
MBE, 20(10): 17726–17746.

DOI: 10.3934/mbe.2023788

Received: 28 June 2023

Revised: 05 August 2023

Accepted: 13 August 2023

Published: 15 September 2023

http://www.aimspress.com/journal/MBE

Research article

Online data poisoning attack against edge AI paradigm for IoT-enabled

smart city

Yanxu Zhu1,3,4, Hong Wen1,3,4,*, Jinsong Wu2,5 and Runhui Zhao1,3,4

1 School of Aeronautics and Astronautics, University of Electronic Science and Technology of China,
Chengdu 611731, China

2 School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 510004, China
3 Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province,
Chengdu 611731, China
4 Intelligent IoT Communication Technology Engineering Research Center, Chengdu 611731, China
5 Department of Electrical Engineering, University of Chile, Santiago 8370451, Chile

* Correspondence: Email: sunlike@uestc.edu.cn; Tel: +8613882228239.

Abstract: The deep integration of edge computing and Artificial Intelligence (AI) in IoT (Internet
of Things)-enabled smart cities has given rise to new edge AI paradigms that are more vulnerable
to attacks such as data and model poisoning and evasion of attacks. This work proposes an online
poisoning attack framework based on the edge AI environment of IoT-enabled smart cities, which
takes into account the limited storage space and proposes a rehearsal-based buffer mechanism to
manipulate the model by incrementally polluting the sample data stream that arrives at the
appropriately sized cache. A maximum-gradient-based sample selection strategy is presented,
which converts the operation of traversing historical sample gradients into an online iterative
computation method to overcome the problem of periodic overwriting of the sample data cache
after training. Additionally, a maximum-loss-based sample pollution strategy is proposed to solve
the problem of each poisoning sample being updated only once in basic online attacks,
transforming the bi-level optimization problem from offline mode to online mode. Finally, the
proposed online gray-box poisoning attack algorithms are implemented and evaluated on edge
devices of IoT-enabled smart cities using an online data stream simulated with offline open-grid
datasets. The results show that the proposed method outperforms the existing baseline methods in
both attack effectiveness and overhead.

17727

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

Keywords: data poisoning attack; online learning; edge Artificial Intelligence

1. Introduction

Artificial Intelligence (AI) services have been widely adopted in various fields of smart city such
as industrial manufacturing, enterprise services and daily consumption. These services, including
unmanned driving, e-commerce, smart homes, and smart finance, have profoundly transformed
people’s lifestyles and enhanced production efficiency [1,2]. Edge computing has become popular due
to its advantages of ultra-low latency, energy efficiency, and strong scalability, which allows it to share
the computing resources and service pressure of the cloud center and optimize the computing
architecture of AI services. This in turn creates favorable conditions for pushing the AI frontier to the
IoT (Internet of Things)-enabled edge, which resides at the last mile of the Internet [3]. The continuous
convergence of edge computing and artificial intelligence has led to the emergence of a new paradigm
called edge intelligence (edge AI paradigm) [4–6]. The edge AI paradigm enables end entities in the
networks to make decisions based on local data instead of sending it to the remote cloud [7]. The
deployment of AI models on edge nodes enables AI training and inference and provides AI services to
terminal devices. However, the edge AI paradigm is more vulnerable to attacks due to less potent
security protocols on the resource-constrained edge hardware [8]. In the edge AI environment,
attackers can easily masquerade as legitimate user terminals to generate malicious data online and
attack the edge AI model. Therefore, it is imperative to evaluate potential attacks that can target AI
models at the edge, especially in the context of smart cities.

Among the potential attacks, the most destructive attack is data poisoning attacks (DPA). Current
offline DPA are not suitable for the online learning process used in the edge AI paradigm, where most
learning tasks involve predicting continuous data rather than classification, unlike the image
processing or classification scenarios that data poisoning attacks primarily focus on. Although some
studies have investigated online DPA based on resource-rich environments, these methods are not
applicable in resource-constrained IoT-enabled smart cities environments, where the problem of
periodic overwriting of training samples cannot be handled. Moreover, existing online attack methods
use randomly selected sample points for attacks, which are not ideal for expensive bi-level
optimization attack strategies. Therefore, existing research on DPA is not suitable and there is a need
to optimize existing online attacks to adapt to resource-constrained environments, while enhancing the
efficiency of attacks under online mode. Therefore, the main contributions of this work are as follows:

• It proposes an online poisoning attack framework based on the edge AI environment of IoT-
enabled smart city for the first time. The framework takes into account the limited storage space in the
AI edge environment and proposes a rehearsal-based buffer mechanism to manipulate the model by
incrementally polluting the sample data stream that arrives at the appropriately sized cache to optimize
the efficiency of the attack.

• It proposes a maximum-gradient-based sample selection strategy that overcomes the problem
of periodic overwriting of the sample data cache after training. This strategy converts the operation of
traversing historical sample gradients into an online iterative computation method.

• It proposes a maximum-loss-based sample pollution strategy that solves the problem of each
poisoning sample being updated only once in the gradient ascent direction in basic online DPA. This
strategy transforms the bi-level optimization problem from the offline mode to the online mode.

17728

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

• It implements online gray-box poisoning attack algorithms with the framework and strategies
mentioned above. It evaluates the effectiveness and overhead of the proposed attack on edge devices
of IoT-enabled smart city using an online data stream simulated with offline open-grid datasets.

The rest of this paper is organized as follows. Section 2 presents the related works on data
poisoning attack. Section 3 describes the basic settings, symbol notations and related issues of the five
elements relevant to offline and online DPA. Section 4 presents an online incremental poisoning attack
framework in the edge AI environment of IoT-enabled smart cities and provides a detailed description
of the proposed sample selection and pollution strategies. Section 5 introduces online algorithms for
gray-box poisoning attack with maximum-gradient-based sample selection strategy and maximum-
loss-based sample pollution strategy. Section 6 presents the experiment and result analysis. Finally,
Section 7 concludes this paper.

2. Related works

Offline DPA has received extensive attention in the research community, mainly focusing on
interfering with the training process of offline or batch learning algorithms. In this setting, attackers
repeatedly poison randomly selected samples in the direction of maximum gradient and construct a
poisoned sample set that maximizes the loss. At the end of attacks, the constructed poisoned sample
set is inserted into the end of the legitimate sample set one-time. Since the pioneering work of the
Biggio team [9], DPA has undergone significant development, and a large amount of research has been
carried out based on their work. Among them, the Mei team [10] formalized the poisoning problem as
a bi-level optimization problem. To improve efficiency, some teams have proposed label flipping [11]
and statistically-based [12] poisoning methods, which do not require model fitting and reduce the
algorithmic complexity. Although these two methods have a low algorithmic complexity, they are
easily detected and discarded by human examiners or automated detectors. For most machine learning
or artificial intelligence models [13], the gradient ascent method is the most computationally expensive
method, but it is the most effective and confidential [14].

Online DPA has drawn increasing attention in recent years. In the setting of online DPA, attackers
contaminate the arriving samples in a specific order to achieve the attack objective of accumulating
loss. There are four main challenges brought to offline DPA in online environment. First, due to the
inability to obtain the entire sample set, the baseline clean dataset for constructing poison samples can
only be built from the current cache or historical sample set. Second, the order in which samples arrive
is also a factor to be considered in poisoning attacks. Third, offline DPA can poison any position in the
sample set, while in online mode, only the current cache samples can be poisoned. Fourth, high-cost
attack methods in offline mode may become inappropriate. To solve the problem of unknown sample
sets, Burkard and Lagesse [15] proposed heuristic attacks against support vector machines (SVM)
learning from data streams. This method is more like fake online attacks (with full knowledge of future
samples, referred to as the clairvoyant online DPA [16]), which obviously does not conform to the
premise assumption of online mode. Zhang et al. [16] and Margiotta et al. [17] used the Markov
decision process method to model the online DPA problem, which is also based on the premise of
knowing the probability distribution of the samples. Although they also propose to build an
increasingly accurate empirical distribution from historical sample data, it cannot solve the problem of
high cost of model predictive control and sample distribution bias. Some papers [18–20] have studied
the calculation and optimization methods of sample influence, but unfortunately, these methods are

17729

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

based on the hat matrix or Hessian matrix constructed from the entire sample set in offline mode and
are not applicable to online mode. The work closest to ours is Wang and Chaudhuri [21], applied
gradient-based offline methods to online DPA and proposed a sample selection method based on
maximum recursive gradient. Moreover, in edge AI environments where historical samples are
periodically overwritten, the absence of some historical samples makes it impossible to compute the
recursive gradient. Therefore, our approach differs from theirs in that we adopt a rehearsal buffer-based
method for calculating recursive gradient incrementally, which addresses the issue of periodic
overwriting of the sample data cache after training in edge AI environment.

3. Preliminary

AI models typically contain five elements [22]: feature space, learning type (e.g., regression or
SVM), learning algorithm, learning hyperparameters and training datasets. Based on attackers’ degree
of knowledge over these five elements and the type of elements involved, DPA can be classified into
different types. This section describes the basic settings, symbol notation and related issues of the five
elements relevant to offline and online DPA. The definitions of the symbols used in this paper are
shown in Table 1.

Table 1. Notation description.

Symbol Description

ℝேൈ௄ Feature space of dataset

𝐷௧௥௡,𝐷௧௦௧ Training dataset and testing dataset

𝑋௡೟ೝ೙ൈ௞
௧௥௔௜௡ ,𝑦௧௥௔௜௡ Feature matrix and label vector of training dataset

𝑋௡೟ೞ೟ൈ௞
௧௘௦௧ ,𝑦௧௘௦௧ Feature matrix and label vector of testing dataset

ℎሺ𝑿ሻ Learning model

𝒥ሺ𝐷௧௥௡,𝜽ሻ Objective function with learning parameter 𝜽

𝓛ሺ𝐷௧௥௡,𝜽ሻ Loss function with learning parameter 𝜽

𝜴ሺ𝜽ሻ,𝝀 The regularization term, regularization factor

𝜽௜ିଵ,𝜽௜ Model parameter before and after one iteration of learning

𝛻𝜽೔𝒥ሺ𝐷௦,𝜽௜ሻ Gradient of the objective function with respect to the model parameter

𝐷௣ Poisoned sample set

𝜽∗,𝜃௣∗,𝜽௧ Parameter under normal training, parameter after attack, parameter of time slice t

𝛼,𝜀 Learning rate, convergence condition

𝛱 Projection operator

𝑏 Cache size

𝐷௖௔௖௛௘భ:௖௔௖௛௘೅ The samples that have been trained in the past time slices

𝛾 The poisoning rate

𝑛௣
ሺ௧ሻ The number of poisoned samples in time slice

𝒙௠௔௫_௚௥௔ௗ௜௘௡௧ Feature vector of the sample with the highest gradient

𝑝 The size of rehearsal buffer

3.1. Basic setting and notation

For the feature space ℝேൈ௄, the total number of feature vectors and the dimension of each feature

17730

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

vector are represented as 𝑁ሺ𝑁~∞ሻ and 𝑘, respectively. Given a training sample set and a test sample
set, denoted as 𝐷௧௥௡ ൌ ሼ𝑋௡೟ೝ೙ൈ௞

௧௥௔௜௡ ,𝑦௧௥௔௜௡ሽ and 𝐷௧௦௧ = ሼ𝑋௡೟ೞ೟ൈ௞
௧௘௦௧ , 𝑦௧௘௦௧ሽ , 𝑋௡೟ೝ೙ൈ௞

௧௥௔௜௡ ,𝑋௡೟ೞ೟ൈ௞
௧௘௦௧ ∈

ℝேൈ௄,𝑛௧௥௡,𝑛௧௦௧ ൏ 𝑁. 𝑋௡೟ೝ೙ൈ௞
௧௥௔௜௡ and 𝑋௡೟ೞ೟ൈ௞

௧௘௦௧ represent the training feature matrix and the test feature

matrix consisting of 𝑛௧௥௡ and 𝑛௧௦௧ feature vectors from the feature space, 𝑦௧௥௔௜௡ and 𝑦௧௘௦௧
represent the corresponding label vectors. Given the learning model 𝑦 ൌ ℎሺ𝑿ሻ and objective function
𝒥ሺ𝐷𝑡𝑟𝑛,𝜽ሻ, where 𝜽 represents the learning parameter of the model, the normal training goal is to
calculate the optimal parameter 𝜽∗ for the minimum objective function shown in Eq (1). Equation (2)
gives the expression of the objective function, where 𝓛ሺ𝐷௧௥௡,𝜽ሻ represents the loss function, 𝜴ሺ𝜽ሻ
and 𝝀 represent the regularization term and their corresponding regularization factor. Equation (3)
gives the iterative process for solving the objective function using a learning algorithm (taking gradient
descent algorithm as an example), where 𝛼 represents the learning rate of the iteration, 𝜽௜ିଵ and 𝜽௜
represents the model parameter before and after one iteration of learning and 𝛻𝜽೔𝒥ሺ𝐷௦,𝜽௜ሻ represents
the gradient of the objective function with respect to the model parameter. The learning algorithm
terminates and obtains the optimal parameter when meeting the convergence condition 𝜀 in Eq (4),
which is usually set to 1 ൈ 10ି଼.

 𝜽∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛𝒥ሺ𝐷௧௥௡,𝜽ሻ (1)

 𝒥ሺ𝐷௧௥௡,𝜽ሻ ൌ 𝓛ሺ𝐷௧௥௡,𝜽ሻ ൅ 𝝀𝜴ሺ𝜽ሻ (2)

 𝜽௜ ൌ 𝜽௜ିଵ െ 𝛼𝛻𝜽೔షభ𝒥ሺ𝐷௕௔௖௧௖௛೔షభ ,𝜽௜ିଵሻ (3)

 |𝒥ሺ𝐷௧௥௡,𝜽௜ሻ െ 𝒥ሺ𝐷௧௥௡,𝜽௜ିଵሻ| ൏ 𝜀 (4)

Learning algorithms can be divided into two types: offline and online. The former mainly includes
algorithms such as stochastic gradient descent (SGD), mini-batch gradient descent (MBGD) and batch
gradient descent (BGD). The latter primarily consists of algorithms like online gradient descent (OGD)
and online mini-batch gradient descent (OMBGD). The biggest difference between offline and online
learning algorithms is the way in which the training sample set is obtained and used [23]. The sample
set used by offline learning algorithms is known and fixed (can be trained repeatedly), while the sample
set used by online learning algorithms is gradually obtained over time (each sample is only trained
once) and future samples are unknown. Therefore, DPA is also divided into offline DPA and online
DPA based on the different learning algorithms.

3.2. Offline DPA

For the above AI models, the basic offline DPA attack can be formalized as a bi-level optimization
problem as shown in Eq (5), where 𝐷௧௦௧ represents the clean test sample set, 𝐷௣ represents the
poisoned sample set, 𝜃௣∗ represents the poisoned parameter learned by the model and 𝐷௧௥௡ is the
baseline clean dataset used for constructing 𝐷௣. According to the definition of Eq (1), we can know
that the inner optimization 𝜃௣∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛ఏ𝒥ሺ𝐷௧௥௡ ∪, 𝜃ሻ in Eq (5) represents the usual minimization
of the model loss during the fitting of a model on both the clean training dataset 𝐷௧௥௡ and the poisoned
dataset 𝐷௣ and that the outer optimization 𝑎𝑟𝑔𝑚𝑎𝑥஽೟ೞ೟𝒥ሺ𝐷௧௦௧ ,𝜃௣

∗ሻ represents the maximization of
the prediction loss under the influence of the poisoned parameter 𝜃௣∗. Equation (6) uses gradient ascent

to contaminate data points 𝑝௜ , making their sample values 𝐷௣೔
ሺ௧ሻ contaminated as 𝐷௣೔

ሺ௧ାଵሻ , where

𝛻
஽೛೔
ሺ೟ሻ𝒥 ሺ𝐷௧௦௧ ,𝜃௣೔

ሺ௧ሻሻ represents the gradient of the objective function at the data point 𝑝௜, 𝛼 represents

the learning rate of iteration and 𝑡 is the number of iterations. 𝛱 represents the projection operator,

17731

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

which projects the contaminated sample values into the feasible domain of the feature space.

 𝑎𝑟𝑔𝑚𝑎𝑥஽೟ೞ೟𝒥ሺ𝐷௧௦௧ ,𝜽௣
∗ ሻ 𝑠. 𝑡.𝜽௣∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝒥ሺ𝐷௧௥௡ ∪ 𝐷௣,𝜽ሻ (5)

 𝐷௣೔
ሺ௧ሻ ൌ 𝛱ሺ𝐷௣೔

ሺ௧ିଵሻ ൅ 𝛼𝛻
஽೛೔
ሺ೟షభሻ𝒥 ሺ𝐷௧௦௧ ,𝜽௣೔

ሺ௧ିଵሻሻሻ (6)

Figure 1 shows the schematic diagram of offline DPA. In the figure, rectangles represent training
samples, where green rectangles represent normal samples and red rectangles represent poisoned
samples. Rounded squares represent model parameters, with red rounded squares representing
poisoned parameters after the poisoning attack is completed. Diamonds represent decision conditions.
Black solid arrows indicate the normal training process, which is demonstrated using the MBGD
algorithm as an example in the figure, where the batch size is 𝑏 (𝑏 ൌ 1 for SGD algorithm and 𝑏 ൌ
𝑛 for BGD algorithm). The algorithm fits the model and computes parameters once using Eq (3) for
each batch of samples until convergence is reached. Red dashed arrows represent the inner
optimization loop mentioned in Eq (5), i.e., obtaining new convergent parameters through gradient
descent after the poisoned sample is added to the training set. Red solid arrows represent the outer
optimization loop mentioned in Eq (5), i.e., updating and maximizing the loss on the training sample
set using Eq (6), obtaining the optimal poisoned parameter 𝜽௣∗ finally. To maintain the generalization
of the model, the sample set is randomly reordered after each traversal and 𝐷௣ is also selected from
the training set randomly, which demonstrates that offline DPA does not consider any order of samples.

Figure 1. Schematic diagram of offline DPA.

3.3. Basic Online DPA

Figure 2 illustrates the schematic diagram of basic online DPA. In the figure, rectangles still
represent samples, with red ones indicating poisoned samples and green ones representing normal
samples. Rounded squares denote model parameters and red rounded squares indicate the poisoned
parameters after the poisoning attack is completed. White hollow arrow represents training order of
sample data stream. The black arrows demonstrate the normal training process using OMBGD as an
example. Here, 𝑐𝑎𝑐ℎ𝑒ଵ~𝑐𝑎𝑐ℎ𝑒் represent the samples that have been trained in the past time slices
(each time slice contains𝑏samples, defined as𝐷௖௔௖௛௘೟ ൌ ሼሺ𝒙௜ ,𝑦௜ሻሽ௜ୀሺ௧ିଵሻ௕ାଵ

௧௕ and since each sample

can only be used once, the objective function is defined as 𝑟𝑒𝑔𝑟𝑒𝑡 in Eq (7)). The online training goal
is to minimize 𝑟𝑒𝑔𝑟𝑒𝑡 as in Eq (8). From the definition of the formula, 𝑟𝑒𝑔𝑟𝑒𝑡 reflects the gap
between the cumulative loss ∑ 𝒥ሺ𝐷௖௔௖௛௘೟ ,𝜽௧ሻ

்
௧ୀଵ and the minimized loss

17732

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

𝑚𝑖𝑛
஽೎ೌ೎೓೐భ:೎ೌ೎೓೐೅∈ℝ

ಿൈ಼
∑ 𝒥ሺ𝐷௖௔௖௛௘భ:௖௔௖௛௘೅ ,𝜽௧ሻ்
௧ୀଵ up to time slice 𝑇. The minimized loss is equivalent to

the optimal loss obtained by offline training using all historical samples up to time slice 𝑇. In the
normal training process, the model parameters are updated using the samples in each time slice
according to Eq (9). When the convergence condition in Eq (10) is reached, the optimal parameter 𝜽∗
are obtained. By substituting Eq (7) into Eq (10), it can be concluded that the convergence condition
is equivalent to judging whether the loss of samples on the current time slice is sufficiently small. Due
to the inability to use training samples for fitting the model iteratively as in the offline mode, it is
necessary to determine whether the learning algorithm has reached the convergence condition after
each parameter update.

Figure 2. Schematic diagram of basic online DPA.

The red arrows show the process of online DPA. In this process, the attacker first selects an attack
sample point in the current time slice, such as choosing the sample point 𝐷௣మ್ ൌ ሼ𝒙ଶ௕,𝑦ଶ௕ሽ from time

slice 𝑐𝑎𝑐ℎ𝑒ଶ to start the attack. According to Eq (11), the sample is poisoned, 𝐷௣೔
ሺ௧ିଵሻ and 𝐷௣೔

ሺ௧ሻ

represent the samples before and after poisoning. Then, the poisoned sample point is trained together
with other normal sample points. In the same way, points are selected, polluted and the model is trained
in the subsequent time slices 𝑐𝑎𝑐ℎ𝑒ଷ to 𝑐𝑎𝑐ℎ𝑒். Finally, at time slice 𝑇, the convergence condition
is reached and the optimal poisoned parameter 𝜽௣∗ is obtained.

 𝑟𝑒𝑔𝑟𝑒𝑡 ሺ𝑇ሻ ൌ ∑ 𝒥ሺ𝐷௖௔௖௛௘೟ ,𝜽௧ሻ
்
௧ୀଵ െ 𝑚𝑖𝑛

௖௔௖௛௘భ:௖௔௖௛௘೅∈ℝಿൈ಼
∑ 𝒥ሺ𝐷௖௔௖௛௘భ:௖௔௖௛௘೅ ,𝜽௧ሻ்
௧ୀଵ (7)

 𝜽∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ሺ𝑟𝑒𝑔𝑟𝑒𝑡ሻ (8)

 𝜽௧ ൌ 𝜽௧ିଵ െ 𝛼𝛻𝜽೟షభregretሺ𝑡 െ 1ሻ (9)

 |𝑟𝑒𝑔𝑟𝑒𝑡 ሺ𝑡ሻ െ 𝑟𝑒𝑔𝑟𝑒𝑡 ሺ𝑡 െ 1ሻ| ൌ |𝒥ሺ𝐷௖௔௖௛௘೟ ,𝜽௧ሻ| ൏ 𝜀 (10)

 𝐷௣೔
ሺ௧ሻ ൌ 𝛱ሺ𝐷௣೔

ሺ௧ିଵሻ ൅ 𝛼𝛻
஽೛೔
ሺ೟షభሻ𝒥ሺ𝐷௖௔௖௛௘೟షభ ,𝜽௧ିଵሻሻ (11)

4. Attack model

We define our attack model following the framework proposed in [24], which involves identifying
attacker’s goals and describing their knowledge and capabilities. This information is then utilized to

17733

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

define attack strategies. To simplify the problem description and express the proposed method clearly,
from this section onward, we assume that the target model for the online DPA attack is linear regression
model 𝑦 ൌ ℎሺ𝑿ሻ ൌ 𝜽்𝑿, with the regularization term set to zero and the batch size as 𝑏. This means
that the learning algorithm employs the OMBGD algorithm and the objective function is defined as
the mean squared error loss function in Eq (12).

 𝒥ሺ𝐷௖௔௖௛௘೟ ,𝜽௧ሻ ൌ
ଵ

௕
∙ ∑ ሺ𝜽௧ ∙ 𝒙௧ െ 𝑦௧ሻଶ

௧௕
௜ୀሺ௧ିଵሻ௕ାଵ , 𝑡 ൌ 1, . . . ,𝑇 (12)

4.1. Attacker’s goal

Consistent with offline DPA and basic online DPA objectives, the goal is to poison specific
samples to cause mis-predictions selectively, while the availability attack aims to indiscriminately
corrupt learning models by poisoning training samples. Unlike the basic online DPA goal in section
4.1, we attempt to maximize the attack effect for each poisoned sample point.

4.2. Attacker’s knowledge

Based on understanding of the five elements mentioned in section 3, attacks can be divided into
white-box, black-box and gray-box types [22]. Since online DPA is unknown for future sample streams,
attackers can only be aware of some training samples and cannot possess the knowledge of a white-
box attack. In reality, a completely black-box attack is also infeasible, as attackers need to understand
partial training samples at least. Therefore, we consider a gray-box attack method for online DPA,
where the attackers are assumed to have knowledge of the learning type (e.g., regression), learning
algorithm and partial training samples but do not know the trained parameters. Another difference from
basic online DPA is that it assumes that the sample data stream will be permanently stored on the AI
service’s device after training is completed. However, in the edge AI environment, data streams will
be periodically overwritten, meaning that attackers can only be aware of the samples in the time slice
stored in the buffer and they are unaware of both future samples and some historical samples.

4.3. Attacker’s capability

The attacker’s capability is limited to manipulating the training sample data; that is, altering the
training process is not allowed. In basic online DPA, attackers have full control over samples in current
or historical time slices. However, in this paper, the defined attacking capability is limited to having
full control over the samples stored in the buffer of current time slice. The attack is constrained within
a certain range, that is, the poisoning rate up to the current time slice 𝑇 cannot exceed a certain limit
𝛾, as it would expose the attack. We define the poisoning rate as 𝛾 ൌ ሺ∑ 𝑛௣

ሺ௧ሻሻ்
௧ୀଵ /Tb, where 𝑛௣

ሺ௧ሻ is the
number of poisoned samples in time slice 𝑡. The attacker can choose to attack same number of samples
in each time slice or vary the number of poisoned samples. In this paper, we assume that the number
of poisoned samples in each time slice is same, making it easy to prove that 𝛾 ൌ 𝑛௣

ሺ௜ሻ/b.

4.4. Attack strategy

Online DPA can be divided into four stages [24]: sample monitoring, attack point selection, data
polluting and stream poisoning. The primary focus of the core strategy setting is on the attack point

17734

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

selection and data polluting stages. These two stages are used to construct the poisoned sample set.
Then, the training samples containing the poisoned sample set are replayed to the target model in the
final stage. After the attack point selection is complete, pollution of the sample points can involve
polluting the feature vectors of the training sample stream, polluting the labels or polluting both
simultaneously. Extensive literature has demonstrated that polluting the feature vectors yields the most
optimal results. Therefore, the pollution strategy in this section will also focus on polluting the feature
vectors. This section will emphasize the description of attack point selection and pollution strategies.

4.4.1. Maximum-gradient-based sample selection strategy

In online DPA, modifying training points at certain positions in the stream may yield high benefits.
This strategy could be potentially exploited by a successful attack to reduce the search space. Equation (13)
presents a gradient-based selection strategy, where at time slice 𝑡, the target function calculates the
gradient for all samples prior to 𝑡 and the sample with the highest gradient is chosen as the poisoning
sample. The rationale behind this strategy is that the gradient is an indicative measure of the target
function’s variation. A higher gradient at a node implies that the target function changes rapidly at that
point. By polluting the sample point in the direction of the gradient ascent, the target function will
increase rapidly, thus achieving the desired attack effect.

 𝒙௠௔௫_௚௥௔ௗ௜௘௡௧ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥𝒙೔∈𝒙భ:𝒙೟್ ቛ
డ𝒥ሺ஽೎ೌ೎೓೐భ:೎ೌ೎೓೐೟ ,𝜽೟ሻ

డ𝒙೔
ቛ
ଶ
 (13)

To compute the gradient of the target function with respect to the samples, we use the recursive
gradient given by Eq (14).

డ𝒥ሺ஽೎ೌ೎೓೐భ:೎ೌ೎೓೐೟ ,𝜽೟ሻ

డ𝒙೔
ൌ

⎩
⎪
⎨

⎪
⎧ 0 𝑖𝑓 𝒙௜ ∈ 𝑐𝑎𝑐ℎ𝑒௧

డிሺ𝜽೟ሻ

డ𝜽೟
∙ డ𝜽೟
డ𝒙೔

 𝑖𝑓 𝒙௜ ∈ 𝑐𝑎𝑐ℎ𝑒௧ିଵ
డிሺ𝜽೟ሻ

డ𝜽೟
∙ డ𝜽೟
డ𝜽೟షభ

∙ ⋯ ∙ డ𝜽೔శమ
డ𝜽೔శభ

∙ డ𝜽೔శభ
డ𝒙೔

𝑖𝑓 𝒙௜ ൏ 𝑐𝑎𝑐ℎ𝑒ଵ~𝑐𝑎𝑐ℎ𝑒௧ିଶ⎭
⎪
⎬

⎪
⎫

 (14)

By applying the chain rule and substituting Eq (12) into (14) and to simplify the expression, we
set b ൌ 1 in Eq (12), which leads to Eq (15).

డ𝒥ሺ஽೎ೌ೎೓೐భ:೎ೌ೎೓೐೟ ,𝜽೟ሻ

డ𝒙೔
ൌ ቐ

0 𝑖𝑓 𝑖 ൒ 𝑡
ሺ𝜽௧𝒙௧ െ 𝑦௧ሻ ∙ 𝒙௧ ∙ 𝛼 ∙ ሺ𝑦௧ିଵ െ 2𝜽௧ିଵ𝒙௧ିଵሻ 𝑖𝑓 𝑖 ൌ 𝑡 െ 1

ሺ𝜽௧𝒙௧ െ 𝑦௧ሻ ∙ 𝒙௧ ∙ ሺ𝑰 െ 𝛼𝒙௧ିଵ𝒙௧ିଵ்ሻ ∙ ሺ𝑰 െ 𝛼𝒙௧ିଶ𝒙௧ିଶ்ሻ ∙ ⋯ ∙ ሺ𝑰 െ 𝛼𝒙௜ାଵ𝒙௜ାଵ்ሻ ∙ 𝛼 ∙ ሺ𝑦௜ െ 2𝜽௜
் ∙ 𝒙௜ሻ 𝑖𝑓 𝑖 ൏ 𝑡 െ 1

ቑ (15)

From Eq (15), it is clear that to compute the gradient of the current target function with respect to
each sample point at time slice 𝑡, one needs to know the feature vectors of all historical sample points.
However, in edge AI environments, due to storage limitation, the sample data cache is periodically
overwritten after training. This leads to a situation we define as cache strategy with forgetting. We
define a cache strategy similar to that of the sliding window. Figure 3 illustrates the strategy of storing
the online training sample stream arriving at the edge node, the solid and dashed boxes represent the
samples cached at time slice 𝑡 and 𝑡 ൅ 1, respectively. The capacity of the cache is 𝑏. According to
this strategy, at time 𝑡 , the sample 𝐷௖௔௖௛௘೟ ൌ ሼሺ𝒙௜ ,𝑦௜ሻሽ௜ୀሺ௧ିଵሻ௕ାଵ

௧௕ . The new samples 𝐷௖௔௖௛௘೟శభ will

completely overwrite the historical samples 𝐷௖௔௖௛௘೟ at time slice 𝑡 ൅ 1.

17735

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

Figure 3. Cache strategy with forgetting.

Based on this storage strategy, the forgotten samples cannot be used to calculate the gradient of
the target function with respect to that point using Eq (15), rendering the selection strategy inapplicable.
To address this issue, we propose a gradient calculation algorithm based on rehearsal. The main
principle of this algorithm is that after each maximum gradient sample point is selected at current time
slice, both the point and its corresponding model parameters are stored in a dedicated buffer called the
rehearsal buffer. The rehearsal buffer can remember partial historical information when samples are
overwritten, and its size is less than or equal to the total number of poisoning sample points. When the
next time slice arrives, the sample points in the rehearsal buffer are combined with those in the newly
arrived time slice to calculate the new maximum gradient point, as shown in Eq (16). To simplify the
expression, we still set the cache size b ൌ 1. Meanwhile, we assume the size of rehearsal buffer is 𝑝,
in which the samples are denoted as ሺ𝑥ோ஻೔ ,𝑦ோ஻೔ሻ ∈ ሼሺ𝑥ோ஻భ ,𝑦ோ஻భሻ, ሺ𝑥ோ஻మ ,𝑦ோ஻మሻ, . . , ሺ𝑥ோ஻೛ ,𝑦ோ஻೛ሻሽ.

డ𝒥ሺ஽೎ೌ೎೓೐೟∪஽ೝ೐೓೐ೌೝೞೌ೗ ್ೠ೑೑೐ೝ ,𝜽೟ሻ

డ𝒙೔
ൌ ቐ

0 𝑖𝑓 𝑖 ൒ 𝑡
ሺ𝜽௧𝒙௧ െ 𝑦௧ሻ ∙ 𝒙௧ ∙ 𝛼ሺ𝑦௧ିଵ െ 2𝜽௧ିଵ𝒙௧ିଵሻ 𝑖𝑓 𝑖 ൌ 𝑡 െ 1

ሺ𝜽௧𝒙௧ െ 𝑦௧ሻ𝒙௧ሺ𝑰 െ 𝛼𝒙௧ିଵ𝒙௧ିଵ்ሻ ∙ ሺ𝑰 െ 𝛼𝒙𝑅𝐵𝑝𝒙𝑅𝐵𝑝
𝑇ሻ ∙ ⋯ ∙ 𝛼 ∙ ሺ𝑥𝑅𝐵𝑖 െ 2𝜽௜

் ∙ 𝒙𝑅𝐵𝑖
ሻ 𝑖𝑓 𝑖 ൏ 𝑡 െ 1

ቑ (16)

4.4.2. Maximum-loss-based sample pollution strategy

Section 3.3 presents the basic online DPA, in which each poisoning sample is only updated once
in the gradient ascent direction and cannot be updated iteratively in the same direction as in offline
mode to maximize attack effectiveness. This may result in a prolonged attack process. Online DPA is
highly time-sensitive, so that if the attack is not completed within a limited time, it can be easily
detected by defense algorithms. Therefore, this paper still attempts to update each poisoning point in
the gradient ascent direction to maximize the attack effect. Equations (17) and (18) provide a bi-level
optimization formula for the online mode, which is called the rehearsal-based poisoning strategy. In
the inner optimization of Eq (18), the model is trained using the samples from the current time slice
and the poisoned samples from the rehearsal buffer to obtain the inner layer parameter 𝜽௣∗ . In the outer
optimization of Eq (17), the model generates the maximum prediction loss under the influence of
poisoned parameter 𝜽௣∗ using the samples of newly arrived time slice.

 𝑎𝑟𝑔𝑚𝑎𝑥஽೛ ௜௡ ௥ୣ୦ୣୟ୰ୱୟ୪ ୠ୳୤୤ୣ୰𝒥ሺ𝐷௖௔௖௛௘೟ ,𝜽௣
∗ ሻ, (17)

 𝑠. 𝑡.𝜽௣∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝒥ሺ𝐷௖௔௖௛௘೟షభ ∪ 𝐷௣ 𝑖𝑛 𝑟ehearsal buffer,𝜽ሻ (18)

5. Attack algorithm

5.1. Implementation

Figure 4 presents the schematic diagram of the rehearsal-based online DPA method. The

17736

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

rectangular, rounded square, diamond, black arrow and red arrow graphic elements are set up
consistently with the definitions in Figure 2. The figure shows the time slices 𝑐𝑎𝑐ℎ𝑒ଵ~𝑐𝑎𝑐ℎ𝑒௧
arriving sequentially at the edge node. Once the samples in the time slice are trained, they will be
overwritten by the subsequent time slices. The overwritten time slices are marked with dotted shading.
The blue arrows in the figure indicate the selection and storage of the points with the largest gradients.
The circled numbers in the figure represent the attack steps. Assuming the attack starts from time slice 2,
in step 1, the point with the largest gradients is selected and stored from the combination samples of
rehearsal buffer and current time slice based on the current model parameter. In step 2, the samples
recorded in the rehearsal buffer are poisoned in the gradient ascent direction. In step 3, the poisoned
samples are trained together with the other samples from the current time slice to obtain new model
parameter and it is determined whether the convergence condition of Eq (18) is reached. In step 4, the
samples of newly arrived time slice and the new model parameter are used together to determine
whether the convergence condition of Eq (17) is reached. In the following, each time a new time slice
arrives, the above operations are repeated until both convergence conditions of Eqs (17) and (18) are
reached. Finally, in step 5, the poisoned samples from the rehearsal buffer are inserted one by one into
each time slice of the target training data stream. This section describes the rehearsal based online
poisoning attack algorithm step by step.

Figure 4. Schematic diagram of rehearsal based online DPA.

Algorithm 1 presents the overall implementation process of the rehearsal-based online DPA
algorithm. Lines 1 to 6 initialize the attack. Starting from line 7, the main loop of the attack process
has begun. Constant 𝑚𝑎𝑥௜௧௘௥ is used to prevent oscillation caused by inappropriate parameter settings.
Lines 8 and 9 record the number of current time slice and the total number of samples. Lines 10–12
perform the point selection operation, with the details described in Algorithm 2. After the point
selection operation, lines 13–14 pollute each poisoned sample point recorded in the rehearsal buffer
one by one, i.e., updating each poisoned sample point in the direction of the maximum gradient. The
projection operator 𝛱 in line 14 projects the polluted sample values into the feasible domain of the
feature space. Line 14 adjusts the pollution speed by controlling the learning rate 𝛼 and decay factor
𝛽. Line 15 completes the inner optimization process corresponding to Eq (18). Lines 16–18 complete
the convergence condition judgment process, wherein the attack ends when the current model
parameter achieve the minimum loss in time slice 𝐷௖௔௖௛௘೟షభ and the maximum loss in time slice 𝐷௖௔௖௛௘೟

17737

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

simultaneously. Lines 19–24 update the maximum and minimum loss values of the model during the
attack process.

Algorithm 1 Rehearsal based Online DPA
Input: training data stream, 𝐷௧௥௡ି௦ ൌ ሼሺ𝒙௜ ,𝑦௜ሻሽ௜ୀଵ

் ,𝑇 → ∞, objective function, 𝒥,
termination condition, 𝜀, poisoning rate, 𝛾, learning rate,𝛼, line search decay ,𝛽 and maximum
number of iterations, 𝑚𝑎𝑥௜௧௘௥
1:𝑡 ← 1ሺInitialization of time 𝑡ሻ
2:Initialization of 𝜽௧
3:𝑐𝑜𝑢𝑛𝑡 ← 0(Initialization of samples number)
4:𝐷௥௘௛_௕௨௙ ← ∅(Initialization rehearsal buffer)
5:Initialization of MSE_max
6:Initialization of MSE_min
7:𝐰𝐡𝐢𝐥𝐞 𝑡 ൏ 𝑚𝑎𝑥௜௧௘௥ do
8: 𝑡 ← 𝑡 ൅1
9: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 ൅ 𝑙𝑒𝑛ሺ𝑐𝑎𝑐ℎ𝑒௧ିଵሻ
10: if 𝑙𝑒𝑛ሺ𝐷௥௘௛_௕௨௙ሻ ൏ൌ 𝑐𝑜𝑢𝑛𝑡 ∙ 𝛾 :
11: 𝐷௥௘௛_௕௨௙ ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑎𝑚𝑝𝑙𝑒_𝑀𝑎𝑥𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡ሺ𝐷௖௔௖௛௘೟షభ ,𝐷௥௘௛_௕௨௙,𝜽௧ିଵ, 𝑐𝑜𝑢𝑛𝑡 ∙ 𝛾ሻ
12: end if
13: for range 𝒙௜ in 𝐷௥௘௛_௕௨௙
14: 𝒙௜ ൌ 𝛱ሺ𝒙௜ ൅ 𝛼𝛽𝛻௫೔𝒥ሺ𝐷௖௔௖௛௘೟షభ ∪ 𝐷௥௘௛_௕௨௙,𝜽௧ିଵሻሻ
15: 𝜽௧ ← 𝜽௧ିଵ െ 𝛼𝛻𝜽೟షభ𝒥 ሺ𝐷௖௔௖௛௘೟షభ ∪ 𝐷௥௘௛_௕௨௙,𝜽௧ିଵሻ
16: if |𝒥 ሺ𝐷௖௔௖௛௘೟ ,𝜽௧ሻ െ MSE_max| ൏ 𝜀 and |𝒥 ሺ𝐷௖௔௖௛௘೟షభ ,𝜽௧ሻ െ MSE_min| ൏ 𝜀:
17: break
18: end if
19: if 𝒥 ሺ𝐷௖௔௖௛௘೟ ,𝜽௧ሻ > MSE_max :
20: MSE_max ← 𝒥 ሺ𝐷௖௔௖௛௘೟ ,𝜽௧ሻ
21: end if
22: if 𝒥 ሺ𝐷௖௔௖௛௘೟షభ ,𝜽௧ሻ < MSE_min :
23: MSE_min ← 𝒥 ሺ𝐷௖௔௖௛௘೟షభ ,𝜽௧ሻ
24: end if
25:end while
26:Insert each poison sample from the rehearsal buffer into each time slice of the target data stream
one by one

Algorithm 2 presents the implementation process of the point selection operation. Line 1 combines
the sample points of the current time slice and the sample points in the rehearsal buffer. Line 2 calculates
the gradient for each sample in the merged sample set 𝐷௖௨௥௥ according to Eq (16) and finds the sample
point with the maximum gradient. Lines 3–11 complete the addition and replacement operations
for the samples in the rehearsal buffer. Line 3 first determines whether the newly generated sample
point 𝒙௠௔௫_௚௥௔ௗ௜௘௡௧ is already included in the rehearsal buffer. If it is not, the following steps are
performed. Line 4 checks if the current size of the rehearsal buffer has reached the upper limit of
the number of poisoned samples. If it has reached and the current sample is not included in the rehearsal
buffer, lines 5–6 replace the sample point with the smallest gradient in the rehearsal buffer. If the current
size of the rehearsal buffer has not yet reached the upper limit of the number of poisoned samples and
the current sample is not included in the rehearsal buffer, line 9 directly inserts the sample point

17738

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

𝑥௠௔௫_௚௥௔ௗ௜௘௡௧ into the rehearsal buffer.

Algorithm 2 SelectSample_MaxGradient
Input:Samples in the current time slice,𝐷௖௔௖௛௘೟షభ,Samples in the current rehearsal buffer,
𝐷௥௘௛_௕௨௙, current model parameter,𝜽௧ିଵ,objective function, 𝒥, the number of poisoned
samples at present,𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖
1:𝐷௖௨௥௥ ← 𝐷௖௔௖௛௘೟షభ ∪ 𝐷௥௘௛_௕௨௙

2:𝒙௠௔௫_௚௥௔ௗ௜௘௡௧ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥𝒙೔∈஽೎ೠೝೝ ቛ
డ𝒥ሺ஽೎ೠೝೝ,𝜽೟షభሻ

డ𝒙೔
ቛ
ଶ

3:if 𝒙௠௔௫_௚௥௔ௗ௜௘௡௧ 𝑛𝑜𝑡 𝑖𝑛 𝐷௥௘௛_௕௨௙:
4: if 𝑙𝑒𝑛ሺ𝐷௥௘௛_௕௨௙ሻ ൌൌ 𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖:

5: 𝒙௠௜௡_௚௥௔ௗ௜௘௡௧ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛𝒙೔∈஽ೝ೐೓_್ೠ೑
ቛ
డ𝒥ሺ஽ೝ೐೓_್ೠ೑,𝜽೟షభሻ

డ𝒙೔
ቛ
ଶ

6: 𝑖𝑛𝑑𝑒𝑥௠௜௡_௚௥௔ௗ௜௘௡௧ ൌ 𝐷௥௘௛_௕௨௙. 𝑖𝑛𝑑𝑒𝑥ሺ𝒙௠௜௡_௚௥௔ௗ௜௘௡௧ሻ
7: 𝐷௥௘௛_௕௨௙[𝑖𝑛𝑑𝑒𝑥௠௜௡_௚௥௔ௗ௜௘௡௧ሿ ൌ 𝒙௠௔௫_௚௥௔ௗ௜௘௡௧
8: esle:
9: 𝐷௥௘௛_௕௨௙.𝑎𝑝𝑝𝑒𝑛𝑑ሺ𝒙௠௔௫_௚௥௔ௗ௜௘௡௧ሻ
10: end if
11: end if
12:return 𝐷௥௘௛_௕௨௙

5.2. Theoretical analysis of complexity

According to Eq (14), the complexity of calculating the gradient for each sample point is Oሺ𝑘ଶሻ,
where 𝑘 denotes the dimension of the feature vector. Based on lines 2 and 5, the complexity of
Algorithm 2 is Oሺሺ𝑏 ൅ 2𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ𝑘ଶሻ. According to lines 11 and 14 in Algorithm 1, the complexity
of Algorithm 1 is 𝑂ሺ𝑡ሺ2𝑏 ൅ 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ𝑘ଶሻ . Assuming that the total number of samples in
Algorithm 1 converges to 𝑛, then 𝑡 ൌ ௡

௕
, and at the same time, 𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 ൏ 𝑏 ≪ 𝑛. Therefore, the

complexity of Algorithm 1 is 𝑂ሺ𝑛𝑘ଶሻ approximately. The complexity of the offline DPA with the
same number of samples is 𝑂ሺ𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 ∗ 𝑛 ∗ 𝑘ଷሻ, where 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 in the offline mode refers to
the rounds of updating poisoned sample features according to the gradient ascent direction. Although
the basic online DPA also has a complexity of 𝑂ሺ𝑛𝑘ଶሻ, it requires full storage of samples, resulting in
a storage space of 𝑂ሺ𝑛ሻ, while Algorithm 1 only requires storage space of 𝑂ሺ𝑏 ൅ 2𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ.

Proof 1. 𝑂ሺ𝑡ሺ2𝑏 ൅ 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ𝑘ଶሻ ൏ 𝑂ሺ𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 ∗ 𝑛 ∗ 𝑘ଷሻ.
Substituting 𝑡 ൌ ௡

௕
 into 𝑂ሺ𝑡ሺ2𝑏 ൅ 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ𝑘ଶሻ , we get 𝑂ሺ𝑡ሺ2𝑏 ൅ 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ𝑘ଶሻ ൌ

𝑂ሺሺ2𝑛 ൅ 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 ∗ ௡
௕
ሻ𝑘ଶሻ . Since 𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 ൏ 𝑏 ≪ 𝑛 , we get

௖௢௨௡௧_௣௢௜

௕
൏ 1. Then, 𝑂ሺሺ2𝑛 ൅

3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 ∗ ௡
௕
ሻ𝑘ଶሻ ൏ 𝑂ሺ5𝑛𝑘ଶሻ . By omitting the constant terms in the above inequality, we have

𝑂ሺ𝑡ሺ2𝑏 ൅ 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ𝑘ଶሻ ൏ 𝑂ሺ𝑛𝑘ଶሻ . Since 𝑛𝑘ଶ ൏ 𝑛 ∗ 𝑘ଷ and 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 ൐ 1 , we can obtain
𝑂ሺ𝑡ሺ2𝑏 ൅ 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ𝑘ଶሻ ൏ 𝑂ሺ𝑛𝑘ଶሻ ൏ 𝑂ሺ𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 ∗ 𝑛 ∗ 𝑘ଷሻ.

Proof 2. 𝑂ሺ𝑏 ൅ 2𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ ൏ 𝑂ሺ𝑛ሻ.
௕ାଶ௖௢௨௡௧_௣௢௜

௡
ൌ ௕

௡
൅ 2𝛾. Since 𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 ൏ 𝑏 ≪ 𝑛, we have

௕

௡
≪ 2𝛾. Therefore,

௕ାଶ௖௢௨௡௧_௣௢௜

௡
ൎ

2𝛾. Due to the constraint of the concealment condition of the attack, 𝛾 ൏ ଵ

ଶ
. Then,

௕ାଶ௖௢௨௡௧_௣௢௜

௡
൏ 1.

Thus, we can obtain 𝑂ሺ𝑏 ൅ 2𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖ሻ ൏ 𝑂ሺ𝑛ሻ.
In summary, in terms of time and space complexity, Algorithm 1 has advantages compared to

17739

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

offline DPA and basic online DPA.

6. Experiment

This section evaluates the effectiveness of the rehearsal-based online DPA (RB-ODPA) with
maximum-gradient-based point selection strategy and maximum-loss-based pollution strategy when
applied to edge devices. The definitions of abbreviations used in this paper are shown Table 2.

Table 2. List of abbreviations.

Abbreviations Description

DPA Data poisoning attacks

LOT Loss over time (LOT)

MSE Mean squared error

OptP Best performing optimization attack proposed by [12]

IA-ODPA Incremental attack proposed by [21]

RB-ODPA The rehearsal based online DPA proposed of this paper

SVM Support vector machine

Experimental setup. In order to simulate the edge computing environment of IoT-enabled smart
city, the attack algorithm was run in Linux OS in edge-embedded boards, which were mainly
configured with a main chip with a cortex-A7 core, 1.2 GHz, 256 MB RAM and 512 MB ROM. The
evaluation metrics are same as our previous work [24], which mainly include MSE loss, the running
time of attack and the LOT. This paper adopts the OptP method proposed in [12] as the baseline algorithm
of offline DPA and the incremental attack method (abbreviated as IA-ODPA) proposed in [21] as the
baseline algorithm of basic online DPA.

Data set. To validate the application scenario of IoT-enabled smart cities, we selected data from
intelligent power systems, which contains 9568 data samples. The features include the average
temperature of the environment per hour, the average pressure of the environment per hour, the average
relative humidity of the environment per hour, the exhaust vacuum per hour and the predicted label,
which is the net energy output per hour. To simulate online data streams, we input these samples in
batches in accordance with the strategy shown in Figure 3. We performed normalization on all sample
values, resulting in the feasible range of features and labels being [0,1]. This normalization process
ensured consistency in the range of values for both features and labels.

Basic parameters settings. In experiments, we set poisoning rate at 5, 10, 15 and 20%. The
termination condition (𝜀) for algorithm convergence was set to 1e-8. The decay parameter ሺ𝛽) and
learning rate (𝛼) for polluting feature values of the poisoned sample points in the direction of gradient
ascent was set to 0.05 and 0.01 respectively.

17740

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

6.1. The relationship between cache size setting and point selection

In this section, we investigate the differences between offline and online modes of sample
selection and study the impact of different cache sizes on sample selection in the online mode. We
compare the time cost and selection accuracy of the basic online sample selection, offline sample
selection and the sample selection method based on the rehearsal buffer. The experimental results are
presented in Tables 3 and 4. The offline sample selection is performed by our proposed method with a
given poisoning rate to select poisoning points once from the entire sample set, i.e., the execution
results of Algorithm 2 when the cache size b = 9568.

Table 3. Comparison of sample selection.

Poison rate Offline and basic online
Rehearsal based
b = 2300 b = 3100 b = 4700

0.05 478 427 442 457
0.1 956 866 887 918
0.15 1435 1299 1335 1368
0.2 1913 1773 1801 1844

Table 4. Comparison of sample selection time.

Poison rate
Time of basic methods (s) Time of rehearsal based online (s)

Offline Basic online b = 2300 b = 3100 b = 4700

0.05 7.413719 14.827438 2.288950 3.085107 4.677420

0.1 7.41804 14.83608 2.686006 3.620269 5.488794

0.15 7.251866 14.503732 3.235627 4.361063 6.611934

0.2 7.365552 14.731104 3.810749 5.136228 7.787184

Table 3 shows the poisoning rate in the first column, followed by the number of selected poisoning
sample points in offline and basic online modes in the second column. The third to fifth columns
illustrate the count of same sample points selected by our proposed selection method and offline mode
under different cache size settings. From the results presented in Table 3, we can observe that the
similarity between the selected samples by our proposed method and those selected in offline mode
can reach over 95% by adjusting the size of the cache for different poisoning rates. Figure 5 provides
a more intuitive representation of the results in Table 3, where our proposed selection method can
select sample points that are relatively close to those selected in offline mode when the cache sizes
are 2300, 3100 and 4700.

Table 4 compares the time cost of sample selection methods between offline and online modes.
The first column shows the poisoning rate, the second column shows the time cost of sample selection
in offline mode, the third column shows the time cost of basic online DPA for sample selection and the
fourth to sixth columns show the time cost of our proposed sample selection method under different
cache size settings. From the results presented in Table 4, we can observe that our proposed sample
selection method has a lower time cost compared to the first two methods, which is consistent with the
results of the algorithm complexity analysis presented in Section 5. Figure 6 presents the time cost of
our proposed sample selection method under different cache size settings for a poisoning rate of 0.05.

17741

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

We can observe that as the cache size increases, the overall execution time of the algorithm increases.
However, when the cache size is set to 2300, 3100 and 4700, the algorithm can select the maximum
number of sample points that are the same as those selected in offline mode with a relatively small
time cost.

Figure 5. The variation of the same samples number with cache size.

Figure 6. The variation of execution time of sample selection with cache size (poisoning
rate = 0.05).

6.2. Effectiveness comparison of proposed attacks and baseline attacks

In this section, we conducted a detailed analysis of the MSE, time and LOT of the three algorithms,
based on the experimental settings described in the previous section. The results are presented in Tables 5
and 6 and the comparative values of LOT are in Table 7.

It is observed that all three attacks can mislead the predictive performance and the change in MSE

17742

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

is also linear and upward with the increase in poisoning rates. The red line in Figure 7, representing
the RB-ODPA algorithm, shows the best performance with the highest loss, which demonstrates the
effectiveness of our method.

Table 5. MSE comparison of attacks.

Poison rate
MSE

Unpoison OptP IA-ODPA RB-ODPA

0.05 0.0035 0.017 0.006 0.019

0.1 0.0035 0.024 0.015 0.031

0.15 0.0035 0.036 0.021 0.040

0.2 0.0035 0.043 0.029 0.052

Table 6. Time cost and LOT of sample selection under different cache size.

Poison

rate
Time of attack (s)

Time of selection（s） LOT

b = 2300 b = 3100 b = 4700 b = 2300 b = 3100 b = 4700

0.05 4.343159 2.288950 3.085107 4.677420 0.00286485 0.002557797 0.002106295

0.1 8.686318 2.686006 3.620269 5.488794 0.002725916 0.002518976 0.002186932

0.15 13.029477 3.235627 4.361063 6.611934 0.002459253 0.002300101 0.002036514

0.2 17.372636 3.810749 5.136228 7.787184 0.002454754 0.002310201 0.002066787

Table 7. Comparison of attack time and LOT (cache size b = 4700).

Poison

rate

Time of method (s) LOT

OptP IA-ODPA RB-ODPA OptP IA-ODPA RB-ODPA

0.05 8.67830975 14.827438 4.343159 + 3.085107 0.0019589 0.0004046 0.0026027

0.1 17.3566195 14.83608 8.686318 + 3.620269 0.0013827 0.0010110 0.0025619

0.15 26.03492925 14.503732 13.029477 + 4.361063 0.0013827 0.0014479 0.0023121

0.2 34.713239 14.731104 17.372636 + 5.136228 0.00123872 0.0019686 0.0022222

Figure 7. MSE comparison of attacks.

17743

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

Table 7 indicates that the selection of attack algorithms should not be limited to the degree of
improvement in MSE alone, but should consider LOT comprehensively. It clearly shows the
performance comparison of the three algorithms in the LOT index, in other words, RB-ODPA achieves
the maximum MSE loss with the minimum time cost.

6.3. Optimal setting cache size

In this section, we investigate the issue of cache size setting and evaluate the attack effectiveness
of our proposed method under different cache size settings using the LOT metric. The experimental
results are presented in Table 6 and Figure 8. According to the experimental results, our proposed
attack method outperforms other methods in terms of the LOT metric. Our proposed method also
exhibits different LOT results under different cache size settings, with a cache size setting of b = 2300
yielding the optimal attack effectiveness. Therefore, we set this as the optimal cache size setting for
our proposed attack method.

Figure 8. LOT comparison of attacks.

6.4. Comparison of actual attack effects

Figure 9 illustrates the attack effectiveness of offline DPA and online DPA on a real system, with
Figure 9(a) showing the offline attack effectiveness and Figure 9(b) showing the online attack
effectiveness. In Figure 9(a), the offline attack method places the poisoned samples at the beginning
(or end) of the normal samples, resulting in continuous abnormal values at the beginning, which is
easily exposed. In contrast, in Figure 9(b), the blue dots represent normal sample values, while the red
dots represent the values of poisoned samples after attack. Since the poisoned samples are mixed with
normal samples, the offline attack is more covert.

17744

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

(a) Offline (b) Online

Figure 9. Comparison of offline and online DPA attack effects.

7. Conclusions

In conclusion, this paper proposes an online poisoning attack framework for edge AI
environments in IoT-enabled smart cities, which takes into account the limited storage space in the AI
edge environment and proposes a rehearsal-based buffer mechanism to incrementally pollute the
sample data stream that arrives at the appropriately sized cache to optimize the efficiency of the attack.
A maximum-gradient-based sample selection strategy is proposed to overcome the periodic
overwriting of the sample data cache after training, while a maximum-loss-based sample pollution
strategy solves the problem of each selected sample being polluted only once in the gradient ascent
direction in basic online DPA. The proposed online gray-box poisoning attack algorithms are
implemented and evaluated on edge devices of IoT-enabled smart cities using an online data stream
simulated with offline open-grid datasets. The experimental results demonstrate the effectiveness and
overhead of the proposed attack framework and strategies, which can provide a reference for
researchers to design defenses against such attacks.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgments

This work is supported by National Key R&D Program of China (No.2019YFB1803204).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. Edge AI and Vision Alliance, 2023 Edge AI Technology Report, 2023. Available from:
https://www.edge-ai-vision.com/2023/07/2023-edge-ai-technology-report/.

17745

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

2. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444.
https://doi.org/10.1038/nature14539

3. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence: Paving the last mile of
artificial intelligence with edge computing, in Proceedings of IEEE, 107 (2019), 1738–1762.
https://doi.org/10.1109/JPROC.2019.2918951

4. Z. Zhou, Y. Shuai, X. Chen, Edge intelligence: a new nexus of edge computing and artificial
intelligence, Big Data Res., 5 (2019), 53–63. https://doi.org/10.11959/j.issn.2096-0271.2019013

5. X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, X. Chen, Convergence of edge computing
and deep learning: A comprehensive survey, IEEE Commun. Surv. Tutorials, 22 (2020), 869–904.
https://doi.org/10.1109/COMST.2020.2970550

6. S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, A.Y. Zomaya, Edge intelligence: The confluence
of edge computing and artificial intelligence, IEEE Internet Things J., 7 (2020), 7457–7469.
https://doi.org/10.1109/JIOT.2020.2984887

7. Y. Li, Y. Yu, W. Susilo, Z. Hong, M. Guizani, Security and privacy for edge intelligence in 5G and
beyond networks: Challenges and solutions, IEEE Wireless Commun., 28 (2021), 63–69.
https://doi.org/10.1109/MWC.001.2000318

8. M. S. Ansari , S. H. Alsamhi, Y. Qiao, Y. Ye, B. Lee, Security of distributed intelligence in edge
computing: Threats and countermeasures, in The Cloud-to-Thing Continuum, Springer, (2020),
95–122.

9. B. Biggio, B. Nelson, P. Laskov, Poisoning attacks against support vector machines, preprint,
arXiv:1206.6389.

10. S. Mei, X. Zhu, Using machine teaching to identify optimal training-set attacks on machine
learners, in Proceedings of the AAAI Conference on Artificial Intelligence, 29 (2015), 2871–2877.
https://doi.org/10.1609/aaai.v29i1.9569

11. N. Müller, D. Kowatsch, K. Böttinger, Data poisoning attacks on regression learning and
corresponding defenses, in 2020 IEEE 25th Pacific Rim International Symposium on Dependable
Computing (PRDC), (2020), 80–89. https://doi.org/10.1109/PRDC50213.2020.00019

12. M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, B. Li, Manipulating machine learning:
Poisoning attacks and countermeasures for regression learning, in 2018 IEEE Symposium on
Security and Privacy (SP), (2018), 19–35. https://doi.org/10.1109/SP.2018.00057

13. T. Cerquitelli, M. Meo, M. Curado, L. Skorin-Kapov, E. E. Tsiropoulou, Machine learning
empowered computer networks, Comput. Networks, 230 (2023), 109807.
https://doi.org/10.1016/j.comnet.2023.109807

14. P. W. Koh, J. Steinhart, P. Liang, Stronger data poisoning attacks break data sanitization defenses,
Mach. Learn., 111 (2022), 1–47. https://doi.org/10.1007/s10994-021-06119-y

15. C. Burkard, B. Lagesse, Analysis of causative attacks against SVMs learning from data streams,
in Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics,
(2017), 31–36. https://doi.org/10.1145/3041008.3041012

16. X. Zhang, X. Zhu, L. Lessard, Online data poisoning attack, preprint, arXiv:1903.01666.
17. P. G. Margiotta, S. Goldt, G. Sanguinetti, Attacks on online learners: A teacher-student analysis,

preprint, arXiv:2305.11132.
18. Z. Hammoudeh, D. Lowd, Training data influence analysis and estimation: A survey, preprint,

arXiv:2212.04612.

17746

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17726–17746.

19. M. Wojnowicz, B. Cruz, X. Zhao, B. Wallace, M. Wolff, J. Luan, et al., “Influence sketching”:
Finding influential samples in large-scale regressions, in 2016 IEEE International Conference on
Big Data (Big Data), (2016), 3601–3612. https://doi.org/10.1109/BigData.2016.7841024

20. P. W. Koh, P. Liang, Understanding black-box predictions via influence functions, preprint,
arXiv:1703.04730.

21. Y. Wang, K. Chaudhuri, Data poisoning attacks against online learning, preprint,
arXiv:1808.08994.

22. M. A. Ramirez, S. Kim, H. A. Hamadi, E. Damiani, Y. J. Byon, T. Y. Kim, et al., Poisoning
Attacks and Defenses on Artificial Intelligence: A Survey, preprint, arXiv:2202.10276.

23. L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of
COMPSTAT’2010, (2010), 177–186. https://doi.org/10.1007/978-3-7908-2604-3_16

24. Y. Zhu, H. Wen, R. Zhao, Y. Jiang, Q. Liu, P. Zhang, Research on data poisoning attack against
smart grid cyber-physical system based on edge computing, Sensors, 23 (2023), 4509.
https://doi.org/10.3390/s23094509

©2023 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

