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Abstract: The goal of this study is to develop a mathematical model that captures the interaction
between evofosfamide, immunotherapy, and the hypoxic landscape of the tumor in the treatment of
tumors. Recently, we showed that evofosfamide, a hypoxia-activated prodrug, can synergistically im-
prove treatment outcomes when combined with immunotherapy, while evofosfamide alone showed
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no effects in an in vivo syngeneic model of colorectal cancer. However, the mechanisms behind the
interaction between the tumor microenvironment in the context of oxygenation (hypoxic, normoxic),
immunotherapy, and tumor cells are not fully understood. To begin to understand this issue, we de-
velop a system of ordinary differential equations to simulate the growth and decline of tumors and
their vascularization (oxygenation) in response to treatment with evofosfamide and immunotherapy
(6 combinations of scenarios). The model is calibrated to data from in vivo experiments on mice
implanted with colon adenocarcinoma cells and longitudinally imaged with [18F]-fluoromisonidazole
([18F]FMISO) positron emission tomography (PET) to quantify hypoxia. The results show that evofos-
famide is able to rescue the immune response and sensitize hypoxic tumors to immunotherapy. In the
hypoxic scenario, evofosfamide reduces tumor burden by 45.07± 2.55%, compared to immunotherapy
alone, as measured by tumor volume. The model accurately predicts the temporal evolution of five dif-
ferent treatment scenarios, including control, hypoxic tumors that received immunotherapy, normoxic
tumors that received immunotherapy, evofosfamide alone, and hypoxic tumors that received combi-
nation immunotherapy and evofosfamide. The average concordance correlation coefficient (CCC) be-
tween predicted and observed tumor volume is 0.86 ± 0.05. Interestingly, the model values to fit those
five treatment arms was unable to accurately predict the response of normoxic tumors to combination
evofosfamide and immunotherapy (CCC = −0.064 ± 0.003). However, guided by the sensitivity anal-
ysis to rank the most influential parameters on the tumor volume, we found that increasing the tumor
death rate due to immunotherapy by a factor of 18.6± 9.3 increases CCC of 0.981± 0.001. To the best
of our knowledge, this is the first study to mathematically predict and describe the increased efficacy
of immunotherapy following evofosfamide.

Keywords: immunotherapy model, mouse, model calibration, uncertainty quantification, tumor
growth model, [18F]FMISO-PET, hypoxia

1. Introduction

The aberrant growth of tumor cells can lead to an oxygen demand that is higher than the existing
vasculature can provide [1]. This lack of sufficient oxygenation and nutrients in tumor cells may result
in regions of hypoxia (defined as ≤ 10 mm Hg [2, 3]. When compared to normoxic tumors (i.e., > 10
mm Hg), hypoxic tumors have been linked with a poorer outcome for several anticancer therapies,
including radiotherapy, chemotherapy, and immunotherapy [4–7]. However, it has been shown that
resistance to immunotherapy can be alleviated by combining immunotherapy with hypoxia-activated
prodrugs and altering the oxygenation within a tumor [8, 9].

Hypoxia-activated prodrugs are activated only under low oxygen tension, resulting in a hypoxia-
specific release of the active drug in areas of low oxygen, such as solid tumors, while sparing normal
tissue that has adequate oxygen levels [10]. For example, under hypoxic conditions, evofosfamide
(TH-302) is converted into the alkylating agent bromo-isophosphoramide mustard [10]. When com-
bined with radiotherapy and immunotherapy, evofosfamide can improve treatment outcome [8–11].
Several clinical trials and in vivo preclinical experiments have investigated the effects of evofosfamide
in combination with a range of treatment types in cancer with favorable results [12–15]. For example,
Laubach et al. designed a phase I/II study for multiple myeloma, to investigate the effects of combi-
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nation of evofosfamide and dexamethasone where disease was observed to be stabilized in over 80%
of the patients [13]. Hegde et al. evaluated the tumor response to a combination of evofosfamide and
immune checkpoint inhibitor, ipilimunab [9]. In this study, of 18 patients (with a variety of primary
tumors), three achieved partial response and 12 achieved stable disease [9]. Compared to nonrespon-
ders, the responders exhibited improved peripheral T-cell proliferation and increased intratumoral T-
cell infiltration into hypoxia regions [9]. In preclinical models, evofosfamide was shown to reduce or
eliminate hypoxia in prostate cancer and the combination of evofosfamide and immunotherapy cured
80% of mice. Following treatment, mice treated with evofosfamide (alone or in combination with
immunotherapy) demonstrated that less than 7% of the tumor area was hypoxic compared to 33% in
control mice [15]. These studies indicate that it may be useful to characterize the oxygenation status of
a tumor to determine if evofosfamide should be administered in combination with anti-cancer therapy.

There are several methods for noninvasively quantitatively interrogating tumor oxygen status via
positron emission tomography (PET; [16]), such as [18F]FMISO-PET and FAZA-PET. For example,
Reeves et al. quantified tumor hypoxia using [18F]-fluoromisonidazole ([18F]FMISO)-PET before and
after immunotherapy [8]. The data was collected in experiments with mice injected with either MC38
(murine colorectal cancer cells) or E0771 (murine breast cancer cells). The authors demonstrated that
within five days of starting immunotherapy, nonresponding colorectal and breast tumors exhibited a
significant increase in hypoxia. After identifying the nonresponding tumors, the investigators treated
them with a combination of immunotherapy and evofosfamide, resulting in significant improvement
in tumor volume control and overall survival. This combination of evofosfamide and immunother-
apy led to a significant reduction in hypoxia within hypoxic tumors. Further, Kumar et al. [17] have
demonstrated that evofosfamide has a synergistic effect when combined with anti-VEGF inhibitors,
indicating it’s potential to enhance tumor response to immunotherapy. Given these promising results
on identifying hypoxia as a potential imaging biomarker for immunotherapy response and utilizing that
information to enhance the efficacy of subsequent treatment with immunotherapy, it is natural to work
towards optimizing this process.

Mathematical models have been developed to study the combination of evofosfamide and combre-
tastin in glioblastoma [18], evofosfamide and erlotinib in non-small cell lung cancer [19], and evofos-
famide and radiotherapy in chondrosarcoma [20]. For example, Meaney et al. developed a system of
reaction diffusion equations to model a glioblastoma treated with evofosfamide and combretastin [18].
They simulated patients receiving just one of the drugs or their combination. The authors also ex-
plored scenario where the drugs were released from the vessels or from nanocells. The parameters of
the model were taken from previous mathematical models that were calibrated to experimental data,
and their results indicate that the nanocells have the potential to increase the delivery and activation
of both drugs. Lindsay et al. developed a stochastic mathematical model, parametrized using clinical
and experimental data (e.g., experimental growth rates, cell response to evofosfamide, tumor oxygena-
tion measurements, and pharmacokinetic data), and optimized the treatment protocol of evofosfamide
and erlotinib [19]. They found that the optimal treatment protocol to reduce the tumor burden is to
sequentially alternate a single dose of each drug while minimizing the time between the evofosfamide
and erlotinib doses. Hamis et al. developed a hybrid, multiscale cellular automata model to study
solid tumors subjected to evofosfamide and radiotherapy [20]. The model was parameterized by pub-
lished data from an in vitro experiment with multicellular tumor spheroids of human chondrosarcoma.
Numerical simulations demonstrated that evofosfamide increased the radiotherapy efficacy in hypoxic
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tumors. Despite these advances on modeling the combination of evofosfamide with other therapies, the
combination of evofosfamide and immunotherapy is currently unexplored by mathematical modeling.

In this contribution, motivated by the results obtained in [8], we develop a mathematical model to
reproduce the growth of normoxic and hypoxic tumors, as defined by [18F]FMISO-PET imaging data,
under different treatment regiments of immunotherapy and evofosfamide [8]. The experimental data
collected by Reeves et al. is used to calibrate the model. We employed a staggered Bayesian calibration
method to isolate the model parameters within each calibration scenario. This approach is designed
to systematically explore the main mechanisms of our model that allow it to fit every experimental
scenario. The calibration is completed excluding the data from normoxic tumor cells treated with
immunotherapy and evofosfamide, which will be used as a validation scenario. Thus, we develop a
framework capable of identifying the effects of combining immunotherapy and evofosfamide, and their
roles in reproducing the experimental data.

2. Methods

2.1. Murine model

As details are described elsewhere [8], here we present only the salient details on how we obtained
tumor size changes as function of time and treatment in a murine model of colorectal cancer. MC38
murine colorectal cancer cells were obtained from Kerafast (September 2019). These cells are an
immunogenic, grade III adenocarcinoma of colorectal cancer and are characterized by microsatellite
instability. They were cultured in Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal bovine
serum (FBS), 2 mmol/L L-glutamine, and 1 mmol/L sodium pyruvate in a humidified incubator with
5% CO2 at 37C. On day 0, 5 × 105 cells were diluted in 40% Matrigel and 60% serum free DMEM
and subcutaneously injected into the upper right shoulder of 6- to 12-week-old C57BL/6 mice (Charles
River Laboratories). Tumors were grown until they reached a volume of a 100 mm3 (7-10 days post
inoculation).

In Figure 1, we present the experimental protocol and indicate the days that: 1) [18F]FMISO-
PET data were collected, 2) mice received 200 µg anti-PD-1 (clone RPM1-14, Bio X Cell) + 100
µg anti-CTLA-4 (clone 9H10, Bio X Cell) combination therapy, 3) mice were treated with 50 mg/kg
evofosfamide (TH-302 Selleckchem), and 4) the tumor volume was measured. Immunotherapy and
evofosfamide doses were chosen based on concentrations that reflected human clinical studies. To
separate mice into normoxic or hypoxic groups, the standard uptake value (SUV) of [18F]FMISO
in the tumor and muscle were quantified and their ratio was used to stratify tumors as normoxic or
hypoxic (SUV>1.86, sensitivity 100%) as previously defined [8]. Thus, mice were divided into six
experimental groups (separated based on imaging metrics): I) control, II) hypoxic mice that received
immunotherapy, III) normoxic mice that received immunotherapy, IV) evofosfamide, V) hypoxic mice
that received immunotherapy and evofosfamide, and VI) normoxic mice that received immunotherapy
and evofosfamide.

2.2. Mathematical models

We developed a general mathematical model that characterizes the temporal dynamics of the tumor
volume by directly accounting for the effects of anti-hypoxia prodrugs, evofosfamide, and checkpoint
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Figure 1. C57BL/6 mice were subcutaneously implanted with MC38 cancer cells. Starting at
day 6, the tumor volume was measured with calipers (days marked in magenta). [18F]FMISO-
PET data was collected at days 12 and 17 (green arrows) to determine percent of the tumor
that is hypoxic during treatment. In the days indicated by the yellow arrows, mice received
immunotherapy. Mice that received evofosfamide were treated between days 13 and 17 (red
arrows). The mice were divided in the six scenarios according to the treatments received and
fraction of hypoxic voxels.

blockade immunotherapy, anti-PD1 and anti-CTLA4, in different scenarios. We propose a system
of ordinary differential equations that captures the temporal evolution of tumor volume, T (t), and
the well-vascularized tumor fraction, V(t). The well-vascularized fraction is defined as V(t) = 1 −
H(t), where H(t) is the hypoxic tumor fraction. We assume that regions with high hypoxia are not
vascularized. While hypoxia imaging furnishes valuable insights into a tumor’s oxygenation status [8],
our assumption may not fully capture the complexity of vascularization and other factors influencing
hypoxia. Nevertheless, given these considerations, we have opted to utilize hypoxia imaging as a proxy
for vascularization and have incorporated it into our model. We also assume that the tumor volume
increases exponentially at the rate, kT . This proliferation function is selected as the tumor is able to
grow without any apparent limiting factor during the time frame from our experiments (e.g., without
appearing to reach a maximum tumor volume).

The tumor volume decreases as the immune system eliminates the tumor cells, which we assume
occurs more frequently in well-vascularized regions. The tumor has a constant death rate, µT , but the
tumor death rate can increase by γi each time, ti, the immunotherapy is delivered. The well-vascularized
tumor fraction increases at the rate, kV . This vascularization rate can then increase by a constant,
γe, each time, te, the mouse receives evofosfamide. As the tumor increases, the hypoxic fraction
also increases, and thus, the well-vascularized region decreases at a rate µV . The pharmacodynamics
and pharmacokinetics of the combination of evofosfamide and immunotherapy are defined through γi,
γe, ri, and re. The tumor death rate increase, γi, and vascularization rate increase, γe, describe the
pharmacodynamics of the treatment, as they capture the impact of immunotherapy and evofosfamide
on tumor cell death and tumor vascularization, respectively. Conversely, the decay rates of the effects
of immunotherapy, ri, and evofosfamide, re, are vital for describing both the pharmacokinetics of the
drugs (and their wash out) in conjunction with the pharmacodynamics with respect to drug efficiency,
as they govern the time-dependent decline in the efficacy of both treatments. With these assumptions,
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the model takes the following form:

dT
dt

= kT T −

µT +

Ni∑
l=1

γi exp(−ri(t − til))H(t − til)

 TV, (2.1)

dV
dt

=

kV +

Ne∑
j=1

γe exp(−re(t − te j))H(t − te j)

 (1 − V) − µVTV, (2.2)

where ri and re are the decay rates due to checkpoint blockade anti-PD1+anti-CTLA4 immunother-
apy and evofosfamide, respectively, and Ni and Ne are the number of days that the mice received
immunotherapy and evofosfamide, respectively. In Eqs 2.1 and 2.2,H is the Heaviside function. (See
Table 1 for a description of all model parameters.)

Table 1. Parameter’s definitions and uniform priors. U(a, b) represents a uniform distribu-
tion with bounds between a and b for the prior values of the corresponding parameters.

Parameter Meaning Prior
kT tumor growth rate U(0, 0.4) h−1

kV vascularization rate U(0, 0.5) h−1

µV well-vascularized tumor fraction decay rate U(0, 0.5) h−1

µT tumor death rate by immune system U(0, 0.5) h−1

γi immunotherapy tumor death rate increase U(0, 3.5) h−1

ri immunotherapy effect decay rate U(0, 0.2) h−1

γe evofosfamide vascularization rate increase U(0, 3.5) h−1

re evofosfamide effect decay rate U(0, 0.2) h−1

2.3. Bayesian model calibration

The parameters within Eqs 2.1 and 2.2 are calibrated using the experimental data [8]. To account
for the data uncertainties and model inadequacy, the models are calibrated via a Bayesian framework
defined as:

π(θ|D)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
π(D|θ)

prior︷︸︸︷
π(θ)

π(D)︸︷︷︸
evidence

, (2.3)

π(D) =

∫
Θ

π(D|θ)π(θ) dθ, (2.4)

where D is the experimental data, θ is the vector of model parameters to be calibrated, π(θ) is the prior
knowledge about the model parameters (see Table 1 for the prior used for each parameter), π(D|θ) is
the likelihood that the data is observed for a given set of parameters, π(D) is a normalizing factor, and
π(θ|D) is the posterior distribution of the parameters. Assuming that the data is normally distributed,
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the log-likelihood is:

ln (π(D|θ)) = α

Nt∑
i=1

−1
2

ln
(
2πσ2

T

)
−

(
DT

i − YT
i (θ)

)2

2σ2
T


+β

Nv∑
j=1

−1
2

ln
(
2πσ2

V

)
−

(
DV

j − YV
j (θ)

)2

2σ2
V

 , (2.5)

where Nt and Nv are the number of measurements from the experimental data of the tumor and the
well-vascularized region, respectively, Y is the output of the model (i.e., YT is the tumor volume over
time, and YV is the well-vascularized fraction over time), and σT and σV are the variance of the total
error (i.e., the sum of the variance of the model uncertainties and the model inadequacy) of the tumor
and the well-vascularized region, respectively. In our model, we have two quantities of interest, the
tumor itself and the well-vascularized region within the tumor. As our goal is to calibrate the model to
accurately reproduce the whole tumor volume data, and since we only have two time points to calibrate
the well-vascularized region, we assign a higher weight to the tumor (α) than to the well-vascularized
region (β) in the calibration process. Thus, we take α = 2 and β = 1 for the weights in Eq 2.5.

In Figure 2, we present the model calibration framework. We start by defining the complete tumor
growth model (i.e., Eqs 2.1 and 2.2), which characterizes the effects of evofosfamide and the immune
system. The parameters kT , kV , µV , µT , γi, ri, and the initial well-vascularized fractions are calibrated to
scenarios I, II, and III (note that each scenario has its own initial well-vascularized fraction). Thus, we
can calibrate just the effects of the immunotherapy and the tumor growth without the interaction with
evofosfamide. Next, we calibrate the parameters γe and re, and the initial well-vascularized fractions,
to scenarios IV and V while using the values obtained from the previous scenarios to assign the other
parameters. After this step, all model parameters are calibrated and we can test the ability of the model
to predict the tumor volume over time in scenario VI. If the prediction error (as quantified by, for exam-
ple, the mean percent error, the Pearson correlation coefficient (PCC), or the concordance correlation
coefficient (CCC)) is below a defined threshold, we can conclude that our model is able to accurately
predict scenario VI with the parameter values obtained from scenarios I - V. This would mean that only
knowledge of the evofosfamide effects on hypoxic cells is sufficient to accurately inform the temporal
changes in normoxic tumor cells treated with immunotherapy and evofosfamide combination. How-
ever, if we find that the model fails to accurately predict the tumor growth (i.e, the prediction error is
above the threshold), we find the smallest number of parameters to re-calibrate to capture the tumor
growth observed in scenario VI. If we are able to find this set of parameters, it means that there are
further differences between normoxic and hypoxic tumors that are not captured by the model when
using the same parameter values obtained from scenario I - V. If we are not able to identify a parameter
set to capture the tumor growth in scenario VI, the underlying mathematical model described by Eqs
2.1 and 2.2 need to be changed.

2.4. Sensitivity analysis

In this work, we utilize the Sobol method, which is a variance-based global sensitivity analysis
method [21–23]. One notable aspect of this method is its ability to assess the contributions of individ-
ual parameters, as well as capture higher-order effects arising from parameter interactions. We now
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Figure 2. Our model calibration framework begins with first defining an initial model. Next,
we calibrate the model parameters to the data from scenarios I, II, and III. The parameters
regarding the effects of evofosfamide are excluded from this first set of calibrations, but are
determined during calibration to the data from scenarios IV and V. After all the parameters
are calibrated, we predict the tumor dynamics in scenario VI and compare the prediction
to the data. If the error is below a threshold, we stop the process because we have arrived
at a suitable parameter set to describe all scenarios. If the error is above the threshold, we
proceed to find which parameter(s) needs to be re-calibrated. If we can reproduce scenario
VI with the new parameter value, we then stop. However, if we are not able to capture the
tumor dynamics for all scenarios, the mathematical model of Eqs 2.1 and 2.2 would need to
be adjusted.

summarize the application of the Sobol method to our problem.

Let ~M(~θ) be a model parameterized by parameters ~θ which belong to a parameter space ~Θ ⊂ Rk.
Among all possible methods for computing the total sensitivity index (which quantifies all effects of
the parameter on the model output), we have selected the techniques presented in [24] due to their
efficient convergence with smaller sample sizes compared to other approaches. Initially, we construct
two N × K matrices, A and B, where K is the number of parameters, and N is the sample size. In these
matrices, N random samples are drawn from a uniform distribution corresponding to the range of each
parameter’s uncertainty. Each row of these matrices represents a sampled value for ~θ. Additionally, K
matrices A(k)

B , k = 1, 2, · · · ,K, are defined where all columns are from A except the kth column, which
comes from B. The model is then evaluated for each row of the matrices A and A(k)

B and the outputs
are stored in the vectors Y A and Y(k)

AB, respectively. Finally, post-processing these results consists of
computing the total sensitivity index, S Tk , for each parameter k [25]. The total effect, S Tk , measures
the contribution of the input θk to the model output variation. The total-effect index for each parameter,
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{S Tk}
K
k=1, can be approximated using the following estimator [24],

S Tk ≈
1

2N

N∑
j=1

(
(Y A) j −

(
Y(k)

AB

)
j

)2
. (2.6)

By employing the algorithm outlined in the previous paragraph, we can estimate multi-dimensional
integrals with just N(K + 1) model evaluations [24]. For time-dependent processes, we repeat these
steps for each time step to capture the importance of each model parameter over time. In the re-
sults section, we present the time evolution of S Tk for multiple treatment protocols, including control,
immunotherapy, evofosfamide, and immunotherapy plus evofosfamide. The order of parameter im-
portance can be used to define the order in which to change parameters, as shown in the “find the
parameters to change” step presented in Figure 2. Specifically, we re-calibrate the parameter that has
the highest ranking and keep the other parameters fixed. This process helps to identify the minimum
number of parameters that need to be re-calibrated to accurately capture scenario VI.

2.5. Numerical implementation

The model given by Eqs 2.1 and 2.2 and the calibration framework (presented in Figure 2) are
implemented in C++. The model is solved via a fourth order Runge-Kutta method [26]. We em-
ploy a parallel, adaptive, multilevel Markov Chain Monte Carlo (MCMC) sampling method to com-
pute the posterior density π(θ|D) (see, e.g., [27–29]). The MCMC method is available in the C++

library QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) [30].
The code itself, as a well as a description of how to use it, is provided at https://github.com/
Ernesto-Lima/CEIRPrediction.

3. Results

Using the priors defined in Table 1 and following the framework presented in Figure 2, we calibrate
the parameters kT , kV , µV , µT , γi, ri, and the initial well-vascularized fractions to the data from scenarios
I (control), II (hypoxic tumors that received immunotherapy), and III (normoxic tumors that received
immunotherapy). In Figure 3, the experimental data and the calibrated model are presented for these
scenarios. The mean absolute percent error for the tumor volume is below 14% and the CCC is above
0.8 in all three calibrated scenarios. Although the calibration is weighted towards the tumor volume,
the mean absolute percent error for the well-vascularized fraction is below 23% in all three scenarios. It
is worth noting that, while the initial well-vascularized fraction is similar in scenarios I and II (panels B
and D, respectively), the initial vascularization is higher in scenario III (panel F), which is the normoxic
scenario.

In the next step of our framework, we calibrate the parameters γe and re, and the initial well-
vascularized fractions, to the data from scenarios IV (evofosfamide alone) and V (hypoxic tumors that
received combination immunotherapy and evofosfamide). The other six parameters are fixed to the
values found during the calibration of scenarios I, II, and III. At this step of our framework, we are
able to calibrate every parameter from our model (i.e., Eqs 2.1 and 2.2). In Table 2, we present the
mean and the 16th and 84th percentiles (i.e., the standard deviation of a normal distribution) of the
calibrated parameters. In Figure 4, the experimental data and the calibrated model are presented for
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Figure 3. Temporal dynamics of the experimental data (black) and the model (blue) in
scenarios I (control, panels A and B), II (hypoxic tumors that received immunotherapy, panels
C and D), and III (normoxic tumors that received immunotherapy, panels E and F). Left
column represents the tumor volume, and right column the well-vascularized fraction. The
dashed lines in blue indicate the bounds of the 95% confidence interval of the model output.
The mean and 95% confidence interval from the data is also indicated in black. The mean
absolute percent error for the tumor volume is below 14% and the CCC is above 0.8 in
the three scenarios calibrated. Even though the calibration is weighted towards the tumor
volume, the mean absolute percent error for the well-vascularized fraction is below 23% in
the three scenarios.
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scenarios IV (evofosfamide) and V (hypoxic mice that received immunotherapy and evofosfamide).
The mean absolute percent error for the tumor volume is below 28% and the CCC is above 0.8 in the
two scenarios calibrated. These results indicated that we are able to capture the tumor dynamics of
these two scenarios using the parameter values obtained in scenarios I, II, and III.

Table 2. Mean, and 16th and 84th percentiles (i.e., the standard deviation for a normal
distribution) of the calibrated parameters.

Scenario
Parameter

γe (h-1) re (h-1) γi (h-1) kT (h-1) kV (h-1) µV (h-1) µT (h-1) ri (h-1)
I

n/a n/a
0.022

[0.016, 0.029]
0.33

[0.31, 0.34]
0.094

[0.087, 0.10]
0.082

[0.071, 0.094]
0.36

[0.34, 0.39]
0.17

[0.14, 0.19]

II
III
IV

0.0091
[0.0052, 0.014]

0.14
[0.072, 0.18]

V

VI
0.41

[0.37, 0.45]

The last step from our framework is to capture the tumor temporal evolution of the data from
scenario VI (normoxic tumors that received combination immunotherapy and evofosfamide). Using
the parameter values calibrated to the data from scenarios I-V, our model was unable to accurately
predict the tumor dynamics in scenario VI, achieving a CCC of only -0.08). To increase the prediction
accuracy (i.e., increase the CCC) of the change in tumor size over time in scenario VI, we fixed seven
parameters to the values obtained in calibration steps I - V and calibrated the remaining one to the data
from scenario VI. We test each parameter from the highest total-effect index to the lowest. In Figure
5, we present the sensitivity analysis of the eight model parameters and the initial condition of the
well-vascularized fraction (V0) for four scenarios (i.e., immunotherapy plus evofosfamide (panel A),
evofosfamide (panel B), immunotherapy (panel C), and control (panel D)). We computed the sensitivity
index of each parameter for all time points. Thus, our results cover the same time range as the duration
of the experimental data. The sensitivity analysis shows that, without the immunotherapy (i.e., panels
B and D), the tumor growth rate is the most important parameter, followed by the death rate induced by
the immune system. However, when immunotherapy is delivered (i.e., panels A and C), the increase
in tumor death rate due to immunotherapy becomes the most important parameter, followed by the
tumor growth rate, and the death rate due to the immune system. It is worth noting that the period
during which the increase in tumor death rate due to immunotherapy, γi, is of greatest importance is
prolonged when evofosfamide is administered. In panel A (i.e., immunotherapy plus evofosfamide),
the interval of highest importance is between days 7.6 and 26.6 (19.0 days) in the simulation interval
of [6,39], while in panel C (i.e., immunotherapy) the interval is between days 7.6 and 19.2 (only 11.6
days, nearly 40% less). Based on these results, we found that we only need to change the value of
γi to capture the observed changes in tumors size in scenario VI. (Table 2 presented all calibrated
values from all scenarios). Note that, to capture the observed tumor volume changes in scenario VI,
we need to increase the value of γi by a factor of 18.6 ± 9.3 compared to the value used in the other
scenarios. This indicates that, in normoxic tumors, the delivery of evofosfamide dramatically increases
the efficacy of the immunotherapy. Interestingly, this increase in γi does not translate into a significant
change in the total tumor death rate. The total tumor death rate is the tumor death rate by the immune
system, µT , plus the increase in death rate by the immunotherapy, γi. Thus, the total tumor death rate
increases by a factor of 2.52 ± 0.53 (see supplemental Figure S1) when adding evofosfamide into the

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17625–17645.



17636

0 5 10 15 20 25 30
Time (days)

0

2

4

6

8

Tu
m

or
 v

ol
um

e 
(c

m
³)

A)

CCC/PCC = 0.80/0.88
MAPE = 27.72%

Model output
Experimental data

0 5 10 15 20 25 30
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

W
el

l-v
as

cu
la

riz
ed

 fr
ac

tio
n

B)

CCC = -0.16
MAPE = 51.71%

0 5 10 15 20 25 30
Time (days)

0

2

4

6

8

Tu
m

or
 v

ol
um

e 
(c

m
³)

C)

CCC/PCC = 0.92/0.95
MAPE = 19.38%

0 5 10 15 20 25 30
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

W
el

l-v
as

cu
la

riz
ed

 fr
ac

tio
n

D)

CCC = 0.66
MAPE = 14.34%

Figure 4. Temporal dynamics of the experimental data (black) and the model (blue) in
scenarios IV (evofosfamide alone, panels A and B), and V (hypoxic tumors that received
combination immunotherapy and evofosfamide, panels C and D). Left column represents the
tumor volume, and right column the well-vascularized fraction. The dashed lines in blue
indicate the bounds of the 95% confidence interval of the model output. The mean and 95%
confidence interval from the data is also indicated in black. The mean absolute percent error
for the tumor volume is below 28% and the CCC is above 0.8 in the two scenarios calibrated.

normoxic tumors treated with immunotherapy. In Figure 6, the experimental data and the calibrated
model are presented for scenario VI. The mean absolute percent error for the tumor volume is 30.94%
and the CCC is 0.98. The high percent error is due to tumor volumes that reach zero after day 23.

4. Discussion

We have developed a system of ordinary differential equations capable of reproducing the tumor
and its vascularization fraction growth and decline under the combined effects of immunotherapy and
evofosfamide treatment. To the best of our knowledge, this represents the first effort to mathemati-
cally describe the interactions of these two drugs. Our model was able to recapitulate the experimental
data showing that evofosfamide can rescue the immune response and sensitize hypoxic tumors to im-
munotherapy [8]. Following the framework presented in Figure 2, we were able to isolate the effects of
immunotherapy and evofosfamide. We calibrated the parameters that model the tumor growth and im-
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Figure 5. Sensitivity analysis of the model in the following scenarios: immunotherapy plus
evofosfamide (panel A), evofosfamide (panel B), immunotherapy (panel C), and control
(panel D). The sensitivity index is computed throughout the entire experimental timeline,
offering insights into how different factors play a role at different stages of tumor growth and
response to treatment. In panels B and D, the tumor growth rate has the highest total effect
index (kT , blue line), followed by the death rate caused by the immune system (µT , red line).
However, with the immunotherapy, in panels A and C, the increase in tumor death rate due to
immunotherapy (γi, purple line) has the highest total effect index. This is due to the increase
of immune cells when delivering immunotherapy in panels A and C.

munotherapy using the data from scenarios I, II, and III (i.e., scenarios in which evofosfamide was not
delivered). In scenario II, the hypoxic tumors did not respond to immunotherapy. The next step was to
calibrate the evofosfamide terms using the data from scenarios IV and V, while keeping the previously
calibrated parameters fixed. In scenario V, the hypoxic tumors responded to immunotherapy follow-
ing the evofosfamide treatment. Thus, the response of hypoxic tumors to immunotherapy, observed
in scenario V, is only due to the terms of our model effected by evofosfamide. More specifically, the
increase in tumor vascularization leads to an increase in immunotherapy efficacy. Reeves et al. have
shown that evofosfamide can increase tumor vascularization [8], and this may facilitate the delivery
of immunotherapy to the tumor cells. However, when predicting the normoxic tumor response to im-
munotherapy and evofosfamide (i.e., scenario VI), our model was unable to obtain a good agreement
with the experimental data. Our model was only able to reproduce scenario VI when the death rate
of tumor cells due to immunotherapy increases directly as a result of evofosfamide, rather than solely
through an indirect effect due to the increase in tumor vascularization. This finding conflicts with our
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Figure 6. Temporal dynamics of the experimental data (black) and the model (blue) in
scenario VI (normoxic tumors that received combination immunotherapy and evofosfamide).
Left column represents the tumor volume, and right column the well-vascularized fraction.
The dashed lines in blue indicate the bounds of the 95% confidence interval of the model
output. The mean and 95% confidence interval from the data is also indicated in black. The
mean absolute percent error for the tumor volume is below 31% and the CCC and PCC are
both above 0.98.

experimental data, which shows that evofosfamide alone has no effect on tumor size (i.e., scenario IV).
However, it should be noted that previous studies have demonstrated that evofosfamide can improve
the effectiveness of immunotherapy, in addition to increasing tumor vascularization [9, 31]. Phase I
experiments conducted by [9] and [31] have shown that evofosfamide can resensitize tumors to im-
munotherapy, supporting the idea that it may have a direct effect on the death rate of tumor cells due
to immunotherapy. Therefore, our model’s results are consistent with other studies demonstrating that
evofosfamide can enhance the effectiveness of immunotherapy. In our results, even though the death
rate by immunotherapy, γi, increased by a factor of 18.6± 9.3 from the hypoxic tumor to the normoxic
tumor, the total death rate (i.e., the tumor constant death rate, µT , plus death rate by immunotherapy)
increased by a factor of 2.52 ± 0.53, which is consistent with experimental data.

Sensitivity analysis is a valuable technique to help understand the complex behavior of biological
systems. To select which parameters would be kept fixed with the values from previous scenarios, and
which ones would be calibrated to the data from scenario VI, we tested the parameters according to
their sensitivity analysis rank (from most to least influential). By measuring the effects of model pa-
rameters on system outputs, sensitivity analysis helps determine the underlying biological mechanisms
that govern system behavior [21–23]. In time dependent biological processes, sensitivity analysis al-
lows for assessing the relative importance of each model parameter over time. For example, in tumor
growth models, sensitivity analysis can identify the most critical model parameters that influence the
growth and temporal dynamics of cancer [32–34]. In our study, the results of the sensitivity analysis
identify γi, death rate due to immunotherapy, as the key parameter to change to accurately reproduce
the tumor growth dynamics in scenario VI, revealing that in normoxic tumors, there is heightened
response to immunotherapy.

There are a few opportunities for further investigation that arise from this work. From an exper-
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imental perspective, our analysis is based on data from mice implanted with colon adenocarcinoma
cells and may not necessarily be generalizable to other types of tumors. A possible extension would be
experiments with different cell lines, and the inclusion of anti-angiogenic therapies (as done in [17]),
to verify the synergy between evofosfamide and VEGF inhibitors. Another possible extension is the
inclusion of different treatment protocols, altering the order, timing, and sequencing of the therapies.
The current results are based on data from a limited number of scenarios and may not accurately cap-
ture the full range of possible responses to treatment. Future studies should test how switching the
order and doses of the two treatments affect the temporal change in tumor size and hypoxic status.
With a broader dataset that included more diverse treatment protocols, the model could be calibrated
to predict optimal drug dosing and timing for maximizing the synergistic effects of evofosfamide and
immunotherapy (as done in [35]). This predictive capability could be valuable in guiding treatment
decisions and designing more effective therapeutic strategies. Additionally, it would be desirable to
have measurements on vascularity as afforded by (for example) dynamic contrast enhanced magnetic
resonance imaging [36]. While the imaging allowed for tumor information on hypoxia, additional
[18F]FMISO-PET time points would have provided the opportunity to better characterize the longitu-
dinal changes in hypoxia. Both of these measures would allow for the separation of the vascular and
hypoxia contributions to treatment efficacy. This additional imaging data would come with a signifi-
cant increase in resources and exposure of ionizing radiation to the animals. However, by applying the
methods of optimal experimental design (e.g., [37–39]) to our mathematical model, we can determine
the optimal time points for acquiring additional [18F]FMISO-PET scans to minimize the uncertainty
of our models and increase model’s prediction accuracy. This approach could help us maximize the
information obtained from the additional imaging data while minimizing the associated costs. The ad-
ditional imaging data could help to validate whether evofosfamide can maintain a reduction of hypoxia
that can allow for long-term sustained responses to immunotherapy.

From a mathematical and computational perspective, the model is based on a set of ordinary differ-
ential equations, which may not fully capture the complexity of the interactions between evofosfamide,
immunotherapy, and tumor cells. Investigating spatial heterogeneity and interactions through partial
differential equations or agent-based models could improve the model’s accuracy, predictive power,
and generate new hypotheses on the underlying biology. Mechanistic models like the quantitative sys-
tems pharmacology platform developed by [40] incorporate a more extensive set of parameters (282
parameters) to offer detailed insights into underlying biological mechanisms and interactions. Such
models enhance comprehension of the immune-oncology system. However, our platform has an ad-
vantage of using a minimal parameter set. This enables model calibration using limited data from a
single patient, leading to personalized calibration and reduced uncertainty in predictions. Given the
available vascularity measurements, we developed a simplified vascularization model that could still
capture the observed phenomena to the best extent possible. While more sophisticated models might
be constructed with larger datasets, our model adequately captures the phenomena observed in these
experiments. It assumes an increase in vascularization after each evofosfamide treatment, effectively
depicting tumor growth across different experimental scenarios. Notably, our model excludes the di-
rect cytotoxic effects of evofosfamide. This assumption aligns with the specific experimental data used
to calibrate the model [8]. The experiments indicated minimal direct cytotoxic impact on the tumor
volume, although it did influence combination therapy at the cellular level. Consequently, our focus
lay in developing a simple model calibrated to the available experimental data, capable of capturing the
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key observed phenomena. We opted to exclude the direct cytotoxic effects and concentrate on evofos-
famide’s role as an oxygenating and sensitizing agent, as evident in the experimental data. However,
even in the absence of a term representing the direct cytotoxic effects, evofosfamide indirectly impacts
tumors. It increases the well-vascularized fraction, increasing the tumor death rate via the immune
system’s action through the term µT TV . Finally, the current model is based on the assumption that
evofosfamide increases tumor vascularization, facilitating the subsequent delivery of immunotherapy
to tumor cells. However, as seen in scenario VI, this is not enough to capture the effects on normoxic
cells, necessitating an increase in the death rate due to immunotherapy. Further study is needed to
determine the mechanisms behind this effect and how it may be incorporated into the model. Our
current model could be adapted and calibrated with experimental data for other therapies that affect
oxygenation (or vasculature) to predict their potential synergistic effects with immunotherapy. While
the specific effects may vary between different drugs, the efficacy of any hypoxia-activated prodrug in
reducing hypoxic regions and enhancing the effects of immunotherapy would be critical for its success.

The results from our model, in combination with the experiments presented in [8], demonstrate that
it would be feasible to use of [18F]FMISO-PET in conjunction with hypoxia-activated prodrug therapy
in human clinical trials. F[18F]FMISO-PET is noninvasive, clinically-available, and can provide infor-
mation on temporal and spatial variations in hypoxia within tumors [41]. It has potential to open new
opportunities for personalized and image-guided adaptive immunotherapy approaches.

5. Conclusions

Our mathematical model is able to capture a tumor’s response to evofosfamide and checkpoint
blockade immunotherapy. The model also captures the interaction between these two types of treat-
ments and their effects on a tumor’s vascularization. Notably, the model was able to capture the tumor’s
temporal evolution observed in the five different treatment conditions (i.e., control, hypoxic and nor-
moxic tumors treated with immunotherapy, treated with evofosfamide, and hypoxic tumors treated
with immunotherapy and evofosfamide), with an average CCC of 0.86± 0.05. Interestingly, the model
calibrated with parameter values from those five scenarios was not able to predict the response of nor-
moxic tumors to combination immunotherapy and evofosfamide. However, increasing the tumor death
rate due to immunotherapy (γi) by a factor of 18.6 allowed us to predict the tumor growth with a CCC
of 0.98. These results strongly indicate that evofosfamide not only increases the tumor vascularization,
as considered in our model, but also increases efficacy of the immunotherapy, suggesting a synergis-
tic interaction between the two treatments. This potential synergy warrants further investigation, and
may have significant implications for the optimization of the dosing and scheduling of these drugs for
maximal clinical benefit. This work provides a framework for identifying testable hypotheses for the
effects and actions of evofosfamide and immunotherapy in the treatment of tumors.
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Figure S1. Scaling factor of the total tumor death rate (i.e., the tumor death rate by the
immune system, constant in time, plus the increase in death rate by the immunotherapy,
changing in time as the treatment is delivered) over time, computed as the ratio of the total
tumor death rate in one treatment scenario to the total tumor death rate in another scenario.
The scaling factor is shown for: A) immunotherapy compared to control, B) immunotherapy
plus evofosfamide compared to control, and C), immunotherapy plus evofosfamide compared
to immunotherapy. The average and standard deviation of the scaling factor in panels A, B,
and C are 1.10±0.04, 2.79±0.66, and 2.52±0.53, respectively. The scaling factor provides a
useful way to visualize and compare the efficacy of different treatment scenarios in inducing
tumor death.
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