancy, first and
second trimester

↑ HSD11B2 Human Placenta Oakley and
Cidlowski (2013)

Pregnancy, second
trimester

↑ SOD2 Human Cord blood and maternal
blood

Zhou et al. (2020)

Pregnancy ↑↓ APEX1, OGG1, ERCC4, TP53 DAPK1 Human Placenta Neven et al. (2018)

Pregnancy, third
trimester

↑ NPAS2, CRY1, PER2, PER3 Human Placenta Nawrot et al.
(2018)

Pregnancy, first trimester ↑ D-loop, MT-RNR1 Human Placenta Janssen et al.
(2013)

Childhood, asthma ↓ Immune genes (e.g., IL13 and RUNX3) Human Blood Yang et al. (2016)

Childhood, asthma ↑ FOXP3 Human Blood Prunicki et al.
(2018)

Childhood ↓ IL-4, IFN-γ Human Blood Jung et al. (2017)

Childhood ↓ TET1 Human Nasal airway cells Somineni et al.
(2016)

Childhood ↑ FAM13A, NOTCH4 Human Blood Gruzieva et al.
(2019)

Adult age, healthy ↑↓ MATN4, ARPP21, CFTR Human Blood Gondalia et al.
(2019)

Adult age, obese ↓ CD14, TLR4 Human Blood Cantone et al.
(2020)

Adult age, occupational
exposure

↓ NOS3, EDN1 Human Blood Tarantini et al.
(2013)

Adult age, CVD ↑↓ cg20455854, cg07855639, cg07598385, cg17360854, cg23599683 Human Blood Chi et al. (2016)

Adult age, CVD ↓ Global Human Blood Plusquin et al.
(2017)

Adult age, CVD ↓ Alu, TLR4 Human,
crossover

Blood Bellavia et al.
(2013)

Adult age, CVD ↑ IFN-γ Human,
crossover

Blood Tobaldini et al.
(2018)

Adult age, CVD ↑↓ Loci related to insulin resistance, glucose and lipid metabolism,
inflammation, oxidative stress, platelet activation, and cell survival
and apoptosis

Human,
crossover

Blood Li et al. (2018)

Adult age, CVD ↑↓ Loci related to apoptosis, cell death and metabolic pathways, or
associated with ion binding and shuttling

In vitro Human cardiomyocytes
AC16

Yang et al. (2017)

Adult age, respiratory
disease

↑↓ 2,827 CpG sites (genes involved in inflammation and oxidative
stress response), repetitive elements, and microRNA

Human,
crossover

Blood Jiang et al. (2013)

Adult age, respiratory
disease

↑↓ 12 differentially methylated probes and 27 differentially methylated
regions

Human Blood Lee et al. (2020)

(Continued on following page)
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prone to errors during recombination events (Carvalho and Lupski,
2016; Warmerdam and Wolthuis, 2019), and these repeats have
been shown as the most unstable region within the yeast genome
(Kobayashi, 2006). Being housed in the nucleolus, double-strand
breaks (DSBs) will activate special DNA repair machinery, reduce
rRNA transcription, and induce nucleolar cap formation (Korsholm
et al., 2019). Although these steps can be successful, recombination
events often lead to copy number reductions or mutations. As
previously stated in this chapter, genomic instability is linked to
organismal aging, and ribosomal DNA repeats are the most
susceptible to instability. Hence, the aging hallmarks of protein
homeostasis and genome instability are inherently linked.

Of course, the loss of proteostasis is linked to protein synthesis as
well, and aberrations in this process can increase in frequency over
time (Taylor and Dillin, 2011). Protein synthesis must occur slowly
enough for secondary structures to form. Without these, the proper
tertiary and quaternary structures could be disallowed. Additionally,

the number and type of proteins synthesized over the lifetime has
been linked to aging (Selman et al., 2009), partially through results
obtained from intermittent fasting which activates autophagy
(Chung and Chung, 2019) and has been shown to improve
proteostasis (Matai et al., 2019). If initial folding occurs correctly,
and the ribosomes are operating at optimal levels, then chaperones
and co-chaperones typically assist in forming the tertiary and
quaternary protein structures. Co-chaperones do not directly
interact with the protein folding itself but assist the chaperones
in guiding proteins to their folding sites. Co-chaperones, like heat
shock proteins, help chaperones during times of stress, such as
anaerobic conditions, acidic conditions, and heat. It has been shown
that age-related declines in co-chaperone effectiveness can lead to
endoplasmic reticulum stress and chondrocyte apoptosis (Tan et al.,
2020).

In addition to protein translation and folding, protein
degradation processes become less efficient with age (Vernace

TABLE 1 (Continued) Effects on methylation changes from pollution exposure at different stages of lifespan. Adapted from Ferrari et al. (2019).

Life stage ↑/↓* Genes Type Tissue Ref.

Adult age, cancer ↑ P16INK4A In vitro Ex vivo lymphocytes Fougere et al.
(2018)

Adult age, cancer ↑ P16INK4A In vitro Primary human bronchial
epithelial cells

Leclercq et al.
(2017)

Adult age, cancer ↑↓ 66 genes In vitro BEAS-2B cells Hesselbach et al.
(2017)

Adult age, cancer ↑↓ P16INK4A, APC, LINE-1, NOS2 Mouse Blood Ding et al. (2017)

Adult age, cancer,
DOHaD

↑↓ SYK, CCND2 Human Blood Callahan et al.
(2019)

Adult age ↑ MT-TF, MT-RNR1 Human Blood Byun et al. (2013)

Adult age ↓ D-loop Human Blood Byun et al. (2016)

Elderly ↑↓ Genes involved in tumor development, gene regulation,
inflammatory stimuli, pulmonary disorders, and glucose
metabolism

Human Blood Panni et al. (2016)

Elderly ↑↓ LINE-1, Alu, IL-6 Human Blood Bind et al. (2012)

Elderly ↓ iNOS Human Blood Madrigano et al.
(2012)

FIGURE 3
Aging clocks released by year. Since 2011, 14 aging clocks have been widely publicized, with their respective methylation sites beneath the lead
author’s name. Horvath’s 2013 release featured the first multi-tissue clock, Vidal-Bralo’s utilized a validation cohort, Yang’s sought to clock
CD4 monocytes, Zhang attempted to predict ACM (Arrhythmogenic cardiomyopathy), Gladyshev used all methylation sites found from scRNA-seq
analysis, and Levine’s 2022 release utilized different principal components (PCs) from methylation sites rather than methylation sites themselves.

Frontiers in Toxicology frontiersin.org07

Scieszka et al. 10.3389/ftox.2023.1267667

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2023.1267667


et al., 2007). There are several aspects of protein degradation,
including lysosomal, proteasomal, and autophagic, with the latter
also able to degrade whole organelles (Zhao et al., 2022). Lysosomes
are typically highly acidic, at a pH of 4.5, and contain digestive
enzymes that optimally function at this pH (Cooper, 2000). During
homeostatic processes, both aspects of acid and enzymes are used for
protein/organelle degradation, surface receptor recycling, and
pathogen sequestration. Ubiquitination is an additional process
that targets proteins for degradation through chaperone
machinery. Regardless of the molecules being degraded, the
internal lysosomal contents require strict regulation to prevent
spillage into the cytosol. For reasons still unknown, lysosomal
permeability increases in frequency with age (Guerrero-Navarro
et al., 2022).

Additionally, the field of autophagy has strong links to aging
(Barbosa et al., 2019). Specifically, the ability of cells to undergo
accurate and effective degradation of organelles and proteins via
autophagic mechanisms declines with age. Coupled with lysosomal
permeability, autophagy dysfunction can lead to the accumulation
of misfolded proteins and defunct organelles. In fact, during the
natural course of aging, any number of these proteostatic processes
can breakdown or become less efficient, resulting in a multitude of
aging-related phenotypes, including mitochondrial dysfunction
and senescent cell accumulation (see below).

Regarding environmental exposures, air pollution has been
shown to promote cellular oxidative stress (Lodovici and Bigagli,
2011; Gangwar et al., 2020), protein misfolding (Devi et al., 2021;
2022; Jankowska-Kieltyka et al., 2021), post-translational protein
modifications (Watterson et al., 2009; Lodovici and Bigagli, 2011),
and aberrant protein degradation (lysosomal (Watts et al., 2022) and
autophagy (Park et al., 2018)). Many papers also point to air
pollution-associated post-transcriptional modifications to RNAs
(Rider and Carlsten, 2019; Gonzalez-Rivera et al., 2020), which
would affect downstream protein translation. These result in any
number of disease modalities, but particular attention is paid to lung
fibrosis (Majewski and Piotrowski, 2020), cardiovascular disease
(Gangwar et al., 2020), and ADRD (Kikis, 2020; Calderón-
Garcidueñas et al., 2021).

Given that air pollution is inhaled, the initial site of oxidative
stress is typically the airway and lungs. As such, the resident
populations of macrophages and neutrophils are first-
responders to this insult (Becker et al., 2005; Valderrama et al.,
2022) and sound the alarm for a more systemic and adaptive
immune response (Miyata and van Eeden, 2011). Regardless,
endogenous ROS production will increase (Rao et al., 2018)
which can affect proteins, and can cause neutrophils to release
their cellular contents into the extracellular space—a dramatic
event whose end result has been termed a neutrophil extracellular
trap (NET). These NETs are known to cause additional oxidative
stress and protein damage in the surrounding cells (Beavers and
Skaar, 2016). As protein folding mechanisms rely on redox
homeostasis (Chong et al., 2017), an abundance of ROS can
cause misfolded proteins. In turn, this can cause additional ER
stress and activate the unfolded protein response, resulting in
additional cellular stress (Grootjans et al., 2016; Plaisance et al.,
2016; Chong et al., 2017; Bhattarai et al., 2021). Additionally,
protein misfolding can be recognized and sequestered for refolding
by chaperones (Hervás and Oroz, 2020) or transferred to protein

degradation machinery with the help of co-chaperones (Sontag
et al., 2017). After exposure to air pollution, proteosomal activity is
decreased (Kipen et al., 2011; Devi et al., 2021) leaving the
chaperone and co-chaperone with nowhere to shuttle the
misfolded protein. In some cases, the lysosomal and autophagic
routes of misfolded protein degradation could be alternatively
activated, and have been shown to be increased after air
pollution exposure on skin fibroblasts (Park et al., 2018).
Moreover, the mechanistic alterations to protein homeostasis
after air pollution are coming into focus. However, the
individual organ responses (e.g., heart, lung, gut, brain, etc.)
could differ and their thorough investigation will eventually be
required for a complete comprehension of the role of air pollution
in protein homeostasis.

3 Antagonistic hallmarks of
aging–mitochondrial dysfunction,
deregulated nutrient sensing, and
cellular senescence

3.1 Mitochondrial dysfunction

Although the “Loss of Protein Homeostasis” category does
include protein degradation, the lysosomal and proteasomal
machinery are linked with damage response so intimately that
the aging field has designated an entire category to the
mitochondrial-lysosomal axis theory of aging (Brunk and
Terman, 2002). This axis of aging revolves around the idea that
long-lived post-mitotic cells often exist without a stock of stem cells
for replenishment. Moreover, these cells will be the most susceptible
to age-related phenomena. Cell types in this category include
cardiomyocytes and neurons, but any cell that cannot be replaced
easily will fall under this classification. To put it lightly, these cells
have problems: 1) with age, they cannot degrade protein adducts and
organelles; 2) this results in an accumulation of ROS via
mitochondrial production; and then 3) these cells cannot be
replaced since reinforcements do not exist.

One outcome from these problems is the unintentional
formation of lipofuscin through the oxidization of unsaturated
fatty acids from mitochondrial ROS production, which have been
called “age pigment” and are linked to aging in neurons (Gray and
Woulfe, 2005), and cardiomyocytes (Terman and Brunk, 1998).
Broadly, lipofuscins are yellow-brown granules that contain
biproducts of lysosomal degradation. Moreover, lipofuscin
granules appear to be comprised of oxidized proteins and lipids
(Double et al., 2008) but can also contain sugar and metals like
mercury, aluminum, iron, copper, and/or zinc. Strangely, a
comprehensive understanding of lipofuscin composition,
distribution, and formation is still sorely lacking. Within the
brain, it appears that a decrease in the iron-storing ferritin
protein can cause lipofuscin production via the inhibition of the
MCOLN1 metal transport channel (König et al., 2017; Boudewyn
and Walkley, 2019; Stepien et al., 2020). Although this could be
caused by dysfunctions in MCOLN1 rather than a decrease in
ferritin production, the end result is the same. Namely, free
ferrous ions can interact with lipids and proteins within
lysosomes transforming them into lipofuscin. In turn, this
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impairs the ability of affected lysosomes to perform normal
functions and can result in multi-lysosome fusion (Milward
et al., 2012).

Indeed, there are many known mitochondrial dysfunctions
known to be associated with particulate matter exposure, and
some speculate that the olfactory system is the causeway to
deteriorating brain health (Chew et al., 2020b). Specifically,
decreased mitochondrial oxygen consumption rate (Breton et al.,
2019; Chew et al., 2020b), increasedmtDNA oxidization (Byun et al.,
2016; Grevendonk et al., 2016), altered methylation patterns (Byun
et al., 2013; Breton et al., 2019), outer membrane permeabilization
(Chew et al., 2020a), and fusion/fission events (Li et al., 2015).
Although the large breadth of mitochondrial studies utilized in vitro
methodologies, the persistence of in vivo results reveals a diverse
landscape of health effects that should be heeded. A recent review
(Reddam et al., 2022) attempted to subdivide the literature from
2012–2022 into chemical exposures of polycyclic aromatic
hydrocarbons, air pollutants, heavy metals, endocrine-disrupting
compounds, pesticides, and nanomaterials. They applied these
classifications to population studies and revealed consistent
mitochondrial dysfunction biomarkers, including mtDNA copy
number, oxidative damage, outer membrane potential, calcium
levels, and ATP levels.

3.2 Deregulated nutrient sensing

There are four key pathways affecting aging-associated nutrient
sensing, with their component proteins of insulin-like growth factor
1 (IGF-1), mammalian/mechanistic target of rapamycin (mTOR),
sirtuins, and AMP (adenosine monophosphate) kinase (AMPK)
(López-Otín et al., 2013). Together, insulin and IGF-1 make up the
insulin and insulin-like growth factor (IIS) pathway. Attenuation of
this pathway appears to increase lifespan in mice, worms, and flies,
which implicates the caloric restriction model of aging (López-Otín
et al., 2013). When overactive, the IIS pathway can increase cancer
risk, metabolic load, and cellular proliferation (Milman et al., 2016).
As such, when we reduce IIS early in life, it promotes longevity.
However, it appears that the body naturally reduces this pathway
during aging and diminishes IIS to the point of detriment once we
reach a geriatric state (Milman et al., 2016). Metformin is a drug
developed for diabetic patients, which can increase insulin
sensitivity (decreases blood glucose levels) and decreases glucose
liver production and absorption. As a putative antiaging drug, it was
discovered to reduce mitochondrial oxidative stress (partially
through sirtuin 3), which increased lifespans in model organisms.
Unfortunately, long-term use can lead to vitamin B12 deficiency,
liver problems, lactic acidosis, and has been linked to neuropathy

FIGURE 4
mTORC1 and mTORC2 pathways. The C1 complex regulates cellular processes such as growth, division, and protein synthesis. This activation has
been linked to senescent cell accumulation and a decrease in lifespan. Autophagy, a process of energy source selection, is also impacted by C1 activation.
The effects of C2 complex are less clear and still debated in the scientific community, with some studies showing it promoting lifespan and others
reducing it. The outcomes of C2 can also vary depending on its regulation of factors such as FOXO3a and mTORC2. Rapamycin was developed for
immunosuppressive properties and was found to extend lifespan through blocking of mTORC1 complex. Unfortunately, long-term use also inactivates
mTORC2, increases blood pressure, elevates cholesterol, and increases risk of blood clots, stroke, and pulmonary embolisms.
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(Metformin, 2012; Aroda et al., 2016). The search for a silver bullet
continues.

The mTORC1 and mTORC2 protein complexes result in
different outcomes (Figure 4). The mTORC1 complex responds
to amino acids and growth factors by signaling the cell to grow,
divide, synthesize proteins, and other inflammation-inducing
cellular processes. These processes have been linked to senescent
cell accumulation based on cellular division leading to a Hayflick
limit, stem cell exhaustion, and accumulation of errors during DNA
replication. The mTORC1 complex activation has also been shown
to halt autophagy, which is likely an on/off gate that is used to
determine which energy source best suits the cellular needs
(Rabanal-Ruiz et al., 2017). Namely, if there are nutrients in the
environment, then we should not cannibalize excess organelles and
lipids via autophagy as an energy source.

The current understanding of mTORC2 complex outcomes will
be a shorter list than mTORC1, and whether mTORC2 promotes or
reduces lifespan is still debated. Some studies say that mTORC2 also
blocks autophagy (Ballesteros-Álvarez and Andersen, 2021), which
decreases lifespan. Some publications say it blocks FOXO3a, thereby
decreasing proliferation and increasing lifespan (Johnson et al.,
2013). While other studies have shown that FOXO3a
downregulation leads to age-associated pathologies (Akasaki
et al., 2014). Confounding still, murine hypothalamic
mTORC2 was shown to increase with age, which prevented
obesity, frailty, inactivity, and age (Ballesteros-Álvarez and
Andersen, 2021).

Regarding drug interventions, rapamycin was originally
discovered on Rapa Nui (Easter Island), and developed initially
as an antifungal (Vézina et al., 1975). Later, it was developed for its
immunosuppressive—and hence, organ rejection
suppression—abilities (Baroja-Mazo et al., 2016). It was later
discovered that rapamycin extended lifespans in model
organisms, and humans jumped at the opportunity to fill their
bodies with the unknown. Unfortunately, long-term rapamycin will
also inactivate mTORC2 (Sarbassov et al., 2006). It also could
increase arterial pressure, elevate cholesterol and/or other lipids
(Sacks, 1999; Kumar et al., 2019), and does increase risk of
thrombosis, venous thromboembolism, and clotting problems
(Camici et al., 2010; Ahya et al., 2011). The search for a silver
bullet continues.

Sirtuins are a particularly fascinating category of enzymes, which
also have a deep connection with aging. Originally discovered in
yeast, these are currently classified as Class III histone deacetylases
(HDACs): a group of histone deacetylases that have the ability to
remove acetyl groups from histones, proteins, and transcription
factors in an NAD+-dependent manner (Braunstein et al., 1993).
However, sirtuin functions have been expanded to NAD+-
dependent mono-ADP ribosyltransferases, lipoamidase,
desuccinylase, demalonylase, and deacylase activity (Chang et al.,
2020). The HDAC classification comes under further fire based on
publications showing that sirtuins can remove moieties other than
acetyl groups, and that their catalytic activity increases
proportionally to the size of aliphatic tail being removed (Gertler
and Cohen, 2013). Meaning, some sirtuins will have a preference for
butyryl, palmitoyl, and myristoyl over acetyl groups. As such, Jiang
et al. (2013), are proposing to rename the sirtuins to deacylases.
Arguably, this recategorization would be misleading, as not all

sirtuins have deacylase ability. To authentically recategorize
sirtuins, it would be more reasonable to categorize sirtuins based
on cellular compartment localization, or we could recategorize
sirtuins by their individual functions. Regardless, each sirtuin will
be partially explained below and their known functions are
summarized in Chang et al. (2020).

Unfortunately, the expression levels and effect sizes of sirtuins
varies wildly in our current model organisms (López-Otín et al.,
2013), so we will be forced to focus on the most important animal.
Humans have 7 sirtuins (named SIRT1-SIRT7). In young and
middle-aged humans, low cellular energy reserves cause an
increase in NAD+ levels, a mechanism which is impaired in older
adults (McReynolds et al., 2020). Sirtuins sense this increase, and
some can control catabolic metabolism. More specifically, SIRTs
1 and 2 can translocate between cytoplasm and nucleus; SIRTs 6 and
7 are said to exclusively reside in the nucleus; and SIRTs 3, 4, and
5 localize to the mitochondria (Liszt et al., 2005; Ahuja et al., 2007;
Buler et al., 2016). Notably, SIRT2 is somewhat of a nomadic
enzyme, able to translocate between the cytoplasm, nucleus, and
mitochondria, but is most often found in the cytoplasmic
compartment (Liu et al., 2017). All SIRTs have deacetylase
abilities and others, but SIRT 4 and 6 are the ADP-
ribosyltransferases (Liszt et al., 2005; Ahuja et al., 2007; Buler
et al., 2016).

SIRT1 is an ortholog of the gene for SIRT2, and is involved in
neural development through axonal elongation, neurite growth, and
dendrite branching; synaptic plasticity for memory formation;
hypothalamic functions affecting feeding behaviors, endocrine
functions, and circadian rhythm; protects against Alzheimer’s,
Parkinson’s, and motor neuron disease; and confers stress
resistance, metabolic homeostasis, and genomic stability
(Herskovits and Guarente, 2014). SIRT1 has secondary activation
effects, including activation of PARP for DNA repair, TFAM for
mitochondrial biogenesis, FOXO3a for antioxidant effects, and
NRF2 which blocks NFκB and activates SOD for downstream
secondary activation of antioxidant genes.

With the nomadic behavior of SIRT2, the ability to perform
intercompartmental tasks presents itself. Specifically, SIRT2 is
associated with senescence (Anwar et al., 2016), cytoskeletal
stabilization (North et al., 2003; Harting and Knöll, 2010;
Maxwell et al., 2011; Silva et al., 2017; Esteves et al., 2019),
myelin formation (Beirowski et al., 2011), oligodendrocyte
differentiation (Tang and Chua, 2008), autophagy (Gal et al.,
2012; Inoue et al., 2014; Liu et al., 2017; Silva et al., 2017; Esteves
et al., 2019), inflammation (Mendes et al., 2017), upregulation
during G2/M mitotic transition (Sola-Sevilla et al., 2021), and is
required for proper cytokinesis (Tang and Chua, 2008). Among the
sirtuins, SIRT2 has the strongest neurological presence, with
expression seen in neurons, oligodendrocytes, astrocytes, and
microglia (Jayasena et al., 2016). Based on the neurological
potential, autophagy and senescence implications, and wide
localization for a multitude of histone deacetylations, SIRT2 has
been proposed as central to human aging. Unfortunately, the
increase/decrease in SIRT2 abundance within different brain
compartments is riddled with conflicting studies (Sola-Sevilla
et al., 2021). Namely, three splice variants have been discovered,
but mRNA and proteins levels are seen to increase, decrease, or stay
the same with age (Maxwell et al., 2011; Kireev et al., 2013; Braidy
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et al., 2015; Garg et al., 2017; Diaz-Perdigon et al., 2020). When
examining the breadth of data available, a clearer picture can be
resolved after removing conflicting data in rats andmice. In humans,
the studies show an age-related increase in plasma SIRT2 mRNA
(Yudoh et al., 2015), with a decrease in peripheral blood
mononuclear cell (PBMC) protein abundance (Wongchitrat et al.,
2019). Unfortunately, the neurological implications remain unclear,
and this does not speak to regional abundances.

Pharmacologically, few studies have upregulated SIRT1 or
SIRT2 after air pollution exposure, but some have performed
correlation studies with SIRTs and air pollution. A longitudinal
study from China saw a significant correlation with hazard ratios
from particulate matter exposure and levels of
SIRT1 polymorphisms (Yao et al., 2021). Another study revealed
pre-conception air pollution exposure increased SIRT1 and
SIRT2 mRNA in offspring after birth. These data indicate a
potential linkage in anti-oxidant effects of these sirtuins, or the
epigenetic modification capabilities (Tanwar et al., 2018).

SIRT3 is one of the 3 mitochondrial sirtuins and has been
implicated in neurological and cardiovascular diseases (Silaghi et al.,
2021) as well as having protective effects after urban air pollution
exposure (Chen et al., 2016). These findings are largely based on the
age-related decline in activity leading to increased susceptibility of
endothelial dysfunction, hypertension, and heart failure.
Furthermore, proteomic data shows that it regulates 100s of
proteins (Rardin et al., 2013; Yang et al., 2016; Carrico et al.,
2018), involving β-oxidation, antioxidant proteins, glutathione
production, metabolism of amino acids, and mitochondrial
permeability (Hazelton et al., 2009; Cheng et al., 2016). As the
primary mitochondrial deacetylase, it removes the acyl group from
most mitochondrial proteins. In fact, it is the largest contributor to
the mitochondrial “acetylome”, whereby deletion of SIRT3 (but not
4 or 5) will result in protein hyperacetylation (Lombard et al., 2007).
In humans, polymorphisms that upregulate SIRT3 increased
longevity (Albani et al., 2014), and increased expression in
populations have been shown to extend human lifespan (Rose
et al., 2003; Halaschek-Wiener et al., 2009). Based on its
antioxidant effects, a clear link to aging can be seen. Through the
complexing of SIRT3 with FOXO3a, SOD2 upregulations occur,
which reduce ROS (Silaghi et al., 2021). But, if SIRT3 is exclusively
found in the mitochondria, and the SOD gene is found in the
nucleus, a question can be proposed of whether SIRT3 has a
nomadic tendency as well. Independently of these musings,
SIRT3 decreases mitochondrial membrane potential and ROS
production while increasing cellular respiration. Conversely,
downregulation of SIRT3 was shown to induce TGF-β synthesis,
resulting in activation of NFATc and beta-catenin (pro-fibrosis).
This mechanism is largely known, whereby SIRT3 indirectly
downregulates TGF-β by inhibiting the transcription factor c-Jun
(Sundaresan et al., 2015). Within the heart, TGF-β differentiates
cardiac fibroblasts to myofibroblasts for the deposition of
extracellular matrix, and the formation of fibrotic tissue. Indeed,
patients with end-stage heart failure showed a significant decrease in
SIRT3, resulting in an increase of TGF-β production (Sundaresan
et al., 2015). Furthermore, hyperlipidemia has been shown to induce
macrophage-based atherosclerosis. These monocytes downregulate
SIRT3, leading to overabundance of acetylated ATG5 which
decreases autophagic processes. In turn, this increases

NLRP3 inflammasome production, and IL-1β secretion for
plaque formation. Taken together, SIRT3 is an exciting target for
therapeutic intervention, but the sheer number of outcomes
associated with SIRT3 requires careful investigation.

Although we know that SIRT4 is localized within the
mitochondria, its activities are still somewhat mysterious (Min
et al., 2019). This can partially be explained by the tissue- and
cell-specific activities already observed. For example, pancreatic
SIRT4 has been shown to inhibit insulin secretion. Within the
muscles, adipose, and liver, it suppresses fatty acid oxidization.
However, the oxidization mechanism appears to be different
from tissue to tissue as well. In muscles and fat, SIRT4 appears
to block the malonyl-CoA decarboxylase, resulting in fatty acid
synthesis rather than oxidation (Nasrin et al., 2010; Acs et al., 2014;
Zeng et al., 2018). In the liver, SIRT4 has been shown to block the
interaction between SIRT1 and PPARα, leading to a decrease in fatty
acid oxidization (Nasrin et al., 2010). Unfortunately, these studies
were performed in mice, which disallows human pathway
translations or conclusions.

The first review of SIRT5 came out in 2016 (Yang et al., 2017)
after a string of discoveries showed weak deacetylase activity, but
strong desuccinylase, demalonylase and deglutarylase activities (Du
et al., 2011), among others. After preliminary links were formed
between SIRT5 abundance and incidence of Alzheimer’s, cancer,
and Parkinson’s disease, the door of excitement blew open for a rash
of new peptide and small-molecule inhibitors. Unlike every other
SIRT, SIRT5 activation and overexpression was initially believed to
be deleterious. Studies showed that overexpression led to accelerated
aging and damage, rather than increasing longevity. For example,
SIRT5 was amplified by 30% in ovarian carcinoma (Bell et al., 2011),
was overexpressed in non-small cell lung cancer (Lu et al., 2014), and
protein levels were shown to increase in tandem with Alzheimer’s
progression (Lutz et al., 2014). Furthermore, a SNP in
SIRT5 increased protein abundance, and appeared to contribute
to mitochondrial dysfunction. The authors related these changes to
Parkinson’s and other age-associated disease states through gene
activation profiles (Glorioso et al., 2011). However, more recent
studies have found counter evidence showing that SIRT5 depletion
causes mitochondrial dysfunction, expression does not increase with
Alzheimer’s progression, and can only be linked to Parkinson’s via
an autophagic degradation of SIRT5 itself (Baeken et al., 2021;
Haschler et al., 2021; Wu et al., 2021). Arguably, a beneficial
effect of SIRT5 seems more likely based on the positive effects of
SIRTs 1, 2, 3, 4, 6, and 7.

But rather than attempting to fully understand the functionality
of SIRT5, the field is sprinting ahead with inhibition strategies in
mice through small molecules and peptides. As of 2017, there were
6 peptide inhibitors, and 7 small molecule inhibitors. Through
genetic engineering, a SIRT5 knockout group showed an increase
in lifespan and decrease in tumor incidence within a mouse breast
cancer model (Abril et al., 2021). However, these findings of
SIRT5 knockouts and deleterious outcomes should be taken with
a huge grain of salt until studies are repeated and mechanisms of
action are elucidated.

Unlike SIRT5, the field believes SIRT6 to have antitumor
properties through its roles in regulating gene expression,
metabolism, and DNA repair. However, these effects can be lost
after air pollution exposure, evidenced by an in vivo inhibition of
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SIRT6 mRNA in the lungs (Ribeiro et al., 2017) As stated earlier,
SIRT 6 is proposed as a permanent resident of the nucleus. One
outcome is the potential to directly impact DNA repair. This is
achieved through ADP-ribosylation of K521 residue on PARP1,
which engages the dsDNA break repair (Mao et al., 2011). Further,
SIRT6 has a high binding affinity for NAD+, which allowed a
systematic evaluation of binding partners. Results from these
experiments include the deacetylation of H3K9 and H3K56 in
gene promoter sites (Kugel and Mostoslavsky, 2014), co-
repression of nuclear factor κB (NFκB) and hypoxia-inducible
factor 1α (HIF-1α) (Kawahara et al., 2009; Zhong et al., 2010),
telomere maintenance (Michishita et al., 2008), and co-repression of
transcription factor c-MYC (Sebastián et al., 2012), among many
others. Interestingly, the diacylation activity of SIRT6 is wide-
ranging as well, and includes modifying the inflammatory master
regulator TNF-α (Jiang et al., 2013). More specifically, the secretion
of TNF-α requires SIRT6 to remove the fatty acyl groups from
K19 and K20 (Jiang et al., 2013). Without this diacylation, TNF-α is
relegated to the lysosomes for degradation. More recently, SIRT6 has
been shown to deacylate R-Ras2, which prevents the complexing to
PI3K and thereby inhibits proliferation (Zhang et al., 2017). Thus,
SIRT6 has a plethora of therapeutic potential, but this widespread
activity also increases the potential for off-target effects through
pharmacological modulation (Chang et al., 2020). As an opportunity
for researchers investigating mitotic bookmarks, lower levels of
SIRT6 correlate with mitotic defects (Tasselli et al., 2016),
indicating the potential for SIRT6 as a yet-uninvestigated mitotic
bookmark.

SIRT7 is known to localize within the nucleus and nucleolus and
interacts with RNA polymerase I (Lombard et al., 2007). It is
currently believed that SIRT7 has a role in DNA repair, whereby
it accumulates to the site of dsDNA breaks and deacetylates
H3K18ac (Barber et al., 2012; Vazquez et al., 2016; Zhang et al.,
2016). This results in the binding of double-strand break repair
protein-1 for nonhomologous end joining. Additionally, SIRT7 has
been implicated in cardiomyocyte stress resistance (Vakhrusheva
et al., 2008), and reductions in liver endoplasmic reticulum stress
through suppression of Myc activity (Shin et al., 2013).

Since these molecules are NAD-dependent, a small review of
NAD+ should be endeavored. NAD+ is generated in vivo through the
de novo pathway from amino acids, or the salvage pathway from
nicotinamide. At last count on Pathbank, there are 6main branching
pathways that lead back to mitochondrial production of NAD+ via
nicotinamide mononucleotide adenylyltransferase1 (NMNAT3),
with further production available in the nucleus, and Golgi via
NMNAT1 and NMNAT1, respectively. Increasing these branches to
a point of convolution, hundreds of compounds are known to feed
into the de novo and salvage pathways. From convolution to
simplicity, we know that the de novo pathway is regulated by a
rate-limiting enzyme, nicotinamide phosphoribosyltransferase
(NAMPT). The NAMPT enzyme has its own circadian regulator
complex consisting of a circadian locomotor output cycles kaput
(CLOCK) and a brain andmuscle aryl hydrocarbon receptor nuclear
translocator-like 1 (BMAL1) (Nakagawa and Guarente, 2011;
Grabowska et al., 2017). Without the proper abundance of feeder
molecules, circadian time of day, and amount of rate-limiting
enzyme, NAD+ metabolism can be skewed. In turn, this could
cause an unintended decrease in sirtuin activity.

With regard to air pollution, these essential factors may be
altered, but few studies have examined the link between sirtuins two
to seven with air pollution/particulate matter. As of writing, the
following results were found from a PubMed query for “(‘sirtuin [x]’
OR ‘SIRT [x]’ OR ‘sirtuin-[x]’) and (‘air pollution’ OR ‘particulate
matter’)” where x represents the numerical sirtuin in question.
SIRT1: 28 publications; SIRT2: 4; SIRT3: 5; SIRT4: 0; SIRT5: 0;
SIRT6: 1; SIRT7: 0.

Of note, a longitudinal human cohort study (n =
7,083 participants) correlated air pollution levels with all-cause
mortality and revealed a significantly higher hazard ration in
women carrying two SIRT1_391 alleles (Yao et al., 2021). In
mice, air pollution exposure in utero caused reduced cardiac
expression levels of SIRT1 and SIRT2, with physiological
outcomes of adult heart failure, remodeling, and epigenetic
changes. SIRT3 also appears to have a cardioprotective effect in
mice based on a SIRT3 KO model compared to WT controls (Song
et al., 2021), and melatonin supplementation could offset some of
the cardiac fibrosis effects from PM2.5 by regulation SIR3-mediated
SOD2 deacetylaton (Jiang et al., 2021). For SIRT6, young (2 months)
and old animals (15 months) were exposed to diesel exhaust for
30 days. In young animals, lung SIRT6 gene expression was
decreased, while protein expression increased. No effects in
SIRT6 were observed in old animals (Ribeiro Júnior et al., 2019).

Finally, AMP kinase is thought to extend lifespan through
regulation of metabolic homeostasis and stress resistance
(Salminen and Kaarniranta, 2012). Studies have shown increased
in AMPK activity stimulate the signaling pathways of FoxO, Nrf2,
and SIRT1, as well as downregulation of NF-κB, which reduces
inflammatory responses. Furthermore, this responsiveness and
activity declines with age, allowing for chronic, unresolved, low-
grade inflammation. In turn, this inflammation has been linked to
senescence, metabolic disorders, and age-related diseases like cancer
and Alzheimer’s.

With regard to environmental stressors, heavy metal exposure
from cadmium, lead, and mercury (among others) have been
implicated with metabolic syndrome (Planchart et al., 2018),
possibly through an increased insulin resistance (Su et al., 2021)
and islet cell damage (Chen et al., 2009). Metabolic syndrome is
characterized as having a minimum of 3/5 of the following:
abdominal obesity, high blood pressure, impaired fasting glucose,
high triglyceride levels, and low HDL cholesterol levels. Overall,
metabolic syndrome has been partially linked to accelerated cellular
aging (Kong et al., 2013), but more evidence is necessary before solid
conclusions to be made.

3.3 Cellular senescence

Senescence is an irreversible state of proinflammatory cell cycle
arrest. During natural aging, mammals accumulate senescent cells.
Upon senescing, cells alter their secretome (Coppé et al., 2008),
which has been characterized as the senescence-associated secretory
phenotype (SASP). These factors (like IL-6, IL-8, and TNFα) can
cause paracrine senescence (Borghesan et al., 2019), which can feed
forward senescent cell accumulation (Teo et al., 2019). Studies have
shown SASPs to be cell-type specific (Hudgins et al., 2018; Basisty
et al., 2020), species-dependent (Hudgins et al., 2018), stimulus-
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specific (Martínez-Zamudio et al., 2017), and age-dependent
(Basisty et al., 2020), but broadly link senescence with age-
associated pathologies.

Environmental stressors can promote neurological senescence,
but the mechanisms underlying this relationship are unclear (Chinta
et al., 2018) and the ability of post-mitotic neurons to undergo
senescence is still debated (Chinta et al., 2013). However, neuronal
progenitors can undergo senescence (Rachmian and Krizhanovsky,
2023), as well as oligodendrocyte progenitors (Ogrodnik et al.,
2021), astrocytes (Simmnacher et al., 2020), microglia (Hu et al.,
2022), and neuro-associated endothelial cells and pericytes
(Yamazaki et al., 2016). Additionally, the herbicide paraquat is
associated with idiopathic Parkinson’s disease, potentially
through a skewing of neurological astrocytes towards the
senescent phenotype (Chinta et al., 2013; Chinta et al., 2018;
Scott and Williams-Gray, 2018). Within other tissues, air
pollution has been shown to increase senescence in the lung
(Mora and Rojas, 2013; Chang-Chien et al., 2021; Eckhardt and
Wu, 2021). However, any organ susceptible to the immediate and
downstream effects of particulate matter insult (Schraufnagel et al.,
2019) will also have an increased risk for senescence, including eyes
(Sreekumar et al., 2020), heart (Chen et al., 2022), stomach (Penfield
et al., 2013), bone (Pignolo et al., 2021), mouth and jaw (Parkinson
and Prime, 2022), and reproductive health (Lemaître and Gaillard,
2017). These senescent cells can contribute to pathology, meaning
inhaled toxicants may indirectly or directly augment those
outcomes.

4 Integrative hallmarks of
aging–intercellular communication
and stem cell exhaustion

4.1 Intercellular communication

Cellular communication and hormone balance alters as we age.
This results in a skewing towards a more inflammatory state,
resulting in osteoporosis, sarcopenia, cognitive decline, stem cell
exhaustion (see below), and others (López-Otín et al., 2013). This
hallmark has been modulated through dietary caloric restriction
(Lee et al., 2006; Pifferi et al., 2018), parabiosis (connecting the
circulation of old mice to young), and apheresis (removal of blood),
but the human lifespan effects are difficult to determine (Mattison
et al., 2017). Mechanistically, the increase in NFκB within the
hypothalamus causes a reduction in gonadotropin-releasing
hormone (GnRH), leading to some of the aforementioned effects.
Additionally, SASP factors have been implicated in this breakdown
of altered communication through their consistent recruitment of
immune cells, lack of clearance, and proinflammatory state (Palmer
et al., 2015; Childs et al., 2016; Xu et al., 2017).

Regarding environmental toxicants, a longstanding body of
research has linked exposures with altered intercellular
communication (Peters et al., 2021). The alterations are typically
thought of in the context of SASP alterations through exposures like
ozone (Feng et al., 2016), and alterations to extracellular vesicle
payloads through exposures like air pollution (Bollati et al., 2015).
However, environmental toxicant exposure can alter the ligandome
(Tian et al., 2020), and chemical mixtures are being employed to

determine receptor changes that would alter endocrine signaling
(Vinggaard et al., 2021). Summarily, EVs and SASP release are
factors that should be brought into context with the receptor/ligand
alterations that occur from multiple environmental toxicants.

4.2 Stem cell exhaustion

Stem cell exhaustion is directly responsible for age-related
problems of frailty and a weakened immune system. However,
there are multiple causes of this phenotypic outcome. To this
point, we have observed aging phenotypes arising from
accumulation of ROS, toxic metabolites, DNA damage, epigenetic
alterations, damaged proteins, and mitochondrial dysfunction. All
of these can contribute to stem cell exhaustion in addition to many
of the other hallmarks listed in Figure 1. For example, the pro-
inflammatory cytokines released from senescent cells will suppress
the proliferation of stem cells, which contributes to the age-related
reductions in tissue regeneration and cellular turnover. Another
aspect of exhaustion occurs from telomere shortening (Hiyama and
Hiyama, 2007) which can result in a replicative senescence within
the stem cell population. The existence of senescent cells within
signaling distance of other stem cells will promote further reductions
in stem cell activity through SASP factor release. Additionally, both
white and red blood cell production occurs through the proliferative
ability of stem cells. Neutrophils are short-lived and are known to
return to the bone marrow niche after several hours in circulation.
They are welcomed home by macrophages who cannibalize them.
This triggers macrophages to express a liver x receptor (LXR), which
blocks CXCL12 production in the hematopoietic bone marrow
niche. Through this blockage, stem cells begin differentiation and
are released as hematopoietic progenitor cells in the blood
(Casanova-Acebes et al., 2013).

Over the natural course of aging, the abundance of immune cells
declines. This reduction in available immune cells decreases the
body’s ability to fight off pathogenic insults as we age, leading to
multiple diseases. Although science has been unable to reverse this
effect, many researchers are examining the blood and its contents.
Seminal work from the R.A. Lambert in 1911 revealed animals could
have their circulatory systems surgically conjoined (parabiosis)
(Lambert, 1911). For over a half-century, parabiosis studies were
performed based on age-matched exposure and control animals
(Binhammer et al., 1953; Warren et al., 1960; Carroll and Kimeldorf,
1967; Carroll and Kimeldorf, 1969). In 1957, the circulatory systems
of young and old mice were surgically integrated (heterochronic
parabiosis), and an observable lifespan increase was achieved
(Mccay et al., 1957; Hrůza, 1971; Ludwig and Elashoff, 1972).
Frankensteinian parabiosis has been deemed immoral and
unethical in humans. As such, we must examine the blood
factors themselves and attempt intervention. Pioneering work by
the Wyss-Coray lab illustrated beneficial neurological effects from
young plasma transfusions in old mice (Villeda et al., 2014).
Similarly, researchers injected a blood plasma cocktail meant to
mimic the effects of parabiosis, and reverted the epigenetic age of
liver by 73.4%, blood and heart by 52%, and hypothalamus by 11%
(Yousef et al., 2015), and plasma dilution (rather than transfusion)
has been shown to be effective in mice (Mehdipour et al., 2020;
Mehdipour et al., 2021). Not wanting to wait for government
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approval, a group of Russian biohackers took it upon themselves to
undergo the first human tests. Their results showed an improvement
in liver markers, increase in naïve T-cells, and the myelocyte/
lymphocyte ratios improved. Unfortunately, the sample size of
2 called these results into question until a clinical trial performed
plasma dilution and achieved similar results (Kim et al., 2022).
Namely, reductions in DNA damage marker 8-OHdG and cellular
senescence marker p16 in PBMCs, and a rejuvenation of the
myelocyte/lymphocyte ratio. Finally, proteomic comparative
analyses revealed the potential aging biomarkers of uPAR, TRAIL
R1, IL-16, TIMP-1, IL-15R alpha, CD27, APJ, TNFRSF27, CCL25,
and TGFBR2.

Regarding air pollution, blood is the highway between organ
systems, and is the current best guess as to why non-outward-facing
organs are affected after exposure. Ongoing research is attempting to
determine whether inhaled smoke particles themselves are entering
the blood stream, or if fragmented peptides from lung responses are
causing peripheral organ effects. Later this year, Andrew Ottens at
Virginia Commonwealth will be publishing proteomics results from
mouse hippocampi after wildfire exposure. He was unable to directly
determine whether the wildfire particles were reaching the brain.
However, pathway analysis revealed neurological damage and
aggrephagy–a process of selective autophagic degradation of
protein aggregates. Although these results do not preclude
particulate matter escaping lungs and entering circulation, this is
strong evidence that fragmented peptides are reaching the brain and
being cleared.

Another study showed that firefighters who donated blood
reduced the circulating levels of “forever chemicals” like
perfluoroalkyl and polyfluoroalkyl substances (Gasiorowski et al.,
2022). Somewhat gloomily, EPA scientists now say that it is no
longer safe to drink rainwater anywhere on the face of this planet
due to the presence of these forever chemicals (Cousins et al., 2022).
So, the take-away could be to donate more blood, but then the
recipient of that blood will receive those chemicals. Broadly, it could
be assumed that the biohackers’ results were due to a similar
reduction in harmful circulating substances. Regardless, both
studies could reduce the amount of stem cell exhaustion by way
of removing inflammatory markers that prevent stem cell functions
from occurring.

5 The interaction between wildfire
smoke and the hallmarks of aging

Environmental disasters such as wildfires pose an increasing
threat to a growing and aging global population (WHO, 2017).
Wildfires produce complex mixtures of inhaled toxicants that can
not only damage the lungs but also promote systemic health effects.
Short-term pulmonary, cardiovascular and neurological outcomes
from inhaled toxicants are well studied, as are some of the
implications for chronic diseases such as atherosclerosis.
However, relatively little is known about the impact of inhaled
toxicants from wildfires on aging—and the further implications for
priming age-related disease sequelae, particularly in the brain.

Striking parallels exist between molecular changes within the
blood induced by aging and inhaled toxicants. Circulating proteins,
such as MMPs, serpins, and inflammatory factors, have been

documented to increase with aging and directly promote age-
related neurological pathologies (Lehallier et al., 2019; Pluvinage
andWyss-Coray, 2020). Similarly, we have documented that inhaled
pollutants (ozone, particulates, complex emissions) cause
overlapping compositional and functional alterations to the
circulation, and those changes promote vascular and neurological
inflammation, which in turn prime age-related pathologies
(Channell et al., 2012; Aragon et al., 2017; Mostovenko et al.,
2019). Downstream consequences of the circulatory changes
following inhalation of particulates and gases include breakdown
of the blood-brain barrier (BBB) and activation of microglia and
astrocytes (Scieszka et al., 2022). Recent studies of aging note a clear
role for vascular cell adhesion molecule-1 (VCAM-1) as a vital
intermediate in aging-related BBB breakdown and neurological
sequelae (Yousef et al., 2019), and serum obtained after exposure
to particulates and gases (in both humans and animals) directly
upregulate endothelial VCAM-1 (Channell et al., 2012; Aragon
et al., 2016; Tyler et al., 2016). Furthermore, while age-related
changes in the circulating proteome provide fundamental
revelations, there is another unstudied set of bioactive factors
induced within the blood - the peptidomic fraction. We have
demonstrated how circulating peptide fragments arise from
activated proteases in the lung following inhalation of particulate
and gaseous toxicants, retain 2° structure and act through ligand-
receptor endothelial interactions to compromise BBB integrity and
promote inflammation (Mostovenko et al., 2019). Our laboratory and
others have demonstrated that advanced age confers vulnerability to
many of the neuroinflammatory and vascular outcomes of inhaled
toxicants (Mumaw et al., 2016; Tyler et al., 2018). However, gaps
remain in our understanding of the underlying mechanisms of aging
and environmental interactions that compromise the neurological
and cardiovascular healthspan. Furthermore, how environmental
exposures promote aging processes remains understudied, especially
in terms of high-concentration insults as seen in wildfire scenarios.
Preliminary evidence shows that inhaled wildfire smoke (WFS)
accelerate markers of and neurological aging (Scieszka et al., 2022)
and reduce learning capability (Cleland et al., 2022). This is likely
occurring through the augmentation of circulatory factors that
1) compromise vascular and BBB integrity to induce chronic
neuroinflammation and age-associated proteinopathy-related
outcomes and 2) induce a reduced metabolic, senescent cellular
phenotype that may be treatable with combined anti-inflammatory
and NAD + boosting compounds.

6 Discussion

The intricate interplay between aging and environmental exposures,
as explored in this review, underscores the need for future research on
multiple fronts. A critical area of inquiry lies in the further examination
of the molecular and cellular mechanisms underpinning the interactions
between aging hallmarks and environmental stressors, e.g., inhaled
toxicants from wildfires. Although the repercussions on circulatory
alterations, neuroinflammation, and BBB integrity have been
established and are related to ADRD, specific pollutant effects on
cellular/molecular aging pathways involved remain largely elusive.
Therefore, uncovering these could lead to targeted interventions and
potential therapeutic approaches.
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One such prospect is the exploration of specific compounds that
could counter the adverse effects induced by wildfire smoke and
other inhaled pollutants. In this context, our preliminary findings
point towards the potential of combined anti-inflammatory and
NAD + boosting compounds. These could act by mitigating
inflammation and restoring the reduced metabolic activity in
senescent cells induced by wildfire smoke. Therefore, rigorous
testing of these compounds in preclinical and clinical settings
could help establish their therapeutic efficacy and safety.

Moreover, the intriguing concept of circulating peptide fragments
arising from activated proteases in the lung and their subsequent role
in promoting inflammation and BBB compromise deserves more in-
depth investigation. This could entail studying the peptide fragments’
structure, their interactions with endothelial receptors, and their
potential modulation to mitigate their harmful effects.

Beyond mechanistic inquiries, our findings also call for policy
action. Given the growing and aging global population and the
increasing prevalence of wildfires and other environmental disasters,
addressing the health implications of environmental exposures is a
public health imperative. Regulatory bodies should consider
implementing stringent measures to manage these disasters and
reduce public exposure to their harmful consequences. Furthermore,
health education campaigns can raise awareness about these health
risks and strategies to minimize exposure.

Finally, the role of lifestyle interventions, such as dietary caloric
restriction, in modulating the aging hallmarks affected by
environmental exposures, warrants further exploration. Long-
term, population-level studies could provide valuable insights
into their potential benefits.

In conclusion, our review highlights the need for a
multidisciplinary approach to tackling the complex problem of
environmental exposure-induced acceleration of aging
mechanisms. Through concerted efforts spanning basic research,
therapeutic development, and policy action, we can aspire to
mitigate the detrimental health consequences of such exposures
and ensure healthy aging in our society.

7 Caveats

While striving to be comprehensive through literature searches,
this review is not intended as a systematic review and has likely
overlooked some information that could enrich the discussion. In

focusing primarily on woodsmoke, we acknowledge that many
emerging environmental toxicants warrant their own reviews.
This targeted scope allowed a deeper exploration of woodsmoke’s
impacts but means the effects of other pollutants require additional
attention in future work. Overall, we aimed to advance the
conversation on woodsmoke’s effects while recognizing this
review’s limitations in breadth. Further research across the
spectrum of environmental exposures will continue illuminating
their influences on human and ecological health.
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