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Abstract: To handle imbalanced datasets in machine learning or deep learning models, some studies 
suggest sampling techniques to generate virtual examples of minority classes to improve the models’ 
prediction accuracy. However, for kernel-based support vector machines (SVM), some sampling 
methods suggest generating synthetic examples in an original data space rather than in a high-
dimensional feature space. This may be ineffective in improving SVM classification for imbalanced 
datasets. To address this problem, we propose a novel hybrid sampling technique termed modified 
mega-trend-diffusion-extreme learning machine (MMTD-ELM) to effectively move the SVM decision 
boundary toward a region of the majority class. By this movement, the prediction of SVM for minority 
class examples can be improved. The proposed method combines α-cut fuzzy number method for 
screening representative examples of majority class and MMTD method for creating new examples of 
the minority class. Furthermore, we construct a bagging ELM model to monitor the similarity between 
new examples and original data. In this paper, four datasets are used to test the efficiency of the 
proposed MMTD-ELM method in imbalanced data prediction. Additionally, we deployed two SVM 
models to compare prediction performance of the proposed MMTD-ELM method with three state-of-
the-art sampling techniques in terms of geometric mean (G-mean), F-measure (F1), index of balanced 
accuracy (IBA) and area under curve (AUC) metrics. Furthermore, paired t-test is used to elucidate 
whether the suggested method has statistically significant differences from the other sampling 
techniques in terms of the four evaluation metrics. The experimental results demonstrated that the 
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proposed method achieves the best average values in terms of G-mean, F1, IBA and AUC. Overall, the 
suggested MMTD-ELM method outperforms these sampling methods for imbalanced datasets. 

Keywords: imbalanced datasets; hybrid sampling approach; support vectors; virtual examples 
 

1. Introduction 

The imbalanced data classification problem frequently occurs in medical applications, including 
diabetes classification [1,2], cancer diagnosis [3−5] and biomedical data classification [6−9]. An 
imbalanced medical dataset indicates that the number of negative examples such as healthy individuals 
drastically exceed the number of positive examples or patients with diseases. Researchers thus often 
place much effort towards learning patterns in those minority patients with cancer or other rare diseases. 
Under this circumstance, traditional machine learning and deep learning models are often distorted 
towards the majority class on prediction results. As a result, these models often exhibit lower 
classification performance for the minority class. Under this scenario, these learning models fail to 
provide credible prediction results for doctors to make correct treatment decisions according to a 
patient’s conditions. Consequently, we note researchers have devoted significant efforts for developing 
effective methods to overcome the imbalanced dataset problem in academic and real-world applications. 

To deal with imbalanced datasets, some researchers proposed sampling techniques for balancing 
class distributions to improve overall classification accuracy of learning models. These sampling 
approaches can be classified into three categories: 1) under-sampling method; 2) over-sampling 
method; and 3) hybrid sampling method. 

The 1) under-sampling method aims at reducing learning bias towards the majority class by 
removing some negative examples. Babar and Ade [10], for example, proposed an under-sampling 
technique based on the multi-layer perceptron (MLP) model to identify valuable samples and eliminate 
noise in the majority class. In [10], they divided majority class examples into several clusters and 
filtered critical examples according to stochastic measure evaluation. To improve breast cancer 
prediction with imbalanced data, Zhang et al. [11], for example, proposed an under-sampling method 
which utilizes k-means algorithm to select representative examples close to original examples in the 
majority class. Vuttipittayamongkol and Elyan [12] suggested an overlap-based under-sampling 
method that utilizes k-nearest neighbor (KNN) algorithm to find dangerous minority class examples 
(i.e., positive examples) that are surrounded by most of the majority class examples (i.e., negative 
examples). They excluded these negative examples to enhance prediction for positive examples. 

The 2) over-sampling method directly raises the quantity of examples in the minority class by 
creating synthetic samples. The synthetic minority oversampling technique (SMOTE) proposed by 
Chawla et al. [13] is the most representative technique among over-sampling methods. In [13], they 
create new minority class examples using a linear interpolation method. In addition, they use the KNN 
algorithm to select new examples belonging to the minority class. To avoid synthetic examples falling 
into the majority class area, Bunkhumpornpat et al. [14] proposed the safe-level-SMOTE method to 
generate safe positive examples close to original positive examples. To reduce false positive rates, 
Cieslak et al. [15] proposed a clustering-based SMOTE sampling method (cluster-SMOTE), which 
partitions the original dataset into several subsets and generates new minority class examples using 
SMOTE with these subsets. Other than generating examples within the safe minority class region, de 



17674 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 17672–17701. 

la Calleja et al. [16] proposed the synthetic multi-minority oversampling (SMMO) method, which 
resamples misclassified positive examples as new instances to improve prediction accuracy of learning 
models for the minority class. Furthermore, Farquad and Bose [17] employed the support vector 
machines (SVM) model as a pre-processor (named the SVM-balance method) to resample 
misclassified data close to the raw minority class example as new samples for pushing the decision 
boundary toward the majority class. 

The 3) hybrid sampling method is a combination of under-sampling and over-sampling methods. For 
instance, Wang [18] proposed a hybrid sampling SVM method which removes negative examples that are 
far from SVM’s decision boundary and uses the SMOTE algorithm to create minority class examples with 
several training subsets. To improve SVM imbalanced classification on breast cancer diagnosis, Zhang and 
Chen [19] presented a hybrid of random over sampling example (ROSE), k-means and support vector 
machine (RK-SVM) methods, which consists of using ROSE to resample samples in the minority class 
and using k-means clustering method for keeping informative samples in the majority class. 

As previously stated, the kernel-based over-sampling methods can effectively push SVM’s 
decision boundary toward the majority class. However, when the margin on the hypersphere is very 
short, linearly interpolated examples using SMOTE may become dangerous new examples in the 
minority class, since they are very proximate to the area of the majority class. As a result, new examples 
of minority class may be regarded as noise or outliers that worsen classification accuracy of SVM for 
the minority class. Conversely, when the margin is wide, although safer examples of the minority class 
can be created, this softly shifts the SVM decision boundary toward the majority class. This may have 
tiny effects for improving SVM classification of skewed datasets. Overall, based on the above-
mentioned problem, we note two challenging research questions (RQs), as follows: 
RQ1: According to the above-mentioned studies, kernel-based SVM is prone to misclassifying 

minority class examples located near the decision boundary. To improve SVM classification for 
minority class examples, some studies aimed to generate kernel-based synthetic minority class 
examples to adjust SVM’s decision boundary towards the region of majority class. We consulted 
the findings in [18] and [19], finding a hybrid sampling method can more effectively improve 
classification performances of SVM as compared to using a single under-sampling or over-
sampling method. But which kind of hybrid sampling methods for creating synthetic examples 
of minority class and screening representative examples of majority class can further improve 
SVM imbalanced classification? 

RQ2: The kernel-based oversampling methods aimed to create virtual samples of minority class nearby 
the SVM decision boundary. However, the generated virtual samples may be surrounded by most 
of the majority class examples. They are considered as danger minority class examples or noise, 
which distort learning of SVM. What kind of learning models can be used to monitor the similarity 
between synthetic examples and original data to screen acceptable minority class examples? 

In order to address SVM imbalanced classification on RQ1 and RQ2, we develop a novel hybrid 
sampling method termed modified mega-trend-diffusion-extreme learning machines (MMTD-ELM) 
to adjust the SVM decision boundary to achieve improvement of SVM classification for imbalanced 
datasets. The major contributions of this paper are as follows: 
a) To reduce bias of majority class examples for SVM models, based on a fuzzy triangular 

membership function (MF), we propose an under-sampling method using α-cut fuzzy number to 
screen representative SVs of majority class. The MF value of the example represents the 
possibility that the example belongs to the majority class. The higher MF value indicates that the 
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example has more representations for constructing the SVM decision boundary of the majority class. 
When the example has a higher value, it indicates a higher effect in predicting majority class. 

b) To avoid generated new examples falling into the area of majority class, we proposed a modified 
MTD method, in which, MTD as proposed by Li et al. [20], is deployed to estimate the data range 
of support vectors of the minority class and generate the virtual data’s inputs within the estimated data 
range. To predict labels corresponding to the virtual data’s inputs, we construct a bagging-based 
extreme learning machine (ELM) model. In this paper, we feed the ELM using different datasets 
resampled from an original dataset. The bagging method, proposed by Breiman [21], can enable the 
ELM model to capture diverse patterns between inputs and output. With a bagging strategy, the 
prediction accuracy of the ELM model can be improved at identifying the virtual data’s output. 

c) Some studies about hybrid sampling methods [18,19] measured distance of majority class 
examples from each other and removed unrepresentative examples that were far from the SVM’s 
decision boundary. However, the distance-based sampling method is easily impacted by noise or 
outliers. Differing from their papers, we developed a hybrid sampling method named MMTD-
ELM, which consists of a under-sampling α-cut fuzzy number technique for screen representative 
examples of the majority class and a over-sampling MMTD technique for producing synthetic 
examples of minority class. In the proposed under-sampling method, we use MF value to measure 
the representation of the majority class example with low impact of noise, in which, MF value is 
used to measure potential information of majority class examples. By removing some examples 
and creating new examples near the decision boundary, we can effectively shift the SVM decision 
boundary towards the region of the majority class. By this shift, more minority class examples 
can be correctly predicted but only a few majority class examples may be misclassified. As a 
result, the proposed method can further improve SVM classification of the minority class. 
In this paper, three medical datasets obtained from the Knowledge Extraction based on 

Evolutionary Learning (KEEL) dataset repository [22] and one medical dataset obtained from 
microarray gene expression cancer data [23] are used to test efficacy of the proposed MMTD-ELM 
method. Based on the four datasets, we compared the MMTD-ELM method with the IMB (using 
imbalanced datasets) method, which only uses an original imbalanced dataset without generating new 
examples, and three other sampling methods. The three sampling methods include the SMOTE method 
for interpolating examples of minority class, the SVM-balance method [17] for randomly generating 
SVs in the minority class, and the cluster-SMOTE method [15] for a distance-based hybrid sampling 
for imbalanced datasets. We construct two types of SVM models: SVM with polynomial kernel 
(SVM_poly) and SVM with radial basis function kernel (SVM_rbf) to test classification performance 
using these methods. Four evaluation metrics: geometric mean (G-mean) as seen in [24], F-measure 
(F1), index of balanced accuracy (IBA) as seen in [25] and area under curve (AUC) as seen in [26] are 
used to measure classification results with imbalanced datasets. Additionally, the paired t-test is used 
to examine whether the proposed MMTD-ELM method has statistically significant differences from 
the other methods in terms of four evaluation indicators. According to our experimental results, the 
proposed MMTD-ELM method outperforms the other four methods. For instance, when imbalance 
ratio between majority class and minority class is at 9:1, based on the four datasets, the proposed 
MMTD-ELM method achieves the best average values in terms of G-mean (0.901 and 0.914), F1 
(0.877 and 0.885), IBA (0.719 and 0.742) and AUC (0.841 and 0.854) metrics for SVM_poly and 
SVM_rbf models, respectively. 

The remainder of this paper is organized as follows: Section 2 introduces the SVM model; Section 3 
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illustrates the complete implementation procedure for the proposed MMTD-ELM method; Section 4 
provides the description of four medical datasets and discusses the experimental results; and Section 5 
concludes and discusses future work. 

2. Related works 

In this section, we present a literature review of sampling techniques for improving SVM 
imbalanced classification. Additionally, we introduce the SVM model for classification tasks. 

2.1. Sampling approaches for improving SVM imbalanced classification 

SVM proposed by Cortes and Vapnik [27], is a typical kernel-based learning algorithm to address 
classification work in many fields, such as air quality classification [28,29], medical diagnosis [19,30,31] 
and speech recognition [32,33]. The kernel-based SVM model maps original data onto a high-
dimensional feature space to identify examples between different classes. The decision boundary is 
constructed by SVM that can effectively separate examples of different classes while minimizing 
training error. The examples located on SVM’s decision boundary are called support vectors (SVs). 
The classification ability of the SVM model depends on the quantity of support vectors on the decision 
boundary. However, with skewed datasets, prediction results of SVM often tend towards the majority 
class because the learning model is trained using tiny examples of the minority class. To improve SVM 
classification performance for imbalanced datasets, some research has suggested employing sampling 
techniques to generate artificial minority class examples to balance data class distributions. However, 
randomly generating artificial examples cannot significantly improve SVM classification accuracy for 
skewed datasets since SVM’s decision boundary may be slightly shifted towards the majority class. To 
deal with this issue, Zeng and Gao [34] addressed a kernel-based SMOTE method to generate virtual 
samples near the decision boundary of SVM on the minority class side to extend the margin of SVM’s 
hyperplane. Other than over-sampling methods with SVs, Luo et al. [35] presented a hybrid sampling 
support vector data description (SVDD) method, which randomly deletes SVs in the majority class 
and generates SVs in the minority class using SMOTE to obtain balanced training datasets. However, 
eliminating SVs of the majority class may omit critical information for classifying majority class. At 
the same time, generating SVs using SMOTE might lead to new SVs surrounded by most majority 
class examples that become noise or outliers in the minority class. 

2.2. SVM 

Given a dataset of n samples: 1 1( , )x y
  , 2 2( , )x y

  ,..., ( , )i ix y
  , i = 1,2,...,n, where m

ix 
    is the 

input vector and 
iy {−1, +1} is the label of ith sample. According to the formula in [27], SVM 

classification satisfies the following condition: 

( ) 1, if 1

( ) 1, if 1

w

w

T
i i

T
i i

x b y

x b y





     


    


 , (1) 

where w   represents weight vector, b is the bias and φ(‧) is the mapping function for projecting 
original inputs onto a high-dimensional feature space. Based on Eq (1), SVM classification for these 
samples with different classes can be determined by Eq (2). 
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ix b w


. (2) 

According to the principle of structural risk minimization, the construction of SVM can be defined as 
a primal optimization problem, as follows: 

Min 
2

1

1
( )

2

n

i
i

C 


 w  

(3) s.t. ( ( ) ) 1T
i i iy x b    w


 

0i  , i = 1,2,…,n, 

where 
2

w w wT   , C is the error penalty parameter to control trade-off between acceptable 

classification error and maintaining decision boundary with maximum margin and i   is a slack 

variable to allow tolerance for misclassification errors. According to Karush-Kuhn-Tucker (KKT) 
optimality conditions, we can reformulate Eq (3) as a quadratic optimization problem. To solve this 
optimization problem, we derive the problem with Lagrange multipliers i , as: 

Max 
1 1 1

1
( , )

2

n n n

i i j i j i ji i j
y y k x x  

  
    

 

(4) s.t. 
1

0
n

i ii
y


  

0 i C  , i = 1,2,…,n, 

where when i  is not equal to zero, it is called a support vector (SV) on the decision boundary and 

( , )i jk x x
 

  is a kernel function noted as ( )ix 
 , ( )jx 

 , i j   for mapping non-linear ix


  onto a 

high-dimensional space, as depicted in Figure 1. 

 

Figure 1. Mapping data by φ(‧). 

There are four categories of  ,i jk x x
 

 : linear kernel T
i jx x
 

 , polynomial kernel 
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[ ( ) ]T d
i jx x r   
 

 , radial basis function kernel 2exp( || || )i jx x 
 

  and sigmoid kernel 

tanh( ( ) )T
i jx x r  
 

, in which, d   , r   and   . 

3. The proposed MMTD-ELM method 

In this paper, we develop a unique hybrid sampling technique for improving SVM classification 
for skewed datasets. We explain the proposed method in depth in the following sections. 

3.1. Method 

Given a dataset has n samples with m input variables 1X  , 2X  ,..., mX   and one output variable Y  , 

which are denoted as { 1 1( , )x y


, 2 2( , )x y


,..., ( , )i ix y


}, i = 1,2,..., n. The ix


 expresses ith data vector, and 

iy   is its label. We utilize the min-max data normalization to eliminate effects between m input 

variables 1X  , 2X  ,..., mX   with different scales before implementing the suggested MMTD-ELM 

technique. The data normalization formula is expressed as: 

,
,

min( )
= [0,1]

max( ) min( )
i j j

i j
j j

x X
x

X X





 , j = 1,2,…,m, (5) 

where ,i jx  is normalized data, max( jX ) is the maximum value of the jth input variable and min( jX ) is 

the minimum value of the jth input variable. To address classification problems posed by imbalanced 
datasets, the proposed MMTD-ELM hybrid sampling method consists of two stages: under-sampling and 
over-sampling stages. To balance skewed class distribution, in the under-sampling stage, we screen 
representative support vectors (SVs) in the majority class; in the over-sampling stage, we create new 
minority class examples. By implementing the proposed MMTD-ELM method, a new balanced dataset is 
obtained. The designed hybrid sampling procedure is illustrated in Figure 2. 

 

Figure 2. Proposed MMTD-ELM method procedure. 
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3.2. Implementing MMTD-ELM technique 

The proposed method is aimed at effectively shifting the SVM model decision boundary towards 
the majority class to improve SVM classification for imbalanced datasets. The proposed method is 
developed to select significant majority class SVs and create artificial minority class SVs within the 
estimated data domain. First, we employ the MMTD method to estimate data range of SVs in both the 
majority and minority classes, respectively. Based on estimation of SVs in the majority class, we 
calculate MF values of SVs and find valuable majority class SVs with an α-cut. In addition, we 
generate new SVs close to original SVs in the minority class within the estimated data range of 
minority class SVs. Additionally, we depict data domain estimation of SVs using the MMTD method 
and proposed hybrid sampling approach in Figure 3. 

 

Figure 3. Proposed hybrid sampling approach. 

3.3. Estimate data range using MMTD method 

In this paper, we use MMTD method to estimate data range [LB,UB] of SVs on the decision 
boundary. They are calculated by Eqs (6) and (7), respectively. 

 
2
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, (6) 

 
2
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N




  

    
 

, (7) 

where LB and UB are the lower and upper bound, respectively. LB, jN ( UB, jN ) is the number of values 

smaller (greater) than CL( )SV
jX  for jth input variable. If the LB, jN ( UB, jN ) is zero, the lower bound 

LB j   (the upper bound UB j  ) cannot be defined, and we set them as min( )SV
jX   and max( )SV

jX  , 
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respectively. The φ is set to 2010 , 2ˆ ( )s   represents sample variance and CL( )  is the median of 

samples. They are presented as follows: 

1

1
ˆ( )

n

i
i

s x x x
n 

  , (8) 

1
2

1
2 2

               ,    is odd

CL 1
( ),    is even

2

n

n n

x if n

x x if n

   

         


 




. (9) 

In addition, 
LB,Skew j

 (
UB,Skew j

) is defined as coefficients of skewness on left (right) side of CL, which 

are calculated as follows: 

LB,
LB,

LB, UB,

Skew j
j

j j

N

N N 


 
, (10) 

UB,
UB,

LB, UB,

Skew j
j

j j

N

N N 


 
, (11) 

in which, σ is a shape parameter for adjusting the degree of data skewness. In this paper we set σ to 
one. By the MMTD method, the data range of the SVs set can be estimated. 

3.4. The under-sampling method using α-cut 

To screen representative instances in the majority class, we employ the MMTD method to 
evaluate the data domain of majority class SVs. Based on a triangular MF, the MF value of the support 
vector(s) is calculated as follows: 

, ,

,
, ,
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,
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, ,

,

0                           ,  LB  or UB

  ,  LB CL( )
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  ,  CL( ) UB

1                            ,  CL( )
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j j
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j
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x X

CL LB
x

UB x
X x

UB CL

x X

  



  

 


 











, j = 1,2,…,m, (12) 

where x is the support vector(s) of majority class and MF(x) [0,1]. In this paper, we utilize α-cut [0,1] 
for selecting valuable SVs according to MF value. The α-cut is a crisp set represented as follows: 

 MF( )A x x x    , (13) 

in which, from Eq (12), α-cut can be derived as follows: 
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,  ,  [ , ]lower bound upper boundA A A   , (14) 

where , , ,
,  ( )SV M SV M SV M
lower bound j j jA LB CL LB       and , , ,

,  ( )SV M SV M SV M
upper bound j j jA UB UB CL      . By A  , 

we can implement the under-sampling process to find representative SVs of the majority class. The 
derivation of Eq (14) is shown as follows:  
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. 

As a result, from Eq (14), valuable majority class SVs can be kept within data range 

,lower bound ,upper bound[ , ]A A  . 

3.5. The over-sampling method using bagging ELM model 

The data range [LB,UB] of SV in the minority class can be estimated by MMTD method in 
Section 3.3. We randomly generate virtual SVs inputs within estimated [LB,UB], as shown in Figure 4. 

 

Figure 4. Estimated data domain. 

As for prediction of virtual SV output, we deploy the extreme learning machines (ELM) proposed 
by Huang et al. [36] to monitor virtual SV output. The ELM is a feed-forward neural network, which 
consists of an input layer, hidden layer and output layer. The ELM model architecture is depicted in 
Figure 5. 
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Figure 5. ELM architecture. 

In Figure 5, the ELM’s outcome can be expressed as follows: 

1

( )
N

i i j i j
i

f W X b y


   


, j = 1,2,…,m (15) 

where N  is the quantity of neurons in the hidden layer, i  is weight between hidden layer and output 

layer, f is activation function, iW  is weight between input layer to hidden layer, ib  is a bias and jy  

is model outcome. The detailed steps for training the ELM model are listed as follows: 
Step 1.  Randomly assign initial values of weight iW  and bias ib  in the hidden layer. 

Step 2.  Calculate hidden layer output matrix H, as follows: 

1 1 1 2 1 2 1

1 2 1 2 1 2 2

1 1 2 1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ... ...

( ) ( ) ... ( )

N N

N N

n nN N n N

f W X b f W X b f W X b

f W X b f W X b f W X b
H

f W X b f W X b f W X b


      
       
 
       

 

 

  

. (16) 

Step 3.  Solve the following formula to find the weight i , as: 

1H T  , (17) 

where T is the target value in the output layer. 
In this paper, we employ the sigmoid function as the activation function, as follows: 

1
( )

1 x
f x

e



, 0 ( ) 1f x  . (18) 

In addition, we use classification error rate to measure ELM model prediction accuracy. If model 
prediction is greater than 0.5, it is considered positive class. Conversely, if predicted value is less than 
or equal to 0.5, it is considered negative class. To optimize overall ELM model weights, we employ 
the bagging method [21] to resample original datasets to create multiple training datasets for retraining 
the ELM model. The bagging method is beneficial for training datasets with skewed class, since it 
creates several datasets by resampling from original datasets that allow the ELM model to learn different 
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patterns between inputs and output. In the fine-tuning process, we update these weights for 10 epochs each 
iteration at a learning rate of 1 × 10–3 until a total of 100 epochs, as illustrated in Figure 6. 

 

Figure 6. Bagging-based ELM model. 

3.6. Proposed MMTD-ELM procedure 

In this section, the hybrid sampling scheme for the proposed MMTD-ELM method is depicted as 
Figure 7. After completing the proposed implementation procedure for balancing the imbalanced 
training dataset, we constructed two SVM models using the balanced training dataset. Finally, we 
measure prediction accuracy of SVM model for testing dataset in terms of G-mean, F1, IBA and 
AUC metrics. 

 

Figure 7. Proposed MMTD-ELM method implementation. 

In the following, we summarize the implementation procedure explaining the MMTD-ELM 
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method in steps as described in Table 1. 

Table 1. The MMTD-ELM algorithm. 

Input: 

An imbalanced training dataset. 

Output: 
Balanced training dataset. 
Begin: 

Definition: 
m: minority class 
M: majority class 
#: the quantity of examples 
#M/#m: imbalance ratio (IR) 

Step 1. Split original dataset into imbalanced training dataset according to IR value and testing 
dataset. 

Step 2.  Normalize the imbalanced training dataset by min-max data normalization in Eq (5). 
Step 3.  Construct SVM model and find SVs in m class as mSV  and M class as MSV , respectively. 

Step 4.  Estimate data domain [ MLB , MUB ] for MSV . 

Step 5.  Estimate data domain [ mLB , mUB ] for mSV . 

Step 6.  Calculate ,  ,  [ , ]lower bound upper boundA A A    for MSV  as in Eq (14) according to α-cut value. 

Step 7.  Remove unrepresentative MSV  outside data domain A . 

Step 8. Train bagging ELM model for 10 epochs each time until epochs accumulate to 100 with an 
initial learning rate of 1 × 10−3 for support vector mSV  and MSV . 

Step 9.  While the quantity of m class < the quantity of M class: 
 *

m,inputSV ←Generate synthetic input variables in m class within data domain [ mLB , mUB ]. 

 *
m,outputSV ←Feed *

m,inputSV  into trained bagging ELM model to predict its label. 

If the prediction belongs to m class then: 

Add { *
m,inputSV , *

m,outputSV } into the imbalanced training dataset. 

Else 

continue. 

Endif 

return Balanced training dataset. 

End 

4. Experiment 

In this section, we will describe four benchmark datasets used in our experiments as well as their 
experimental results. The experiment was executed with a computer equipped with Intel(R) 
Core(TM) i7-13700KF and 64 GB memory. Under the Ubuntu 22.04.1 LTS operating system, the 
experiment is implemented using Python 3.10.6 programming language for data processing and 



17685 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 17672–17701. 

constructing SVM predictive models. In this paper, we configure SVM models with the scikit-learn 
package (version 1.3.0) [37]. 

4.1. Dataset description 

We used the four datasets to test prediction performance using the proposed MMTD-ELM 
method. The four datasets consist of new-thyroid1, Ecoli2, and Wisconsin (Diagnostic) obtained from 
the KEEL dataset repository, and one high-dimensional lung cancer microarray dataset downloaded 
from microarray gene expression cancer data [23]. We summarized the number of input features, the 
amount of data and other information for the four datasets in Table 2, in which, #instances represents 
the amount of data, #features represents the quantity of input features and #class indicates the number 
of categories. In addition, #M and #m indicate the quantity of majority and minority class examples, 
respectively. The imbalanced ratio (IR) is defined as #M/#m. 

Table 2. Dataset description. 

No. Dataset #instances #features #M #m #class IR 

1 new-thyroid1 215 5 180 35 2 5.14 

2 Ecoli2 336 7 284 52 2 5.46 

3 Wisconsin (Diagnostic) 569 30 357 212 2 1.68 

4 Lung cancer 181 1626 150 31 2 4.84 

4.2. Evaluation metrics 

When a training dataset has imbalanced class distributions, the accuracy rate metric is not suitable 
to fully evaluate classification performance. As a result, we use the confusion matrix to evaluate 
classification performance of predictive models for imbalanced datasets. The confusion matrix consists 
of the predictive model’s outcome and the actual output as presented in Table 3. 

Table 3. Confusion matrix. 

Predicted 
Actual 

Positive class Negative class 

Positive class True positive (TP) False negative (FN) 

Negative class False positive (FP) True negative (TN) 

In this paper, we define positive class (minority class) as 1 and negative class (majority class) as 0. 
Considering classification accuracy for both negative class and positive class, four evaluation metrics, 
G-mean, F1, IBA and AUC, are used to measure classification performance for imbalanced datasets. 
The G-mean is defined as the geometric mean of Recall and Specificity as in Eq (19), in which, Recall 
(Specificity) represents the proportion of correctly predicted positive (negative) class examples to 
actual positive (negative) class examples. They are calculated as TP / (TP + FN) and TN / (TN + 
FP), respectively. F1 is the harmonic mean of Precision and Recall as calculated in Eq (20), where 
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Precision = TP / (TP + FP). In addition, IBA and AUC have comprehensive evaluations for overall 
classification results for imbalanced datasets as presented in Eqs (21) and (22). In Eq (22), iRank  

represents the ranking of the ith instance in the TP set. In addition, |TP| and |TN| represent the amount 
of TP and TN, respectively. 

Recall SpecificityG-mean  , (19) 

2 Precision Recall

Precision Recall
F1

 


 , (20) 

1 (Recall Specificity) Recall SpecificityIBA     , (21) 

TP

1
( )

AUC
TP TN

ii
Rank i







 . (22) 

4.3. Experiment design 

In order to test effects of the proposed method for imbalanced datasets, we create imbalanced 
dataset scenarios for the four datasets. We randomly draw 100 data from an original dataset as training 
datasets according to IR values of 4 and 9, respectively. The remaining data is set as a testing dataset. 
Based on the four datasets, we compare prediction performance between the proposed MMTD-ELM 
method for hybrid sampling examples near the SVM’s decision boundary, IMB method for only using 
imbalanced datasets and three sampling methods: SMOTE for generating new minority class examples 
by interpolating between original minority class examples, SVM-balance for generating minority class 
examples nearby the SVM’s decision boundary and Cluster-SMOTE for generating new minority class 
examples and excluding unrepresentative majority class examples. In addition, we construct two types 
of SVM models with polynomial kernel (SVM_poly) and radial basis kernel (SVM_rbf) as predictive 
models to compare prediction performance across these five methods. The two SVM models are 
constructed with scikit-learn tool (version 1.3.0) [37]. The SVM_poly model is configured with 
{kernel: poly; cost penalty C:10; degree:2} and the SVM_rbf model is configured with {kernel: rbf; 
cost penalty C:10; gamma: “auto”}, where “auto” is defined as 1/the number of input features. 

4.4. An example using the proposed MMTD-ELM method 

In this section, to explain the proposed MMTD-ELM method in depth, based on the Ecoli2 
dataset, we create a training dataset with IR = 9 as an example. The training dataset has 10 minority 
class data and 90 majority class data as listed in Table 4. The minority (m) class is labeled as “Positive” 
and the majority (M) class is labeled as “Negative”. Seven variables: Mcg, Gvh, Lip, Chg, Aac, 
Alm1 and Alm2 are set as input features. The implementing steps for the MMTD-ELM method are 
explained, as follows: 
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Table 4. The training dataset. 

 input features output 

No. Mcg Gvh Lip Chg Aac Alm1 Alm2 Class 

1 0.69 0.80 0.48 0.50 0.46 0.57 0.26 Positive 

2 0.63 0.86 0.48 0.50 0.39 0.47 0.34 Positive 

3 0.64 0.81 0.48 0.50 0.37 0.39 0.44 Positive 

4 0.62 0.83 0.48 0.50 0.46 0.36 0.40 Positive 

5 0.76 0.73 0.48 0.50 0.44 0.39 0.39 Positive 

6 0.69 0.65 0.48 0.50 0.63 0.48 0.41 Positive 

7 0.69 0.66 0.48 0.50 0.41 0.50 0.25 Positive 

8 0.63 1.00 0.48 0.50 0.35 0.51 0.49 Positive 

9 0.62 0.78 0.48 0.50 0.47 0.49 0.54 Positive 

10 0.74 0.82 0.48 0.50 0.49 0.49 0.41 Positive 

11 0.43 0.32 0.48 0.50 0.33 0.45 0.52 Negative 

12 0.52 0.81 0.48 0.50 0.72 0.38 0.38 Negative 

… … … … … … … … … 

100 0.44 0.49 0.48 0.50 0.39 0.38 0.40 Negative 

Step 1.  Convert training data into domain [0,1] by min-max data normalization given by Eq (5). 
Step 2.  Find support vectors using the SVM_poly model. We listed the support vectors for negative 

class and positive class in Tables 5 and 6, respectively. 

Table 5. Support vectors of majority class. 

 input features output 

No. Mcg Gvh Lip Chg Aac Alm1 Alm2 Class 

1 0.57 0.74 0.00 0.00 0.90 0.29 0.41 Negative 

2 0.86 0.61 0.00 0.00 0.60 0.72 0.82 Negative 

3 0.76 0.50 0.00 0.00 0.92 0.32 0.33 Negative 

4 0.60 0.28 0.00 0.00 0.30 0.22 0.46 Negative 

5 0.43 0.26 0.00 0.00 0.44 0.08 0.00 Negative 

6 0.85 0.39 1.00 1.00 0.47 0.41 0.33 Negative 

7 0.63 0.38 0.00 0.00 0.43 0.16 0.36 Negative 

8 0.96 0.37 0.00 0.00 0.64 0.47 0.38 Negative 

9 0.57 0.74 0.00 0.00 0.90 0.29 0.41 Negative 
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Table 6. Support vectors of minority class. 

 input features output 

No. Mcg Gvh Lip Chg Aac Alm1 Alm2 Class 

1 0.77 0.73 0.00 0.00 0.55 0.54 0.28 Positive 

2 0.69 0.77 0.00 0.00 0.55 0.26 0.44 Positive 

3 0.86 0.64 0.00 0.00 0.52 0.30 0.42 Positive 

4 0.77 0.53 0.00 0.00 0.78 0.42 0.45 Positive 

5 0.77 0.54 0.00 0.00 0.48 0.45 0.27 Positive 

6 0.69 0.70 0.00 0.00 0.56 0.43 0.59 Positive 

Step 3.  Estimate data range of each input feature of majority class support vectors using MMTD 
method, as listed in Table 7. 

Table 7. Estimates of the data range of majority class support vectors. 

 input features 

Estimates Mcg Gvh Lip Chg Aac Alm1 Alm2 

MLB  0.34 0.05 −0.93 −0.93 0.08 −0.10 −0.07 

MCL  0.70 0.39 0.00 0.00 0.53 0.30 0.37 

MUB  1.05 0.72 1.00 1.00 0.99 0.71 0.81 

Step 4.  Calculate 0.25,  0.25,  [ , ]lower bound upper boundA A A     as seen in Eq (14), where α is set at 0.25. The 

0.25,  lower boundA  is calculated as 0.25 ( )M M MLB CL LB    and 0.25,  upper boundA  is calculated as 

0.25 ( )M M MUB UB CL   . The calculations are shown in Table 8. 

Table 8. Calculation of A  at α = 0.25. 

 input features 

Estimates Mcg Gvh Lip Chg Aac Alm1 Alm2 

0.25,  lower boundA  0.427 0.136 −0.700 −0.700 0.196 0.000 0.037 

0.25,  upper boundA  0.965 0.634 0.750 0.750 0.827 0.606 0.703 

Step 5.  Remove majority class examples outside the range A . The deleted examples are listed in 

Table 9. 
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Table 9. Deleted majority class examples. 

 input features output 

No. Mcg Gvh Lip Chg Aac Alm1 Alm2 Class 

1 0.57 0.74 0.00 0.00 0.90 0.29 0.41 Negative 

2 0.86 0.61 0.00 0.00 0.60 0.72 0.82 Negative 

3 0.76 0.50 0.00 0.00 0.92 0.32 0.33 Negative 

4 0.43 0.26 0.00 0.00 0.44 0.08 0.00 Negative 

5 0.85 0.39 1.00 1.00 0.47 0.41 0.33 Negative 

Step 6.  Estimate data range of each input feature of minority class support vectors using MMTD  
method, as listed in Table 10. 

Table 10. Estimates of data range of minority class support vectors. 

 input features 

Estimates Mcg Gvh Lip Chg Aac Alm1 Alm2 

mLB  0.60 0.45 0.00 0.00 0.28 0.21 0.18 

mCL  0.77 0.67 0.00 0.00 0.55 0.43 0.43 

mUB  0.86 0.89 0.00 0.00 0.74 0.65 0.68 

Step 7.  Create synthetic minority class example within the estimated range [ mLB , mUB ] and input them 

into the trained bagging ELM model to determine if it belongs to the minority class. 
Step 8.  Repeat Step 7 until 75 (= 90 – 5 − 10) synthetic examples of the minority class are created. 

These generated examples are listed in Table 11. 

Table 11. Synthetic minority class dataset. 

 input features output 
No. Mcg Gvh Lip Chg Aac Alm1 Alm2 Class 
1 0.55 0.85 0.48 0.50 0.47 0.38 0.33 Positive 
2 0.58 0.83 0.48 0.50 0.34 0.36 0.29 Positive 
… … … … … … … … … 
75 0.56 0.80 0.48 0.50 0.42 0.40 0.47 Positive 

Step 9.  Add synthetic minority class dataset into original training dataset to build up a balanced 
training dataset. We depict them in Figure 8. 
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Figure 8. Balanced training dataset. 

4.5. Statistical tests with experimental results 

In this section, we use the paired t-test to assess whether there are significant differences between 
the proposed MMTD-ELM method and the ith method in IMB, SMOTE, SVM-balance and Cluster-
SMOTE. In the paired t-test procedure, we set the null hypothesis 0H  and the alternative hypothesis 

1H  as: 

0
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: 0

: 0
MMTD ELM ith

MMTD ELM ith
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, (23) 

where MMTD ELM ith     indicates the average of differences of classification results between the 

MMTD-ELM method and ith method for G-mean, F1, IBA or AUC metric with 50 experiments. In 
addition, we set the significance level α at 0.05. When p-value is less than the significance level α, the 
hypothesis 0H  is rejected, indicating there is a significant difference for G-mean, F1, IBA or AUC 

metric. We used the symbol “*” to indicate that the classification capability of the proposed MMTD-
ELM method has statistically significant effects over the other methods. 

4.6. Experimental results 

In this section, we implemented a total of 50 experiments to compare classification results among 
the five methods on the four datasets. In Figure 9(a) and (b), for example, when IR value was set at 4, 
classification results using the proposed MMTD-ELM method (deep blue line) are better than those of 
IMB (green line), SMOTE (blue line), SVM-balance (earthy yellow line) and Cluster-SMOTE (orange 
line) methods on SVM_poly and SVM_rbf models, respectively. When IR value is increased from 4 
to 9, the MMTD-ELM method still outperforms the other four methods in terms of the four evaluation 
metrics, as displayed in Figure 10. 
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(a) for the SVM_poly model 

 
(b) for the SVM_rbf model 

Figure 9. Compared methods’ classification results at IR = 4. 

 

(a) for the SVM_poly model 

 
(b) for the SVM_rbf model 

Figure 10. Compared methods’ classification results at IR = 9. 
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Additionally, in Tables 12 and 13, we list other experimental results for the four datasets with IR values 
of 4 and 9. In these tables, the values in bold represent the best classification results among five methods 
in items of G-mean, F1, IBA and AUC metrics. In Table 12, for example, the proposed MMTD-ELM 
method in terms of AUC metric can achieve the best average scores of 0.958 and 0.973 on the SVM_poly 
and SVM_rbf models for new-thyroid1 dataset, respectively. Note that, on the SVM_poly and SVM_rbf 
models, the prediction accuracy using the suggested MMTD-ELM method can achieve improvement of 
0.919 − 0.543 = 0.376 and 0.947 − 0.852 = 0.095 in terms of IBA metric, respectively. 

Table 12. Average of results for IR = 4. 

Dataset new-thyroid1 
Classifier SVM_poly SVM_rbf 
Method G-mean F1 IBA AUC G-mean F1 IBA AUC 
IMB 0.857 0.846 0.543 0.735 0.957 0.946 0.852 0.920 
SMOTE 0.965 0.939 0.887 0.941 0.965 0.879 0.942 0.971 
SVM-balance 0.961 0.927 0.88 0.937 0.964 0.875 0.943 0.972 
Cluster-SMOTE 0.953 0.929 0.843 0.917 0.968 0.897 0.941 0.970 
MMTD-ELM 0.964 0.897 0.919 0.958 0.974 0.920 0.947 0.973 
Dataset Ecoli2 
Classifier SVM_poly SVM_rbf 
Method G-mean F1 IBA AUC G-mean F1 IBA AUC 
IMB 0.798 0.696 0.435 0.651 0.871 0.779 0.624 0.785 
SMOTE 0.888 0.722 0.745 0.860 0.885 0.714 0.748 0.863 
SVM-balance 0.886 0.717 0.744 0.860 0.890 0.718 0.763 0.872 
Cluster-SMOTE 0.877 0.711 0.718 0.844 0.871 0.684 0.733 0.856 
MMTD-ELM 0.885 0.695 0.764 0.873 0.881 0.687 0.768 0.877 
Dataset Wisconsin (Diagnostic) 
Classifier SVM_poly SVM_rbf 
Method G-mean F1 IBA AUC G-mean F1 IBA AUC 
IMB 0.882 0.874 0.634 0.793 0.894 0.887 0.653 0.803 
SMOTE 0.891 0.883 0.648 0.800 0.895 0.888 0.656 0.805 
SVM-balance 0.888 0.880 0.638 0.794 0.897 0.890 0.664 0.810 
Cluster-SMOTE 0.890 0.882 0.645 0.798 0.896 0.890 0.661 0.808 
MMTD-ELM 0.905 0.898 0.690 0.827 0.919 0.911 0.738 0.856 
Dataset Lung cancer 
Classifier SVM_poly SVM_rbf 
Method G-mean F1 IBA AUC G-mean F1 IBA AUC 
IMB 0.977 0.99 0.968 0.985 0.973 0.988 0.962 0.982 
SMOTE 0.979 0.991 0.972 0.986 0.962 0.983 0.948 0.975 
SVM-balance 0.978 0.99 0.970 0.986 0.962 0.983 0.948 0.975 
Cluster-SMOTE 0.978 0.990 0.970 0.986 0.971 0.987 0.961 0.981 
MMTD-ELM 0.998 0.998 0.993 0.996 0.976 0.975 0.907 0.952 
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Table 13. Average of results for IR = 9. 

Dataset new-thyroid1 
Classifier SVM_poly SVM_rbf 
Method G-mean F1 IBA AUC G-mean F1 IBA AUC 
IMB 0.803 0.784 0.417 0.646 0.871 0.862 0.577 0.758 
SMOTE 0.923 0.917 0.736 0.855 0.957 0.943 0.863 0.927 
SVM-balance 0.923 0.917 0.738 0.856 0.955 0.940 0.860 0.925 
Cluster-SMOTE 0.908 0.900 0.692 0.829 0.957 0.945 0.858 0.924 
MMTD-ELM 0.922 0.916 0.732 0.853 0.933 0.929 0.765 0.872 
Dataset Ecoli2 
Classifier SVM_poly SVM_rbf 
Method G-mean F1 IBA AUC G-mean F1 IBA AUC 
IMB 0.725 0.334 0.283 0.529 0.788 0.69 0.405 0.629 
SMOTE 0.887 0.775 0.726 0.849 0.884 0.772 0.716 0.843 
SVM-balance 0.886 0.770 0.734 0.854 0.883 0.770 0.718 0.844 
Cluster-SMOTE 0.870 0.748 0.704 0.836 0.875 0.748 0.710 0.840 
MMTD-ELM 0.883 0.786 0.688 0.825 0.881 0.782 0.686 0.824 
Dataset Wisconsin (Diagnostic) 
Classifier SVM_poly SVM_rbf 
Method G-mean F1 IBA AUC G-mean F1 IBA AUC 
IMB 0.829 0.813 0.484 0.690 0.817 0.799 0.457 0.670 
SMOTE 0.827 0.811 0.480 0.687 0.824 0.807 0.474 0.682 
SVM-balance 0.827 0.811 0.478 0.686 0.824 0.807 0.475 0.682 
Cluster-SMOTE 0.827 0.811 0.478 0.686 0.825 0.809 0.478 0.685 
MMTD-ELM 0.844 0.830 0.518 0.715 0.853 0.839 0.546 0.734 
Dataset Lung cancer 
Classifier SVM_poly SVM_rbf 
Method G-mean F1 IBA AUC G-mean F1 IBA AUC 
IMB 0.825 0.905 0.760 0.885 0.668 0.826 0.546 0.786 
SMOTE 0.875 0.932 0.83 0.918 0.648 0.816 0.519 0.773 
SVM-balance 0.876 0.932 0.831 0.919 0.651 0.818 0.524 0.775 
Cluster-SMOTE 0.858 0.923 0.806 0.907 0.736 0.860 0.638 0.829 
MMTD-ELM 0.954 0.974 0.938 0.969 0.989 0.991 0.969 0.984 

4.7. Analysis of the experimental results 

In this section, based on the four datasets, we calculate the average (Avg) and standard deviation 
(SD) of classification accuracy in terms of G-mean, F1, IBA and AUC metrics as seen in Tables 14 
and 15. In Table 14, for example, the values of “0.938” and “0.023” indicate Avg and SD of prediction 
results using the proposed MMTD-ELM method for G-mean metric on the SVM_poly model, 
respectively. Additionally, we rank the five methods, to select the best methods in terms of G-mean, 
F1, IBA and AUC metrics. In Tables 14 and 15, we can see that the proposed method has the best 
ranking averages on the four evaluation metrics. In Table 15, for example, on the SVM_poly and 
SVM_rbf models, the proposed MMTD-ELM method achieves better ranking value among the five 
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methods in terms of G-mean (1.830 and 2.005), F1 (1.755 and 1.885), IBA (1.930 and 2.125) and AUC 
(1.935 and 2.115), respectively. 

Table 14. Compared results between MMTD-ELM and other methods at IR = 4. 

Metric G-mean 
Classifier SVM_poly SVM_rbf 
Method Avg SD Rank P-value Avg SD Rank P-value 
IMB 0.879 0.041 3.505 0.000* 0.924 0.762 3.045 0.000* 
SMOTE 0.931 0.031 1.955 0.000* 0.927 0.853 2.535 0.000* 
SVM-balance 0.928 0.032 2.195 0.000* 0.928 0.861 2.390 0.000* 
Cluster-SMOTE 0.925 0.032 2.355 0.000* 0.927 0.853 2.475 0.000* 
MMTD-ELM 0.938 0.023 2.235 − 0.938 0.865 2.430 − 
Metric F1 
Classifier SVM_poly SVM_rbf 
Method Avg SD Rank P-value Avg SD Rank P-value 
IMB 0.852 0.063 2.915 0.003* 0.900 0.983 2.180 0.000* 
SMOTE 0.884 0.038 2.015 0.001* 0.866 0.954 2.670 0.036* 
SVM-balance 0.879 0.043 2.275 0.054 0.867 0.954 2.590 0.070 
Cluster-SMOTE 0.878 0.041 2.260 0.112 0.865 0.954 2.610 0.015* 
MMTD-ELM 0.872 0.045 2.775 − 0.873 0.963 2.815 − 
Metric IBA 
Classifier SVM_poly SVM_rbf 
Method Avg SD Rank P-value Avg SD Rank P-value 
IMB 0.645 0.093 3.550 0.000* 0.773 0.039 3.360 0.000* 
SMOTE 0.813 0.093 2.000 0.000* 0.824 0.040 2.480 0.003* 
SVM-balance 0.808 0.094 2.180 0.000* 0.830 0.039 2.280 0.061 
Cluster-SMOTE 0.794 0.095 2.475 0.000* 0.824 0.039 2.385 0.005* 
MMTD-ELM 0.842 0.069 2.090 − 0.840 0.026 2.380 − 
Metric AUC 
Classifier SVM_poly SVM_rbf 
Method Avg SD Rank P-value Avg SD Rank P-value 
IMB 0.791 0.061 3.555 0.000* 0.873 0.039 3.370 0.000* 
SMOTE 0.897 0.054 2.005 0.000* 0.904 0.061 2.480 0.001* 
SVM-balance 0.894 0.055 2.185 0.000* 0.907 0.060 2.280 0.024* 
Cluster-SMOTE 0.886 0.056 2.465 0.000* 0.904 0.063 2.385 0.001* 
MMTD-ELM 0.914 0.040 2.085 − 0.915 0.049 2.375 − 

In order to further analyze classification results using these methods, we used paired t-test to 
demonstrate if these experimental results exhibit statistically significant differences between the 
proposed MMTD-ELM method and the other methods on G-mean, F1, IBA and AUC metrics. In 
Tables 14 and 15, the symbol “*” indicates that the MMTD-ELM method enjoys statistically 
significant differences (p-value < 0.05) from IMB, SMOTE, SVM-balance and cluster-SMOTE 
methods. In Table 14, for example, on the SMV_rbf model, the classification results using the proposed 
MMTD-ELM method have significant improvements (p-value = 0.003* < 0.05) as compared to the 
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IMB method for terms of F1 metric. 

Table 15. Compared results between MMTD-ELM and other methods at IR = 9. 

Metric G-mean 

Classifier SVM_poly SVM_rbf 

Method Avg SD Rank P-value Avg SD Rank P-value 

IMB 0.796 0.047 4.155 0.000* 0.786 0.531 4.220 0.000* 

SMOTE 0.878 0.049 2.075 0.000* 0.828 0.747 2.475 0.000* 

SVM-balance 0.878 0.051 2.120 0.000* 0.828 0.748 2.450 0.000* 

Cluster-SMOTE 0.866 0.058 2.695 0.000* 0.848 0.748 2.250 0.000* 

MMTD-ELM 0.901 0.039 1.830 − 0.914 0.724 2.005 − 

Metric F1 

Classifier SVM_poly SVM_rbf 

Method Avg SD Rank P-value Avg SD Rank P-value 

IMB 0.709 0.119 4.080 0.000* 0.794 0.891 3.865 0.000* 

SMOTE 0.859 0.047 2.120 0.000* 0.835 0.866 2.585 0.000* 

SVM-balance 0.858 0.050 2.145 0.000* 0.834 0.866 2.610 0.000* 

Cluster-SMOTE 0.846 0.056 2.770 0.000* 0.841 0.891 2.455 0.000* 

MMTD-ELM 0.877 0.041 1.755 − 0.885 0.983 1.885 − 

Metric IBA 

Classifier SVM_poly SVM_rbf 

Method Avg SD Rank P-value Avg SD Rank P-value 

IMB 0.486 0.085 4.160 0.000* 0.496 0.113 4.270 0.000* 

SMOTE 0.693 0.111 2.050 0.000* 0.643 0.120 2.450 0.000* 

SVM-balance 0.695 0.112 2.080 0.000* 0.644 0.124 2.475 0.000* 

Cluster-SMOTE 0.670 0.116 2.675 0.000* 0.671 0.125 2.100 0.000* 

MMTD-ELM 0.719 0.100 1.930 − 0.742 0.089 2.125 − 

Metric AUC 

Classifier SVM_poly SVM_rbf 

Method Avg SD Rank P-value Avg SD Rank P-value 

IMB 0.688 0.056 4.160 0.000* 0.711 0.072 4.270 0.000* 

SMOTE 0.827 0.067 2.050 0.000* 0.806 0.070 2.455 0.000* 

SVM-balance 0.829 0.067 2.080 0.002* 0.807 0.072 2.480 0.000* 

Cluster-SMOTE 0.815 0.069 2.670 0.000* 0.820 0.073 2.100 0.000* 

MMTD-ELM 0.841 0.061 1.935 − 0.854 0.055 2.115 − 

4.8. Summary 

According to the experimental results using all five methods: IMB, SMOTE, SVM-balance, 
Cluster-SMOTE, and our proposed MMTD-ELM methods, listed in Tables 12–16, the findings can be 
summarized as follows: 
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a) Based on the four datasets, when IR values are set at 4 and 9, our suggested MMTD-ELM method 
can achieve the best classification accuracy among these methods on two types of SVM models in 
terms of G-mean, F1, IBA and AUC metrics, as seen in Tables 12 and 13. From these results, we 
can see that with increasing IR values, the proposed MMTD-ELM method consistently achieves 
the best classification performance in terms of G-mean, F1, IBA and AUC metrics. 

Table 16. Average of results for Recall and Specificity metrics. 

Dataset new-thyroid1 

Classifier SVM_poly SVM_rbf 

IR 4 9 4 9 

Method Recall Specificity Recall Specificity Recall Specificity Recall Specificity 

IMB 0.469 1.000 0.291 1.000 0.844 0.997 0.517 1.000 

SMOTE 0.891 0.991 0.712 0.998 0.983 0.959 0.865 0.989 

SVM-balance 0.887 0.986 0.714 0.998 0.987 0.957 0.863 0.988 

Cluster-SMOTE 0.841 0.992 0.660 0.998 0.973 0.967 0.857 0.991 

MMTD-ELM 0.945 0.971 0.707 0.998 0.969 0.976 0.745 0.999 

Dataset Ecoli2 

Classifier SVM_poly SVM_rbf 

IR 4 9 4 9 

Method Recall Specificity Recall Specificity Recall Specificity Recall Specificity 

IMB 0.319 0.984 0.060 0.998 0.599 0.970 0.265 0.993 

SMOTE 0.802 0.918 0.769 0.929 0.817 0.909 0.758 0.929 

SVM-balance 0.804 0.916 0.785 0.922 0.834 0.910 0.763 0.926 

Cluster-SMOTE 0.773 0.916 0.764 0.909 0.822 0.890 0.765 0.914 

MMTD-ELM 0.848 0.898 0.704 0.947 0.866 0.888 0.704 0.944 

Dataset Wisconsin (Diagnostic) 

Classifier SVM_poly SVM_rbf 

IR 4 9 4 9 

Method Recall Specificity Recall Specificity Recall Specificity Recall Specificity 

IMB 0.601 0.985 0.380 1.000 0.607 0.999 0.340 1.000 

SMOTE 0.605 0.995 0.375 1.000 0.612 0.998 0.364 1.000 

SVM-balance 0.593 0.996 0.373 1.000 0.621 0.998 0.364 1.000 

Cluster-SMOTE 0.602 0.995 0.372 1.000 0.617 0.998 0.369 1.000 

MMTD-ELM 0.661 0.993 0.430 1.000 0.722 0.989 0.472 0.996 

Dataset Lung cancer 

Classifier SVM_poly SVM_rbf 

IR 4 9 4 9 

Method Recall Specificity Recall Specificity Recall Specificity Recall Specificity 

IMB 1.000 0.969 1.000 0.771 0.999 0.964 1.000 0.572 

SMOTE 0.999 0.973 1.000 0.836 1.000 0.949 1.000 0.546 

SVM-balance 1.000 0.971 1.000 0.837 1.000 0.949 1.000 0.551 

Cluster-SMOTE 1.000 0.971 1.000 0.813 1.000 0.962 1.000 0.657 

MMTD-ELM 0.993 1.000 1.000 0.939 0.904 1.000 0.974 0.994 
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b) From these experimental results listed in Tables 14 and 15, we can see that most Avg and SDs 
using the MMTD-ELM method obtain the best performance in terms of G-mean, F1, IBA and 
AUC metrics. Additionally, the proposed MMTD-ELM method has the best ranking score in 
terms of G-mean, F1, IBA and AUC metrics. Furthermore, most p-values are less than 0.05 at IR 
values of 4 and 9. 

c) Although a few experimental results indicate the MMTD-ELM method does not have statistically 
significant prediction accuracy compared to the IMB method, the proposed MMTD-ELM 
method still outperforms the other methods in terms of G-mean, F1, IBA and AUC metrics. 

d) In Table 16, in terms of the Recall (i.e., true positive rate) metric, we can see that the MMTD-ELM 
method outperforms the other methods for four experimental datasets indicating that our proposed 
method has better prediction accuracy for minority class (which is defined as positive class). 
Additionally, in terms of the Specificity (i.e., true negative rate) metric, there are only slight 
differences among the five methods indicating that the five methods have similar prediction 
performance to each other for majority class (which is defined as negative class). 
In sum, the suggested MMTD-ELM method has more improvement effects and is shown to be 

superior to the other methods for four imbalanced datasets. 

5. Conclusions 

The sampling approach has been proposed as an effective technique to improve prediction 
accuracy in traditional machine learning and deep learning models for imbalanced datasets. This 
technique directly creates new examples of minority class to balance skewed data distribution. For 
SVM imbalanced classification, some researchers suggested generating synthetic minority class 
examples adjusting the SVM’s decision boundary to correctly predict minority class examples as seen 
in [15,17,38]. Farquad and Bose [17], for example, proposed the SVM-balance method, which 
randomly over-samples misclassified examples near the decision boundary as new examples, to 
improve prediction accuracy of SVM for minority class examples. However, generated examples may 
be surrounded by most of the majority class examples that are thus regarded as danger examples of 
minority class or noise. These may lead to distortion of SVM learning. To effectively adjust SVM’s 
decision boundary, Cieslak et al. [15] proposed the distance-based cluster-SMOTE hybrid sampling 
method, which creates new minority class examples and eliminates unrepresentative majority class 
examples. However, the cluster-SMOTE method based on distance between examples is easily 
impacted by noise or outliers. Differing from their papers, based on a fuzzy triangular MF, we 
developed a new hybrid sampling method named MMTD-ELM to screen representative majority class 
examples and generate synthetic minority class examples. In order to screen informative support 
vectors of the majority class, we developed an α-cut technique to measure representation of the 
majority class example. Furthermore, to create better synthetic minority class examples, we deploy a 
bagging ELM model to monitor the similarity between synthetic examples and original data of the 
minority class. As a result, when compared to the oversampling SVM-balance and distance-based 
hybrid sampling cluster-SMOTE methods, the proposed MMTD-ELM method achieves better 
prediction accuracy of SVM for skewed datasets. 

In this paper, four biomedical datasets were used to elucidate effectiveness of the suggested 
MMTD-ELM method for SVM classification with imbalanced datasets. These experimental results 
demonstrate the suggested MMTD-ELM method successfully outperforms other sampling methods in 
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imbalanced datasets. As for research limitations, the proposed MMTD-ELM approach can be utilized 
to estimate the data range of numerical datasets, but it is not appropriate for datasets with discrete 
variables. In the future, we will further consider three directions: 1. using the proposed method for 
addressing other high-dimensional imbalanced microarray cancer data; 2. developing a sampling 
method for handling imbalanced datasets with discrete features; 3. developing a sampling method or 
deep learning model for imbalanced but small-sample-size datasets. 
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