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Abstract: Brain functional connectivity is a useful biomarker for diagnosing brain disorders.
Connectivity is measured using resting-state functional magnetic resonance imaging (rs-fMRI).
Previous studies have used a sequential application of the graphical model for network estimation and
machine learning to construct predictive formulas for determining outcomes (e.g., disease or health)
from the estimated network. However, the resulting network had limited utility for diagnosis because
it was estimated independent of the outcome. In this study, we proposed a regression method with
scores from rs-fMRI based on supervised sparse hierarchical components analysis (SSHCA). SSHCA
has a hierarchical structure that consists of a network model (block scores at the individual level) and a
scoring model (super scores at the population level). A regression model, such as the multiple logistic
regression model with super scores as the predictor, was used to estimate diagnostic probabilities. An
advantage of the proposed method was that the outcome-related (supervised) network connections and
multiple scores corresponding to the sub-network estimation were helpful for interpreting the results.
Our results in the simulation study and application to real data show that it is possible to predict diseases
with high accuracy using the constructed model.

Keywords: Alzheimer’s disease; brain network; supervised sparse hierarchical component analysis;
scoring; dimension reduction

1. Introduction

The evaluation of brain functional networks and network connectivity is an important approach for
the study of brain disorders [1]. Functional connectivity is measured using resting-state functional
magnetic resonance imaging (rs-fMRI), which has a spatial-temporal 4-dimensional data structure
with a voxel size of 64 × 64 × 49 for spatial and 128 time points in typical cases. Different patterns of
functional connectivity can be used as biomarkers for disease diagnosis and assessment [2]. Recent
studies have employed statistical models and machine learning techniques to assess individual
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networks of anatomical brain areas in the context of several brain disorders, such as Alzheimer’s
disease (AD) [3], mild cognitive impairment (MCI) [4], a review of research on AD and MCI [5, 6],
autism spectrum disorder [7], schizophrenia [8], major depressive disorder [9], chronic insomnia
disorder [10], and attention deficit hyperactivity disorder [11].

Prediction models have been an important topic in current research [12, 13]. [14] established a
data-driven framework of connectome-based predictive modeling, which was utilized in the protocol
proposed by [15]. In recent studies related to the framework of connectome-based modeling, many
found it useful to use neural networks. In [16], a deep 3D convolutional neural network (3DCNN)
was trained on a large cohort of healthy subjects of a wide age range to produce a map representing
the probability that a voxel belongs to a particular brain network. [17] developed an attention-based
graphical neural network (GNN) framework to detect accelerated brain aging in AD patients. First,
graph data were constructed from Pearson correlation matrices computed from rs-fMRI, and then GNN
models were trained using the graph data to predict the brain age of HC, MCI patients and AD patients.
Although there have been many studies on rs-fMRI, our study focuses on a different target, diagnostic
aids and proposes a different analysis approach. In general, the input for predictive modeling is not
the observed data itself, but the features, whose construction and selection is an important process
in the analysis. There are several types of features, such as a mean time series of the regions of
interest (ROI) [18], a graph of theoretical indicators such as small-worldness [19,20], and connectivity
strength (edges) estimated from the mean time series of the ROI. In this study, edges were targeted
for ease of interpretation and usefulness of prediction because of direct output from the networks.
Several approaches have been used to estimate brain networks from rs-fMRI data, including pairwise
Pearson’s correlation analyses [21, 22], partial correlation analyses [23, 24], independent component
analysis [25] and sparse regressions [26]. Partial correlation coefficients are easily implemented and
have been, often selected for this type of analysis. The graphical least absolute shrinkage and selection
operator (glasso) [27, 28] provided the sparse estimation of the partial correlation coefficients. This
method is based on the inverse covariance matrix and allows for the choice of connections between
regions and is useful for computational cost and interpretation of results.

Previous studies have employed the sequential application of outcome-independent network scores
and machine learning to construct a prediction formula for outcomes (e.g., disease or healthy) from
the estimated network. In the first step, the average time series within the ROI was computed from a
multiple voxel time series within an anatomically defined region, for example, by anatomical
automatic labeling. However, this approach provided a less informative network for diagnosis because
the network was estimated independent of the outcome. Thus, we consider the sequential approach, in
which network estimation is followed by regression analysis, to be potentially inconvenient. Such
network estimation methods describe the relationships between brain regions based on a class of
correlation coefficients, which do not necessarily include the relationship with the disease. This is
unlikely to lead directly to increased accuracy in the diagnostic or predictive models targeted by this
study. If the network estimation includes not only the association between brain regions but also the
association with disease, the accuracy of diagnosis or prediction could be improved.

We aimed to develop a supervised network estimation method for use in a prediction formula.
Additionally, we compared the proposed method with the existing sequential approach. Network
estimation is performed by extending the supervised scoring method proposed by [29]. While [29]
uses simple linear combination scoring, network estimation in this framework requires hierarchical
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(multiple levels) scoring. At the lower level, network estimation is performed for each individual. In a
data matrix consisting of multiple node time series (time points in rows, brain region node in
columns), the regression model takes the equation form with one node as the objective variable
(output values) and the remaining node time series as the explanatory variables (input values). The
scores obtained in the lower level are further scored as a subject group in the upper level with
information about the diagnosis given as a supervisor. Performing these processes in a single
algorithm, it is expected that the network score would also include information about the outcome,
and the resulting scores would be useful in improving the accuracy of the diagnostic or predictive
model.

In this paper, the scoring methods and algorithms are introduced in Section 2.1. The evaluation of
the diagnostic or predictive model accuracy is then planned in Sections 2.2 or 2.3, and the results are
presented in Sections 3.1 or 3.2 for the simulation study and the real data application.

2. Methods

In the regression model of this study, the outcome was the response and the regional time series from
rs-fMRI was the predictor. We proposed a regression method with rs-fMRI scores based on supervised
sparse hierarchical components analysis (SSHCA). The SSHCA had a hierarchical structure consisting
of a network model (block scores at the individual level) and a scoring model (super scores at the
population level). Multiple super scores (components) were subsequently computed. A regression
model with super scores as predictors was used to estimate the diagnostic probability. The methods in
this study were implemented in the R programming environment using the latest version of the msma
package. The mand package [30] was used to handle the display and other aspects of the brain imaging
data. The proposed method was compared with existing methods through simulation studies, and its
usefulness was investigated through real data analysis.

2.1. SSHCA

This section describes the score structure and the estimation method of the weights. For the
estimation method, we first define the objective function and introduce the algorithm for obtaining its
solution. The reasonableness of the algorithm is provided in the Appendix. Notation is given for all
beginnings. Considering n subjects, Xi = (xi,1, xi,2, . . . , xi,M) is the T × M average time series of ROI
(i = 1, 2, . . . , n) and xi,m = (xi,m(1), xi,m(2), . . . , xi,m(T ))⊤. T is the number of time points, and M is the
number of nodes (ROIs). Subjects also have a univariate outcome, and the n-dimensional outcome
vector is denoted by Z.

Our basic model was a hierarchical (multiblock) score structure divided into two parts: a population
level and an individual level. The individual level could be further divided into two levels, individual
bottom and individual top. The network was estimated at the individual bottom level, and the resulting
scores were obtained at higher levels. We formulated the following score representation. First, consider
the population level score s with the following multiblock (hierarchical) structures:

s = S2w2 =

M∑
m=1

s2,mw2,m

where w2 = (w2,1, . . . ,w2,M)⊤ is the weight vector with length M for n × M matrix S2 with the m-th

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17702–17725.



17705

column s2,m and the i-th (individual level) element is given as

s2,i,m =

T∑
t=1

s3,i,m(t)w3,i(t) = s⊤3,i,mw3,i

where w3,i = (w3,i(1), . . . ,w3,i(T ))⊤ is the weight vector with length T for the m-th sub-block of i-th
subject score s3,i,m given by

s3,i,m = Xi,(−m)w4,i,m

where w4,i,m is the weight vector with length M − 1 for the m-th sub-blocks Xi,(−m) =

(xi,1, . . . , xi,m−1, xi,m+1, . . ., xi,M), which is the data matrix Xi except for the m-th column. The t-th
element of s3,i,m is also given as s3,i,m(t) = X⊤i,(−m)(t)w4,i,m.

The optimal value of the weight w4,i,m is obtained by maximizing
∑n

i=1
∑M

m=1 cov(s3,i,m, xim) =∑n
i=1
∑M

m=1 cov(Xi,(−m)w4,i,m, xim), which will be discussed in more detail later in the algorithm for
finding the weights. This is an original way to create the network developed in this paper. The method
is based on a regression model in which one node is removed from a data matrix consisting of a
multi-node time series (rows: time points, columns: nodes), and it is used as the objective variable
(output values) and the remaining node time series as explanatory variables (input values). It is
similar to multiple regression analysis, which analyzes one-to-many relationships between nodes
rather than one-to-one relationships like the correlation coefficient. Note that every node is considered
to be a node that is the objective variable.

Figure 1 shows a graphical representation of score relationships. The network diagram on the left
side of this figure is illustrated using simplified symbols with M=3 nodes. The data matrix can be
written as Xi = (xi,1, xi,2, xi,3). The upper network is a model in which (xi,1 is the objective variable and
the remaining Xi,(−1) = (xi,2, xi,3) are explanatory variables. The lower network is a model in which (xi,2

is the objective variable and the remaining Xi,(−2) = (xi,1, xi,3) are explanatory variables.
Note that the score s could be regarded as population-level scores, and scores s2,i were individual-

level scores. There were several types of scores with hierarchical structures, and corresponding weights
had the following roles. The weights w4,i,m represented the edge strength to the m-th node variable
xm from the others, and the corresponding score s3im represented the predictor for the node variable
xm. The M × T matrix S3,i consisting of these scores, reduced the time course by using weight w3,i.
The resulting M-dimensional vector s2,i was used as a representative variable for individual i at the
population level; then, at the population level, the score was computed again from these scores by
using weight w2. This super score s was used in the prediction model such as the logistic regression
model.

In recent years, dynamic network estimation has been widely used in brain image analysis. It is
possible to extend the proposed method for such analysis. Because s3,i,m(t) =

∑
j,m xi, j(t)w4,i,m, j, we can

rewrite s2,i,m as

s2,i,m =

T∑
t=1

s3,i,m(t)w3,i(t) =
T∑

t=1

∑
j,m

xi, j(t)w4,i,m, j

w3,i(t)

Thus, vi, j,m(t) = w4,i,m, jw3,i(t) could be interpreted as a dynamical relationship between the node j to the
node m.
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Figure 1. Hierarchical score structure. The hierarchical score structure was divided into two
parts: a population level and an individual level. The individual level could be further divided
into two levels, individual bottom and individual top.

In the scores given so far, the objective function for the weights to be estimated is given below.
An objective function is defined for estimating the network and for summarizing the scores obtained
from it and using them for diagnostic probability estimation. This is done in a hierarchical manner,
and finally an objective function is considered that optimizes these simultaneously. When matrices Xi

were normalized by their column, the weight w = (w⊤2 ,w
⊤
3 ,w

⊤
4 )⊤, where w3 = (w⊤3,1, . . . ,w

⊤
3,n)⊤ and

w4 = (w⊤4,1,1, . . . ,w
⊤
4,n,M)⊤ was estimated by maximizing the following function:

L0(w) ={L01(w2,w3,w4) − P2,λ2(w2)}
+ {L02(w3,w4) − P3,λ3(w3)} + {L03(w4) − P4,λ4(w4)}. (2.1)

At the population level, the scores obtained at the individual level are reduced to a single score per
person by maximizing the score variance in order to include more information across subjects in the
subject population and to reduce the number of nodes dimensionally. In addition to summarizing the
individual-level scores in this way at the population level, the correlation between scores and outcomes
is also incorporated into the objective function to make the scores useful for the prediction model. From
this perspective, the sub objective function for the scoring model in the population level as follows.

L01(w2,w3,w4) = (1 − µ) × var(s) + µ × cov(s, Z)

where 0 ≤ µ ≤ 1 defines the proportion of the supervision. The weights were evaluated by maximizing
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the variance of the super scores s supervised by the outcome. In other words, it was obtained by
maximizing the variance of the super scores and the covariance with the outcome with a trade-off.

At the individual level, there are two additional layers, with the upper layer summarizing
within-subjects the network information obtained in the lower layer. The time series of scores per
node obtained in the lower layer is reduced in the time domain by maximizing the score variance and
reducing the number of time points, and the score per node is calculated within subjects. The lower
layer uses an objective function for network estimation that maximizes the covariance between the
linear combined score time series values of one node value and the other node values for each
individual. From this perspective, the subobjective functions for the network models in the individual
level were as follows.

L02(w3,w4) =
n∑

i=1

var(s2,i), L03(w4) =
n∑

i=1

M∑
m=1

cov(s3,i,m, xim)

Note that L02(w) was a (sub) objective function for the score with temporal (time course) reduction,
and L03(w) was a (sub) objective function for the score to construct the network.

The function L0(w) was maximized subject to ∥w2∥
2 = 1, ∥w3,i∥

2 = 1 and ∥w4,i,m∥
2 = 1 (i = 1, . . . , n,

m = 1, . . . ,M) with parameters regularized to control the sparsity that enabled the detection of
associated weights as follows.

P2,λ2(w2) = Pλ2(w2), P3,λ3(w3) =
n∑

i=1

Pλ3,i(w3,i), P4,λ4(w4) =
n∑

i=1

M∑
m=1

Pλ4,i,m(w4,i,m)

where Pλ(x) was the penalty function (Pλ(x) = 2λ|x| in this study), and λ > 0 the regularized parameter.
The function Pλ(x) is defined for a scalar input x, but for a vector x it is defined as Pλ(x) =

∑
j Pλ(x j) =

2λ
∑

j |x j|.
The algorithm for maximizing equation 2.1 is given as follows. The rationale is provided in the

Appendix. As defined above, the m-th sub-blocks Xi,(−m) is the data matrix Xi except for the m-th
column.

1) Initialize s = (s1, . . . , sn)⊤, s2,i = (s2,i,1, . . . , s2,i,M)⊤, ŵ2 = (ŵ2,1, ŵ2,2, . . . , ŵ2,M)⊤ and
ŵ3,i = (ŵ3,i(1), ŵ3,i(2), . . . , ŵ3,i(T ))⊤.

2) Repeat until convergence.

1) (Individual bottom) w̃4,i,m = hλ4,i,m(X⊤i,(−m){ŵ2,m((1 − µ)si + µZi)ŵ3,i + xi}) where
hλ(y) = sign(y)(|y| − λ)+ and normalizes ŵ4,i,m = w̃4,i,m/∥w̃4,i,m∥ (m = 1, 2, . . . ,M).

2) (Individual top) Putting s3,i,m = Xi,(−m)ŵ4,i,m and S3,i = (s3,i,1, . . . , s3,i,M)⊤,
w̃3,i =

∑M
m=1{ŵ2,m((1 − µ)si + µZi)s3,i,m + S⊤3,is2,i} normalize as ŵ3,i = w̃3,i/∥w̃3,i∥.

3) (Population) Putting s2,i = S3,iŵ3,i, w̃2,m = hλ2m(s⊤2,m((1 − µ)u + µZ)) then putting
w̃2 = (w̃2,1, w̃2,2, . . . , w̃2,M)⊤ and normalize as ŵ2 = w̃2/∥w̃2∥.

4) Set s = S2ŵ2.

3) (Deflation step) Set p3,i,m = x⊤i,ms3,i,m/s⊤3,i,ms3,i,m and p3,i = (p3,i,1, . . . , p3,i,M), Xi are deflated by
Xi ← Xi − S3,i p⊤3,i for i = 1, . . . , n. Start again from step 1 and repeat for the given number of
times (number of components).
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Note that the deflation steps yield multiple components and several alternatives. Extracting
multiple components in this way corresponds to multiple estimations of the network, which means
that the proposed method can decompose the network. There were several derivations of the
parameter update method in Step 2(a). The method that used the update formula written in Step 2(a)
was called SSHCA-corde (coordinate updating). Next was the update formula in a form that did not
include any weights other than w4,i,m, and the method that used hλ4,i,m(X⊤i,(−m)xi) as the update formula
was called SSHCA-corde.ind (coordinate updating with independent network estimation). The
method of estimating w4,i,m using the glasso method was called SSHCA-glasso (coordinate updating
with independent glasso network estimation). All these derivations are described in the Appendix and
were compared in simulation studies and real data analysis.

The larger value of the regularization parameter λ had many non-zero elements in the weight w
values. Its optimal value was selected by minimizing the Bayesian information criterion (BIC). It is
denoted by

BIC(λ) = log

 1
nT M

n∑
i=1

∥X̂i(λ) − Xi∥
2

 + log(nT M)
nT M

d f (λ)

where X̂i(λ) = [x̂i,1(λ), . . . , x̂i,M(λ)], x̂i,m(λ) = s3,i,m p⊤3,i,m. d f (λ) is the number of effective parameters
and depends on the value of λ. In the following, the regularization parameters are simplified such that
λ3,i = 0 and λ4,i,m = λ4 to avoid redundancy in the calculation.

2.2. Simulation study

The proposed method was evaluated and compared with the sequential approach using synthetic
data. The total sample size was n = 50 and 100. The true graph had 50 and 100 nodes with edges
that were randomly generated with 5 and 20 difference edges between the two groups (n/2 sample size
per group). Multivariable data with a time length of 100 for the individual were generated as random
numbers with a correlation structure using partial correlation coefficients based on the true graph. Then,
the actual indicators Z for the case or control were generated by using the binomial random number
with the probability being the logistic transformation of the partial correlation coefficients.

The resulting data set was a 100 × 20 matrix Xi (i = 1, 2, . . . , n). The parameters in the proposed
method were set as µ = 0, 0.5 and 1. As explained in the previous section, there were three types of
proposed SSHCA methods: SSHCA-corde, SSHCA-corde.ind and SSHCA-glasso. The glasso
method was used for network estimation in comparisons. The strength of the edge (penalized
estimated partial correlation coefficient) was used as an explanatory variable for prediction using
glasso. The machine learning methods: generalized linear model (glm), glmnet, support vector
machine (svmRadial), random forests (rf) and neural networks (nnet) were applied for diagnostic
probability estimation. This application is also reviewed in the discussion as a consideration. The
hyperparameters for machine learning were chosen based on five repeated 10-fold cross-validations.
Both estimated networks and diagnostic probabilities were evaluated using receiver operating
characteristic (ROC) analysis. In the network estimation, the selected edges were evaluated in the
case and control groups. The number of iterations for the above procedures was 50 (the number of
simulated data sets).
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2.3. Real data analysis

The proposed method was applied to real data from the Alzheimer’s Disease Neuroimaging
Initiative (http://adni.loni.usc.edu/), a collection of imaging data from 50 subjects at baseline with a
mean age of 75 years for 23 healthy subjects and 72.9 years for 27 patients with early MCI (eMCI). Z
was a binary variable for Normal, or eMCI. Table 1 summarizes the characteristics of the patients.

Table 1. characteristics for real data

Normal (n = 23) eMCI (n = 27)
Age, years 75 72.9
sex, Male [ n (%)] 10 (43.5) 17 (63.0)
APOE4≥ 1, [ n (%)] 6 (26.1) 14 (51.9)
Mini-Mental Scale Examination score 28.5 27.7

The Data Processing Assistant for Resting-State fMRI (DPARSF) was used to perform rs-fMRI
preprocessing, slice timing, realignment, normalization, smoothing, detrending and band path filtering.
The resulting data set contained 90 ROIs and 130 time points for each subject. The estimated diagnostic
probability was evaluated using ROC analysis. The sensitivity, specificity and area under the curve
(AUC) were computed for 20 iterations by taking 70% of the samples randomly, training them and
then predicting and evaluating the remaining 30% as a validation set. We compared the proposed
method to the existing sequential approach with a glasso as the network estimation, popular machine
learning methods (glm, glmnet, svmRadial, rf, nnet as in the simulation study) as the prediction model,
and the unsupervised version of our method. The hyperparameters for machine learning were chosen
based on five repeated 10-fold cross-validations.

3. Results

3.1. Simulation study

The results in Table 2 are for the following settings: the number of subjects (nsample) is 50, the
number of edges (nedge) is 100 and the nedgedif of the edges is 5 and 20. The proportions of nedgedif
to nedge were 5 and 20%, respectively. The proposed SSHCA method used four components and
the supervision parameters µ = 0, 0.5 and 1. The results for the SSHCA were the area under the ROC
curve (pathauc), which is an evaluation index for the true graph structure, the area under the ROC curve
(scorecvauc), which is an evaluation index for disease discrimination, and the average of pathauc and
scorecvauc (allmean) for each µ. For scorecvauc, the results obtained for each of the five prediction
methods glm, glmnet, svmRadial, rf and nnet were averaged.

When µwas changed, the values of pathauc and scorecvauc were both higher when µ = 1. The AUC
values were not better when the glasso weights, the method of the previous study, were used directly
for prediction. It was no better even in the case of the SSHCA method with µ = 1. The pathauc was
higher when the network estimation was done independently (SSHCA-corde.ind or SSHCA-glasso).
Furthermore, pathauc was higher when glasso was used for network estimation (SSHCA-glasso), but
there was no significant difference when SSHCA-corde.ind was used. Focusing on scorecvauc, the
method that performs network and score estimation simultaneously (SSHCA-corde) had the highest
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value. However, the scorecvauc of SSHCA-glasso was not comparable, and the average allmean was
the largest. SSHCA-corde.ind outperformed SSHCA-glasso in scorecvauc.

Table 2. Simulation study results for nsample = 50, nedge = 100 and ncomp = 4.

nedgedif Methods µ pathauc scorecvauc allmean
5(5%) SSHCA-corde 0.0 0.754 0.523 0.677

0.5 0.771 0.865 0.802
1.0 0.781 0.992 0.851

SSHCA-corde.ind 0.0 0.506 0.721
0.5 0.829 0.708 0.788
1.0 0.986 0.881

SSHCA-glasso 0.0 0.528 0.759
0.5 0.875 0.757 0.835
1.0 0.985 0.911

glasso 0.650 0.547 0.615
20(20%) SSHCA-corde 0.0 0.748 0.527 0.674

0.5 0.764 0.870 0.800
1.0 0.777 0.990 0.848

SSHCA-corde.ind 0.0 0.531 0.725
0.5 0.821 0.698 0.780
1.0 0.984 0.876

SSHCA-glasso 0.0 0.544 0.747
0.5 0.847 0.710 0.802
1.0 0.983 0.893

glasso 0.649 0.603 0.634

Table 3 shows the results for nsample = 50, nedge = 50 and nedgedif = 5 and 20. The nedge
was changed from 100 (in Table 2) to 50. The proportions of nedgedif to nedge were 10 and 40%,
respectively.

As the number of nedges decreased, the results were generally better; the percentage of nedgedif
was not relevant; the network estimation of glasso was much better, but the predictive power was not
very high. The results for the nsample = 100 case are included in the Appendix, but the pattern was
the same as for these nsample = 50 cases. In addition, a comparison of the results for each regression
model is illustrated in the Appendix. The results show no significant differences among the regression
models. The scoring may ensure some high degree of predictive accuracy.

3.2. Real data analysis

We apply the method to real data of AD described in Section 2.3. The network was estimated using
three SSHCA methods (corde, corde.ind and glasso) and by the glasso. The results of predicting eMCI
are shown in Table 4 as sensitivity, specificity and AUC. We used glm, glmnet, svmRadial, rf and nnet
for machine learning, as in the simulation study, and the resulting values are the average among values
from those machine learnings.
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Table 3. Simulation study results for nsample = 50, nedge = 50 and ncomp = 4.

nedgedif Methods µ pathauc scorecvauc allmean
5(10%) SSHCA-corde 0.0 0.886 0.505 0.759

0.5 0.895 0.830 0.873
1.0 0.904 0.987 0.932

SSHCA-corde.ind 0.0 0.516 0.789
0.5 0.926 0.713 0.855
1.0 0.990 0.947

SSHCA-glasso 0.0 0.522 0.804
0.5 0.945 0.751 0.880
1.0 0.984 0.958

glasso 0.924 0.555 0.801
20(40%) SSHCA-corde 0.0 0.869 0.551 0.763

0.5 0.879 0.842 0.867
1.0 0.887 0.986 0.920

SSHCA-corde.ind 0.0 0.508 0.742
0.5 0.859 0.669 0.796
1.0 0.968 0.895

SSHCA-glasso 0.0 0.589 0.819
0.5 0.934 0.767 0.878
1.0 0.983 0.950

glasso 0.900 0.686 0.828

Table 4. Real data analysis results.

Methods µ Sensitivity Specificity AUC
SSHCA-corde 0.00 0.375 0.548 0.607

0.25 0.583 0.698 0.699
0.50 0.739 0.796 0.802
0.75 0.720 0.822 0.847
1.00 0.713 0.874 0.861

SSHCA-corde.ind 0.00 0.365 0.530 0.633
0.25 0.408 0.555 0.583
0.50 0.452 0.598 0.599
0.75 0.507 0.617 0.621
1.00 0.753 0.842 0.881

SSHCA-glasso 0.00 0.491 0.614 0.645
0.25 0.434 0.583 0.579
0.50 0.455 0.637 0.609
0.75 0.534 0.654 0.663
1.00 0.718 0.793 0.826

glasso 0.388 0.556 0.592
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Figure 2. Estimated networks using the SSHCA method where p values were from the
logistic regression model.

Figure 3. Related reference networks. The most closely related networks estimated for that
component are displayed.
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The AUC was higher for the proposed SSHCA method than for the glasso method. For SSHCA-
corde, the AUC was high, even for µ = 0.75. The highest AUC was 0.881 for SSHCA-corde.ind.
Therefore, next we looked closer at the network used in the estimation for the case of SSHCA-corde.ind
(µ=1), which had the highest AUC value. The three components were estimated, as shown in Figure 2.
The super scores of these networks were significant in the univariate logistic regression model.

We examined which of the networks estimated by each component was closest to the networks
examined in previous studies. For the reference network, we used the Yeo 17 network, which is stored
in the R package brainGraph and has 17 networks. For each network, we computed the AUC at the
edge of the estimated network, and the one with the highest AUC was the one that was most closely
related to the network estimated for that component.

The visual network and default mode networks were selected as the significant components in the
univariate logistic regression, as shown in Figure 3. As listed in [5], many studies have reported the
association between the default mode network and AD, and the results of the present analysis were
also reasonable.

4. Discussion

We aimed to characterize brain function based on data measured by fMRI at rest as a time series of
voxels arranged in three spatial dimensions and presented a novel regression method based on
supervised sparse hierarchical component analysis (SSHCA) with a hierarchical structure consisting
of a network model (individual-level block scores) and a scoring model (population-level super
score). In addition, the (supervised) network connections associated with the outcomes and the
multiple scores corresponding to their subnetwork estimates facilitate data interpretation. We
estimated the functional networks between brain regions of each individual and applied discriminant
analysis methods such as machine learning as a biomarker to assist diagnosis. The proposed score
showed good disease prediction accuracy in both numerical experiments and real data analysis, and
reasonable results were produced by the real data analysis.

In this study, a SSHCA method for constructing prognostic risk scores was proposed. The method
could be run on the latest version of the R package msma and it was characterized by supervised
learning to improve the prediction accuracy for scoring of the estimated network. The brain time
series images had a spatio-temporal structure per person, and the spatial structure was transformed
into a network structure, and the scoring process had a hierarchical structure. At the lower level, brain
networks are estimated for each individual, and at the upper level, they are integrated to enable group
analysis.

Moreover, a method to break up the hierarchical structure and make the network estimation
independent was considered. A score was created after the network was given. Because the glasso
method was useful and faster for network estimation, we incorporated the glasso into our algorithm to
estimate the network. The method of calculating the score while estimating the network tended to be
more accurate in predicting the score than the method of calculating the score after the network
estimation was completed. Because their prediction accuracies were not very different, we considered
that the independent estimation method offered a more precise network estimation. Furthermore, as
the score is decomposed into multiple components like principal component analysis, data-driven
network decomposition is possible and networks useful for diagnosis can be selected. Thus, the score
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structure of the proposed method may allow for more detailed interpretation of the analysis results.
Despite these advantages, setting tuning parameters remains a challenge. Theoretically, it is possible

to set many parameters to adjust sparseness, but this must be restricted if the sample size for training
is small. In practice, we applied a simplification but it may be an open question as to how many
parameters to set. Moreover, the same may be said for the tuning parameters used to adjust the degree
of supervision. In the real data used in this study, the difference in SSHCA scores between the disease
group and the healthy group was small and difficult to discriminate. This may be the reason why the
tuning parameter µ = 1 was chosen in the proposed method. It will be a challenge to investigate this in
various stages of AD progression.

Although there are many machine learning methods, the focus of this study was to determine if
the proposed network scores were useful as features. Although limited methods were applied for this
reason, the simulation study and the analysis of the real data showed that all the methods produced
scores that could be predicted with a certain degree of accuracy. In view of this, it was possible to
estimate disease prediction probabilities with good disease prediction accuracy using simple methods,
such as a multiple logistic regression model (with variable selection) when using the proposed scores.
Such a simple model has been used in many clinical studies because they make interpretation of results
easier and may be very useful for interpreting results without discussing explanatory possibilities in
complex models.

Neural networks have been developed in recent years, and their deep learning has become
increasingly useful in neuroimaging [16]. The graph neural network is specialized to perform the
network analysis targeted in this study. This method takes a given network as input and requires the
network to be estimated a priori. In the latest research [17], Pearson’s correlation coefficient is used to
estimate the network first, and then graph neural networks are applied. We attempted to improve upon
the sequential approach used in existing methods, in which a regression analysis is performed after
network estimation. Such a network estimation method based on correlation coefficients describes
relationships between brain regions, and these relationships do not necessarily include the relationship
with diseases. This is unlikely to directly improve the accuracy of the diagnostic or predictive models
targeted in this study. It is expected that the accuracy will be improved if not only the network
estimation but also the relationship with the disease is included in the scoring. The results of
numerical experiments and applications in this paper show that scoring has a certain accuracy in
diagnosis and network estimation simultaneously, and moreover, there was not much difference in
terms of prediction accuracy between neural networks or other machine learning methods and simple
logistic regression analysis. In general, neural networks are more likely to have complexity and still
need stability in terms of interpretability. On the contrary, the scores of the proposed method have a
linear structure, and the application of a linear logistic regression model to them ensures prediction
accuracy, which is advantageous in that it preserves the interpretability of linearity. Nevertheless, the
application of the proposed scores to graph neural networks is interesting and could be a
future challenge.

The proposed method has many potential extensions, and it could be used to estimate directed
networks with arrows between nodes. It could also be used for dynamic modeling, as mentioned in the
methods section. To interpret the results, we needed to simplify the method and have discussions with
experts, which is beyond the scope of this study. The scoring used in this method could be incorporated
into the multiblock method by [29]. This method enabled us to evaluate the relationship between rs-
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fMRI and other brain images, such as structural MRI, while scoring. This is called multimodal analysis
and is one of the most important analyses in brain image analysis [31]. This has not been developed
within the framework of the aforementioned graph neural networks, which is another useful aspect of
our method. Scoring could be considered as a dimension reduction and could contribute not only to
discrimination, but also to subtype classification by clustering. [32] performed network clustering on
genetic data and [33] analyzed the relationship between structural MRI and estimated networks from
non-imaging data such as CSF and blood biomarkers. Thus, this is expected to be a method of analysis
that can be used to develop many brain studies.

Our method is applicable to other medical data as well, and may be useful for general clinical
data, education and social medicine. Since our method has an element of dimension reduction, it is
useful in high-dimensional data analysis, and a representative area is genetic data, which was also the
subject of analysis in [32]. In recent years, with the development of measuring instruments, especially
single-cell RNA-sequencing (scRNA-seq) measurements, it has become possible to make more precise
measurements, identify known novel cell types and characterize gene-gene interactions within each
cell type. Because of the heterogeneity revealed in scRNA-seq data among various cell types in the
same tissue, cell-type-level gene networks are expected to reveal gene-gene interactions that have not
been revealed in previous tissue-level gene networks. As described in [34], the method of analysis is
closely related to the functional brain networks targeted in this study. Many statistically challenging
issues have been pointed out, and it may be possible to develop the framework of our method toward
these issues.

5. Conclusions

We developed a method to estimate diagnostic probability from rs-fMRI data using supervised and
data-driven (sub) network estimation. The scoring method and its algorithm were introduced and
simulation analysis and application to real brain imaging data revealed that the regression model with
the created scores could predict diseases with higher accuracy. There are several potential extensions
of this method, and future work is to apply it to various diseases and obtain new medical knowledge.
Our method can assist in the construction of brain disease biomarkers from functional imaging data.
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Appendix

A diagram representing the analysis procedure in this study is shown in Figure A1. Particularly
original is the scoring method and the algorithm used to derive it.

Figure A1. Diagram for the analysis procedure.

This section also provides the rationality of the algorithm in Section 2. First of all, we present a
lemma provided by [35]. Let β̂ be the minimizer of β2 − 2yβ + pλ(|β|). For the penalty pλ(|θ|) = 2λ|θ|,
the β̂ is given by β̂ = hλ(y) = sign(y)(|y| − λ)+, where (x)+ = max(0, x). This fact is used to derive a
reasonable algorithm for solving the optimization problem.

Next, the notations are given as follows. Individual data is denoted by T × M matrix Xi =

(xi,1, xi,2, . . . , xi,M), i = 1, 2, . . . , n, xi,m = (xi,m(1), xi,m(2), . . . , xi,m(T ))⊤. Sub data subtracting m-th
column is denoted by T × (M − 1) matrix Xi,(−m) = (xi,1, . . . , xi,m−1, xi,m+1, . . ., xi,M). This can be
represented with Xi,(−m) = (xi,(−m)(1), xi,(−m)(2), . . . , xi,(−m)(T ))⊤ and
xi,(−m)(t) = (xi,1(t), . . . , xi,m−1(t), xi,m+1(t), . . . , xi,M(t))⊤.

The scores have a hierarchical structure, and there are three types of scores: population, individual
top and individual bottom. The population score is given by s = S2w2 where
w2 = (w2,1,w2,2, . . . ,w2,M)⊤, S2 is the n×M matrix with the (i,m)-element s2,i,m which is the individual

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17702–17725.

http://dx.doi.org/https://doi.org/10.1016/j.jmva.2007.06.007


17720

top score. s2,i,m =
∑T

t=1 s3,i,m(t)w3,i(t) = s3,i,mw3,i with w3,i = (w3,i(1),w3,i(2), . . . ,w3,i(T ))⊤ and the
individual bottom score s3,i,m(t) defined by s3,i,m(t) = x⊤i,(−m)(t)w4,i,m and w4,i,m is the n-dimensional
weight vector. The hierarchical structure can be seen by writing down the scores as follows.

s = S2w2 =

M∑
m=1

w2,m

 T∑
t=1

w3(t) ◦ s3,m(t)


where w3(t) = (w3,1(t),w3,2(t), . . . ,w3,n(t))⊤, s3,m(t) = (s3,1,m(t), s3,2,m(t), . . . , s3,n,m(t))⊤ and ◦ denotes the
Hadamard product (the element-wise product). Using this notation, the individual bottom score can be
rewritten as follows.

s3,m(t) = X(−m)(t)w4,m

where w4,m = (w⊤4,1,m, . . . ,w
⊤
4,n,m)⊤, X(−m)(t) = diag(x⊤1,(−m)(t), x

⊤
2,(−m)(t), . . . , x

⊤
n,(−m)(t)) is the n× n(M − 1)

matrix.

A.1. Optimization function

First, consider Eq 2.1 as the optimization problem max L0(w) subject to ∥w2∥
2 = 1,∥w3,i∥

2 = 1,
∥w4,i,m∥

2 = 1 where

L0(w) = {L01(w2,w3,w4) − P2,λ2(w2)} + {L02(w3,w4) − P3,λ3(w3)} + {L03(w4) − P4,λ4(w4)}

The first term on the right side of L0(w) is given by

L01(w2,w3,w4) = (1 − µ) × cov(s,u) + µ × cov(s, Z)

with 0 ≤ µ ≤ 1. Note that we actually considered the covariance of s (i.e., the variance of s), but the
algorithm used an iterative calculation similar to the principal component analysis, where one score was
fixed and the weight for the other score was calculated, then reversed and the weight was calculated
again. For this purpose, we prepared a vector u which has the same length as s. The covariance is
defined as follows:

cov(s,u) = s⊤u =
 M∑

m=1

w2,ms2,m

⊤ u =
M∑

m=1

w2,ms⊤2,mu

=

M∑
m=1

w2,m

 T∑
t=1

w⊤3 (t) ◦ s⊤3,m(t)

u

=

M∑
m=1

w2,m

 T∑
t=1

w⊤3 (t) ◦ {w⊤4,mX⊤(−m)(t)}

u
Thus, we see that L01(w2,w3,w4) depends on w2,w3 and w4. The function L02(w3,w4) in the second
term on L0(w) is given by

L02(w3,w4) =
n∑

i=1

cov(s2,i,u2,i)
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where s2,i is the M-dimensional vector with the m-th element s2,i,m. As in the first term, prepared a
vector u2,i of the same length as s2,i for the iterative calculation. The covariance is given by
cov(s2,i,u2,i) = s⊤2,iu2,i = w⊤3,iS

⊤
3,iu2,i where S3,i is the T × M matrix with the (t,m)-element

s3,i,m(t) = x⊤i,(−m)(t)w4,i,m. Thus, we see that L02(w3,w4) depends on w3 and w4.
The function L03(w4) in the third term on L0(w) is given by

L03(w4) =
n∑

i=1

M∑
m=1

cov(s3,i,m, xim)

where s3,i,m is the T -dimensional vector with the t-th element s3,i,m(t) = x⊤i,(−m)(t)w4,i,m, and the is
covariance defined as cov(s3,i,m, xim) = s⊤3,i,mxim = w⊤4,i,mX⊤i,(−m)xim. Thus, we see that L03(w4) depends
on only w4.

The weights of each term were regularized.

P2,λ2(w2) = Pλ2(w2), P3,λ3(w3) =
n∑

i=1

Pλ3,i(w3,i), P4,λ4(w4) =
n∑

i=1

M∑
m=1

Pλ4,i,m(w4,i,m)

Pλ(x) = 2λ|x| and Pλ(x) = 2λ
∑

j |x j| =
∑

j Pλ(x j).

A.1.1. Optimization

In order to solve the optimization problem max L0(w) subject to ∥w2∥
2 = 1,∥w3,i∥

2 = 1, ∥w4,i,m∥
2 = 1,

we consider the Lagrangian optimization problem max L1(w), where

L1(w) = L0(w) − η2∥w2∥
2 −

n∑
i=1

η3,i∥w3,i∥
2 −

n∑
i=1

M∑
m=1

η4,i,m∥w4,i,m∥
2

with η2 > 0, η3,i > 0 and η4,i,m > 0 are the Lagrange multiplier.
A population weight w2 for X is obtained by considering the following objective function:

L11(w2) = L01(w2,w3,w4) − Pλ2(w2) − η2∥w2∥
2

= (1 − µ) × cov(s,u) + µ × cov(s, Z) − Pλ2(w2) − η2∥w2∥
2

=

M∑
m=1

w2,ms⊤2,m{(1 − µ) × u + µ × Z} − Pλ2(w2) − η2∥w2∥
2

=

M∑
m=1

[
w2,ms⊤2,m{(1 − µ) × u + µ × Z} − Pλ2(w2,m) − η2w2

2,m

]
From the Lemma, w2 such that L11(w2) is maximized is as follows.

argmaxL11(w2) =
1
η2

hλ2m(s⊤2,m((1 − µ) × u + µ × Z)) =: w̃2

The final estimate is obtained by normalizing ŵ2 = w̃2/∥w̃2∥.
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Similarly, an individual top weight w3 for X is obtained by considering the following objective
function:

L12(w3) = L01(w2,w3,w4) + L02(w3,w4) − Pλ3(w3) −
n∑

i=1

η3,i∥w3,i∥
2

= (1 − µ) × cov(s,u) + µ × cov(s, Z) +
n∑

i=1

{cov(s2,i,u2,i) − Pλ3,i(w3,i)} −
n∑

i=1

η3,i∥w3,i∥
2

The individual top weight w3 depends on functions L01(w2,w3,w4) and L02(w3,w4). We write this
expression for each element i.

L121(w3,i) :=
M∑

m=1

{w2,m((1 − µ)ui + µZi)s3,i,mw3,i} + w⊤3,iS
⊤
3,iu2,i − Pλ3,i(w3,i) − η3,i∥w3,i∥

2

From the Lemma, w3,i such that L121(w3,i) is maximized is as follows.

argmaxL121(w3,i) =
1

2η3,i
hλ2m

 M∑
m=1

{w2,m((1 − µ)ui + µZi)s3,i,m} + S⊤3,iu2,i

 := w̃3,i

and the final estimate is obtained by normalizing ŵ3,i = w̃3,i/∥w̃3,i∥.
A individual bottom weight w4 for X is obtained by considering the following objective function:

L131(w4) = L01(w2,w3,w4) + L02(w3,w4) + L03(w4) − Pλ4(w4) −
n∑

i=1

M∑
m=1

η4,i,m∥w4,i,m∥
2

= (1 − µ)cov(s,u) + µ × cov(s, Z) +
n∑

i=1

cov(s2,i,u2,i)

+

n∑
i=1

M∑
m=1

{cov(s3,i,m, xim) − Pλ4,i,m(w4,i,m)} −
n∑

i=1

M∑
m=1

η4,i,m∥w4,i,m∥
2

The individual bottom weight w4 depends on functions L01(w2,w3,w4), L02(w3,w4) and L03(w4).
There are several possible optimizations for w4. Since the first is the so-called the coordinate descent

method, we refer to it as “corde” for short. For “corde”, we rewrite L13(w4) by each elements i and m.

L1311(w4,i,m) := w2,m((1 − µ)ui + µZi)w⊤3,iXi,(−m)w4,i,m + u2,i,mw⊤3,iXi,(−m)w4,i,m

+ x⊤imXi,(−m)w4,i,m − Pλ4,i,m(w4,i,m) − η4,i,m∥w4,i,m∥
2

= [{((1 − µ)ui + µZi)w2,m + u2,i,m}w⊤3,i + x⊤im]Xi,(−m)w4,i,m − Pλ4,i,m(w4,i,m) − η4,i,m∥w4,i,m∥
2

=
∑

m2,m

{{((1 − µ)ui + µZi)w2,m + u2,i,m}w⊤3,i + x⊤im}xi,m2w4,i,m,m2

− Pλ4,i,m(w4,i,m,m2) − η4,i,mw2
4,i,m,m2

}

From the Lemma, w4,i,m such that L1311(w4,i,m) is maximized is as follows.

argmaxL1311(w4,i,m) =
1

2η4,i,m
hλ4,i,m

(
X⊤i,(−m)[{((1 − µ)ui + µZi)w2,m + u2,i,m}w3,i + xi]

)
=: w̃4,i,m
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Thus, the final estimate is obtained by normalizing ŵ4,i,m = w̃4,i,m/∥w̃4,i,m∥.

In the expression L01(w2,w3,w4) + L02(w3,w4) + L03(w4) of the objective function L13(w4) for w4,
the upper level weights w2 and w3 are dependent. Ignoring this dependency, we consider an objective
function with only w4, then the alternative object function for the bottom weight w4 is given as follows.

L132(w4) = L03(w4) − Pλ4(w4) −
n∑

i=1

M∑
m=1

η4,i,m∥w4,i,m∥
2

=

n∑
i=1

M∑
m=1

{cov(s3,i,m, xim) − Pλ4,i,m(w4,i,m)} −
n∑

i=1

M∑
m=1

η4,i,m∥w4,i,m∥
2

The corresponding “corde” in this objective function is referred to as “corde.ind”, and “glasso” can
also be applied. These details are given below.

For “corde.ind”, we rewrite L13(w4) by each elements i and m.

L1321(w4,i,m) := x⊤imXi,(−m)w4,i,m − Pλ4,i,m(w4,i,m) − η4,i,m∥w4,i,m∥
2

=
∑

m2,m

{x⊤imxi,m2w4,i,m,m2 − Pλ4,i,m(w4,i,m,m2) − η4,i,mw2
4,i,m,m2

}

From the Lemma, w4,i,m such that L1321(w4,i,m) is maximized is as follows.

argmaxL1321(w4,i,m) =
1

2η4,i,m
hλ4,i,m(X⊤i,(−m)xi) =: w̃4,i,m

Thus, the final estimate is obtained by normalizing ŵ4,i,m = w̃4,i,m/∥w̃4,i,m∥.

The “corde” was based the both functions L131(w4) and L132(w4). If the network estimation was
to be implemented independently, then a graphical lasso solution would be available for the network
estimation. The “glasso” is based the only function L132(w4). For the variance-covariance matrix Σi

and the sample variance-covariance matrix Σ̂i = X⊤i Xi, the subfunction L1323(w) of objective function
L132(w4) is given as follows.

L1322(w4,i,m) =
1
2
∥yi,m − Σ

1
2
i w4,i,m∥

2

where yi,m = Σ
−1/2
i σ̂i,m and w4,i,m = Σ

−1
i σi,m, and σi,m and σ̂i,m are the mth column elements of Σi and Σ̂i,

respectively. The repeated optimization is applied until Σ and Σ−1
i converge. See [28] for more details.

This method was referred as “SSHCA-glasso”.
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Table A1. Simulation study results for nsample = 100, nedge = 100 and ncomp = 4.

nedgedif Methods µ pathauc scorecvauc allmean
5(5%) SSHCA-corde 0.0 0.782 0.513 0.692

0.5 0.823 0.879 0.842
1.0 0.836 0.991 0.888

SSHCA-corde.ind 0.0 0.871 0.528 0.757
0.5 0.730 0.824
1.0 0.983 0.909

SSHCA-glasso 0.0 0.907 0.518 0.777
0.5 0.699 0.837
1.0 0.983 0.932

glasso 0.720 0.541 0.660
20(20%) SSHCA-corde 0.0 0.781 0.504 0.689

0.5 0.808 0.874 0.830
1.0 0.816 0.992 0.875

SSHCA-corde.ind 0.0 0.852 0.553 0.753
0.5 0.721 0.809
1.0 0.983 0.896

SSHCA-glasso 0.0 0.872 0.541 0.761
0.5 0.756 0.833
1.0 0.979 0.907

glasso 0.707 0.625 0.680

Figure A2. Results of simulation studies for different regression models.
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A.1.2. Additional simulation results

Here, we showed the results when nsample was changed to 100 using the same settings as in the
simulation study with results on the Tables 2 and 3. As nsample was increased, the overall value
became better.

Other results of the simulation study are illustrated in Figure A2. The results for the regression
models were averaged in the text, but here we have illustrated the results for each regression model
when averaged over the other simulation parameters. The models were generalized linear model (glm),
glmnet, support vector machine (svmRadial), random forests (rf) and neural networks (nnet). The
results show that the prediction accuracy is not so different among the regression models.

Table A2. Simulation study results for nsample=100, nedge=50 and ncomp=4.

nedgedif Methods µ pathauc scorecvauc allmean
5(10%) SSHCA-corde 0.0 0.904 0.512 0.773

0.5 0.907 0.792 0.869
1.0 0.918 0.979 0.938

SSHCA-corde.ind 0.0 0.522 0.804
0.5 0.944 0.698 0.862
1.0 0.986 0.958

SSHCA-glasso 0.0 0.508 0.800
0.5 0.946 0.659 0.850
1.0 0.961 0.951

glasso 0.926 0.542 0.798
20(40%) SSHCA-corde 0.0 0.887 0.544 0.772

0.5 0.890 0.846 0.875
1.0 0.896 0.986 0.926

SSHCA-corde.ind 0.0 0.525 0.761
0.5 0.880 0.672 0.810
1.0 0.965 0.908

SSHCA-glasso 0.0 0.565 0.815
0.5 0.940 0.757 0.879
1.0 0.979 0.953

glasso 0.909 0.686 0.835
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