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Abstract: The media’s coverage has the potential to impact human behavior and aid in the control of
emergent infectious diseases. We aim to quantify and evaluate the extent to which media coverage can
influence infectious disease control through a mathematical model, thus proposing a switching epidemic
model that considers the effect of media coverage. The threshold strategy incorporates media influence
only when the number of infected cases surpasses a specific threshold; otherwise, it is disregarded. When
conducting qualitative analysis of two subsystems, focusing on the existence and stability of equilibria.
Using numerical methods, the codimension-2 bifurcation analysis is adopted here to investigate the various
types of equilibria within the switching system that play a vital role in pest control. On the other hand,
codimension-1 bifurcation analysis reveals the existence of periodic, chaotic solutions, period-doubling
bifurcations, multiple attractors and other complexities within the proposed model, which could pose
challenges in disease control. Additionally, the impact of key parameters on epidemic outbreaks is
analyzed, such as the initial values of susceptible and infective individuals, and discuss the potential
benefits of mass media coverage in preventing emerging infectious diseases. The modeling and analytical
techniques developed for threshold control strategies can be applied to other disease control efforts.
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1. Introduction

Infectious diseases have been a long-standing threat to human beings, claiming countless lives and
causing catastrophic consequences for human survival and development. For instance, the Antonine
plague in ancient Rome in 164 AD [1] resulted in numerous deaths, weakened the strength of ancient
Rome to a certain extent and indirectly contributed to the decline of the Roman Empire. Similarly,
the Black Death outbreaks in Europe between 1347–1353 [2] killed about one-third of the European
population. The outbreak of SARS in 2003 [3] caused significant fatalities and economic losses. The
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H1N1 influenza virus that emerged in Mexico in 2009 [4] can cause pneumonia, leading to respiratory
failure and multiple organ damage, resulting in death for some infected individuals. Moreover, the
sudden onset of COVID-19 in 2020 [5–8] has had a profound impact on human health, the global
economy and social behavior. These diseases have undoubtedly inflicted an incalculable toll on economic
development and people’s lives. Therefore, it is essential to investigate the spread of infectious diseases
and propose effective prevention and control strategies. The study of infectious diseases has become
crucial to address the long-standing problem of fulminant diseases that have plagued humanity. Since
experimental research on infectious diseases is often challenging, appropriate mathematical models are
frequently employed to reflect the transmission mechanism of diseases. The dynamic model of infectious
disease is an effective approach commonly utilized in the theory and qualitative analysis of infectious
disease [9]. By conducting qualitative and quantitative analyses of the model dynamics and numerical
simulations, the critical factors affecting the spread of infectious diseases can be identified and the future
development trend can be predicted. This provides strong theoretical and data support for the prevention
and control of infectious diseases, enabling accurate and effective disease prevention.

The spread of infectious diseases is influenced by numerous factors, including media reports [10–15],
population density [16] and vaccination [17]. In modern times, the media plays a significant role in
shaping people’s lifestyles, and its impact on the spread of infectious diseases is crucial. During an
epidemic of infectious diseases, people often rely on the media, including news and broadcasts, to share
information about disease prevention, control and their own experiences in fighting the disease. The
media reports the spread of diseases promptly and through various channels, and people take appropriate
measures, such as wearing masks, maintaining personal hygiene, reducing visits to public places and
frequently washing their hands, to prevent and reduce the spread and occurrence of diseases [18]. Thus,
it is practical to consider the influence of media factors in the infectious disease model and to optimize
the control strategy of infectious diseases to obtain reasonable prevention and control measures.

There are various types of infectious disease models that can be influenced by media reports, such
as continuous models, switched models and discrete models. However, researchers typically opt to
use continuous models to study the influence of media coverage on disease transmission. In 2007,
Liu et al. [19] conducted pioneering research on the influence of media and psychological effects on
infectious diseases. They proposed a continuous infectious disease model with an infectious rate of
βea1E−a2I−a3H. In 2008, Cui et al. [20] introduced a media influence function of βe−mI and developed a
continuous SEI model. The variable m represents the psychological reaction of the public after learning
about the disease through media reports. The dynamic behavior of the model was analyzed with varying
values of m to evaluate the influence of media on the spread and control of the disease. Furthermore,
switching models have also been studied by many researchers, in combination with other factors. A
switching system is generally composed of some subsystems and a switching signal [21, 22]. Its main
feature is that the rich dynamic behavior of the original system becomes more complicated under the
action of the switching signal. In 2013, Xiao et al. [23] established a continuous infectious disease
model with a media impact factor M(I, dI/dt), and studied the role of the media and behavioral changes
of consciousness by considering the existence of a threshold for susceptibles. They then transformed the
model into a switching system and concluded that media or psychological influence will delay the peak
of the epidemic and cause a small-scale disease outbreak. Liu et al. [24] established a SIR epidemic
model having a non-smooth function f (I) and analyzed the dynamics of the infectious disease switching
system through a saturation function to explore the impact of media reports on the spread of infectious
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diseases. Zhao [25] considered the media impact factor function β(I) = β/(1 + εmI) to establish a
Filippov model with a media switching threshold strategy. They concluded that the greater the media’s
propaganda, the more beneficial the disease control and elimination.

The aforementioned work is based on research and analysis conducted using either a continuous
model or a continuous switching model. When the population size is large, the changes in the number of
susceptible and infected individuals can be approximated as continuous over time, making it reasonable
to use a continuous model. However, when the spread of infectious diseases is slow, or data collection
occurs on a yearly, monthly, weekly or daily basis, population changes occur discretely rather than
continuously. Therefore, using discrete models to describe the dynamic behavior of infectious diseases
is more appropriate in such situations. These models can also provide more effective and accurate data
references for subsequent disease prevention and control measures.

Compared to continuous infectious disease models, there are fewer studies on discrete infectious
disease models [26, 27]. Moreover, there are even fewer studies on discrete switching infectious disease
models that take into account the influence of media reports. In this study, we will focus on the discrete
infectious disease switching model that incorporates a media influence factor of βe−mI . To better reflect
real-world scenarios, we consider a switching model that includes the economic threshold (ET ) [28, 29]
of infected individuals. We explore the dynamic behavior of the system when the number of infected
individuals exceeds the critical ET . The objective is to investigate the impact of media reports on the
epidemic trend of infectious diseases, analyze the dynamic behaviors arising from influential factors
and provide effective strategies for prevention and control of infectious disease to keep the number of
infected individuals within a desired threshold level.

The rest of the paper is structured as follows. In the next section, we propose a non-smooth infectious
disease switching model that can effectively capture the influence of media reports. In Section 3, we
provide a qualitative analysis of the two subsystems. Section 4 is devoted to numerical simulations
to explore the impact of initial population density on disease outbreaks and to analyze the bifurcation
of sensitive parameters. Finally, we conclude the paper with a discussion of our findings and their
implications for infectious disease prevention and control measures in the last section.

2. Establishment of discrete switched epidemic model

Kermack and McKendrick introduced the SIR compartment model [30] in 1927, which has become a
popular tool for studying infectious diseases. One of its key assumptions is that individuals who recover
from the disease will develop lifelong immunity, as seen in diseases such as chickenpox and measles.
Building on this, the SIR continuous model can be formulated by the following equation set:

S ′(t) = Λ − βS (t)I(t) − µS (t),
I′(t) = βS (t)I(t) − (µ + δ + γ)I(t),
R′(t) = γS (t) − µR(t),

(2.1)

where S (t), I(t) and R(t) respectively represent the number of susceptibles, infected individuals and
recoveries at time t; Λ is the recruitment rate of the individuals at a time, β is infection rate, µ is the
natural death rate, δ is the mortality rate due to disease and γ is the recovery rate from infection.

Due to the discontinuity of data collection units and changes in population, we adopt a discrete-time
infectious disease model to better reflect the actual situation. There are several approaches to building
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a discrete model, but the most commonly used method is to discretize a continuous model. The two
commonly used methods are the Mickens non-standard discrete method and the Euler discrete method.
Motivated by [31–33], the Euler method was used to discretize the model (2.1). The resulting discrete
model is shown below: 

S n+1 = S n + Λ − βS nIn − µS n,

In+1 = In + βS nIn − (µ + δ + γ)In,

Rn+1 = Rn + γIn − µRn.

(2.2)

Based on model (2.2), we now incorporate the effect of media influence factor m by modifying the
infection rate β to βe−mI . The updated model is expressed as follows

S n+1 = S n + Λ − βe−mIS nIn − µS n,

In+1 = In + βe−mIS nIn − (µ + δ + γ)In,

Rn+1 = Rn + γS nIn − µRn.

(2.3)

Typically, there is no media coverage when the quantity of infected individuals is small and does not
exceed the ET . In such cases, the disease fails to capture the attention of the public at large. However,
once the number of infected individuals abruptly surges and surpasses the ET , the role of media influence
becomes significant. Media reports and publicity can draw the public’s attention towards the disease
dynamics and prompt individuals to alter their behavior and take appropriate protective measures.

Taking advantage of the threshold policy, we combine models (2.2) and (2.3) as follows

S n+1 = S n + Λ − βS nIn − µS n,

In+1 = In + βS nIn − (µ + δ + γ)In,

Rn+1 = Rn + γIn − µRn,

 In < ET,

S n+1 = S n + Λ − βe−mIS nIn − µS n,

In+1 = In + βe−mIS nIn − (µ + δ + γ)In,

Rn+1 = Rn + γIn − µRn,

 In ≥ ET.

(2.4)

Note that the first two equations of models (2.2) and (2.3) do not involve the variable R. To simplify
model (2.4), we can express it as

S n+1 = S n + Λ − βS nIn − µS n,

In+1 = In + βS nIn − (µ + δ + γ)In,

}
In < ET,

S n+1 = S n + Λ − βe−mIS nIn − µS n,

In+1 = In + βe−mIS nIn − (µ + δ + γ)In,

}
In ≥ ET.

(2.5)

The discrete switching model (2.5) expresses a dynamic system that adheres to a threshold policy,
whereby media influence is only effective when In ≥ ET . For more information on the threshold policy,
please refer to [28, 29]. Similar modeling approaches can also be found in the literature, such as in
references [34, 35].

3. Dynamic behavior analysis of subsystems

The two subsystems of discrete switching model (2.5) are qualitatively analyzed, including existence
and stability, to explore the complex dynamic behavior of the model in this section.
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Denoting F(Z) = In − ET with vector Z = (S n, In)T , and

S G1(Z) =
[

S n + Λ − βS nIn − µS n

In + βS nIn − (µ + δ + γ)In

]
, (3.1)

S G2(Z) =
[

S n + Λ − βe−mIS nIn − µS n

In + βe−mIS nIn − (µ + δ + γ)In

]
, (3.2)

so switching system (2.5) can be rewritten as a vector

Z′(t) =
{

S G1(Z), Z ∈ G1,

S G2(Z), Z ∈ G2,
(3.3)

where
G1 =

{
Z ∈ R2

+ : F(Z) < 0, S n > 0, In > 0,
}
. (3.4)

G2 =
{

Z ∈ R2
+ : F(Z) ≥ 0, S n > 0, In > 0.

}
. (3.5)

Using the threshold policy, we define regions G1 and G2 of system (3.3) as S G1 and S G2 , respectively.
Subsequently, we will investigate the dynamical behavior of subsystems S G1 and S G2 . Below, we present
the definition of regular equilibria for switching systems, which will be utilized in this paper [36].
Definition 3.1. A real (virtual) equilibrium Z∗ = (S ∗G, I

∗
G) for system (3.3) is defined as follows: if Z∗ is

an equilibrium for subsystem S G1 and F(Z∗) < 0 (F(Z∗) ≥ 0), or if Z∗ is an equilibrium for subsystem
S G2 and F(Z∗) ≥ 0 (F(Z∗) < 0). Denoted the real (virtual) equilibrium Z∗ by Er

Gi
(Ev

Gi
) for subsystem

S Gi , respectively. The real and virtual equilibria are all named regular equilibria.

3.1. Qualitative analysis of subsystem S G1

Given the biological significance of system (3.3), it is crucial to establish the existence of positive
invariant sets for subsystem S G1 to ensure the non-negativity of the system’s solution.
Lemma 3.1. The bounded set

Ω1 =
{
(S G1

n , I
G1
n )
∣∣∣∣S G1

n > max{0,
µ + δ + γ − 1

β
}, Λ > (µ − 1 + βIG1

n )S G1
n

}
is a positive invariant set of subsystem S G1 .
Proof. As n = 0, it follows from (3.1) and (3.4) that{

S G1
1 = Λ + (1 − βIG1

0 − µ)S
G1
0 ,

IG1
1 = IG1

0 [1 + βS G1
0 − (µ + δ + γ)],

(3.6)

and S G1
0 > 0, IG1

0 > 0. In order to prove S G1
1 > 0, it has got to prove

Λ > (µ − 1 + βIG1
0 )S G1

0 ,

and this is our hypothesis.
To prove IG1

1 > 0, it is obtained from the second formula of (3.6) that

1 + βS G1
0 − (µ + δ + γ) > 0,
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i.e.,

S G1
0 >

µ + δ + γ − 1
β

.

It is important to establish the relationship between 0 and µ+δ+γ−1
β

, so we obtain that

S G1
0 > max{0,

µ + δ + γ − 1
β

}.

Analogically, when n = k, if the conditions S G1
k > max{0, µ+δ+γ−1

β
}, Λ > (µ − 1 + βIG1

k )S G1
k hold true,

then we have S G1
k+1 > 0, IG1

k+1 > 0.
Hence, Ω1 is the positive invariant set of S G1 . The proof is completed.
The equilibrium of system S G1 is determined by the following equations{

Λ − βS nIn − µS n = 0,
βS nIn − (µ + δ + γ)In = 0.

(3.7)

Therefore, there is a disease-free equilibrium P1 = (Λ/µ, 0). Let us define the basic reproduction number
as RG1

0 = βΛ/[µ(µ + δ + γ)]. Consequently, we can obtain the unique positive equilibrium

E∗G1
= (S ∗G1

, I∗G1
) =
(
µ + δ + γ

β
,

Λ

µ + δ + γ
−
µ

β

)
=

(
Λ

µRG1
0

,
µ(RG1

0 − 1)
β

)
.

This completes the proof.
Next, we will explore the local stability of the positive equilibrium(S ∗G1

, I∗G1
).

Theorem 3.2. The positive equilibrium E∗G1
= (S ∗G1

, I∗G1
) of system S G1 is asymptotically stable,

provided that

max
{
1,
µ(µ + δ + γ) − 4
µ(µ + δ + γ) − 2µ

}
< RG1

0 <
µ + δ + γ

−1 + µ + δ + γ
, (3.8)

where
(µ + δ + γ) > max

{
2,

4
µ

}
.

Proof.
The Jacobian Matrix J1 of the equilibrium E∗G1

= (S ∗G1
, I∗G1

) is

J1 =

[
1 − µ − βI∗G1

−βS ∗G1

βI∗G1
βS ∗G1

+ 1 − (µ + δ + γ)

]
.

From Eq (3.7), we can acquire the characteristic equation for the Jacobian matrix J1 of system S G1 at
(S ∗G1
, I∗G1

), and the characteristic equation is

P(λ) = λ2 − (trJ1)λ + detJ1 (3.9)

and
P(1) = 1 − trJ1 + detJ1 = µ(R

G1
0 − 1)(µ + δ + γ),
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P(−1) = 1 + trJ1 + detJ1 = 4 − 2µRG1
0 + µ(R

G1
0 − 1)(µ + δ + γ).

Condition (3.8) ensures that inequalities

detJ1 < 1, P(1) > 0, P(−1) > 0

hold. Using the Jury et al. [37], we can demonstrate that the modulus of all the roots of Eq (3.9) is less
than 1, and the endemic equilibrium E∗G1

= (S ∗G1
, I∗G1

) is locally asymptotically stable.

3.2. Qualitative analysis of subsystem S G2

Similar to subsystem S G1 , and considering the biological significance of the model, its solution must
not be negative. Therefore, we have first derived the following results.
Lemma 3.3. The bounded set

Ω2 =
{
(S G2

n , I
G2
n )
∣∣∣∣e−mIG2

n S G2
n > max{0,

µ + δ + γ − 1
β

}, Λ > (µ − 1 + βe−mIG2
n IG2

n )S G2
n

}
is a positive invariant set of subsystem S G2 .

Since the proof method is similar to Lemma 3.1, we have omitted the proof process.
The equilibrium of system S G2 is determined by the following equations{

Λ − βe−mInS nIn − µS n = 0,
βe−mInS nIn − (µ + δ + γ)In = 0.

(3.10)

Obviously, system S G2 exists a disease free equilibrium P2 = (Λ/µ, 0), and the endemic equilibrium
E∗G2
= (S ∗G2

, I∗G2
) satisfies

Λ − (µ + δ + γ)I∗G2
−
µ(µ + δ + γ)e−mI∗G2

β
= 0.

Defining x = I∗G2
, then

f (x) = aemx + bx + c = 0, (3.11)

where
a =
µ(µ + δ + γ)

β
> 0, b = (µ + δ + γ) > 0, c = −Λ < 0.

In addition, we study the positive equilibrium (S ∗G2
, I∗G2

) of S G2 by numerical methods. It follows
from Eq (3.10) that

Λ − (µ + δ + γ)I∗G2
=
µ(µ + δ + γ)emI∗G2

β
. (3.12)

Defining two auxiliary functions 
F(x) = Λ − (µ + δ + γ)x

G(x) =
µ(µ + δ + γ)emI∗G2

β

(3.13)

to verify the existence of an equilibrium for system S G2 , Figure 1 shows F(x) and G(x) under different
β. As F(0) > G(0), two functions always intersect at a point, indicating the existence of the equilibrium
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for subsystem S G2 . The existence of an equilibrium in system S G2 has been established, and its stability
is now being investigated.

Figure 1. The existence of the equilibrium (S ∗G2
, I∗G2

) of the subsystem S ∗G2
, parameters are

Λ = 1, γ = 0.5, δ = 0.02, µ = 0.2,m = 3.

Theorem 3.4. The positive equilibrium of system S G2 , denoted by E∗G2
= (S ∗G2

, I∗G2
), is asymptotically

stable provided that
Λβe−mI∗G2 > µ(µ + δ + γ)(1 − mI∗G2

),

(1 −
2

µ + δ + γ
)Λβe−mI∗G2 > −4 + µ(µ + δ + γ) + (2 − µ)(µ + δ + γ)mI∗G2

,

(1 −
1

µ + δ + γ
)Λβe−mI∗G2 < µ(µ + δ + γ) + (1 − µ)(µ + δ + γ)mI∗G2

.

(3.14)

Proof. For the positive equilibrium (S ∗G2
, I∗G2

) of the system S G2 , we can get the characteristic equation
of the Jacobian matrix J2 for the subsystem S G2 evaluated at (S ∗G2

, I∗G2
).

P(λ) = λ2 − (trJ2)λ + detJ2 (3.15)

and

J2 =

 1 − µ − βe−mI∗G2 I∗G2
−βS ∗G2

e−mI∗G2 (1 − mI∗G2
)

βe−mI∗G2 I∗G2
βS ∗G2

e−mI∗G2 (1 − mI∗G2
) + 1 − (µ + δ + γ)

 .
Clearly,

trJ2 = 2 −
1

µ + δ + γ
Λβe−mI∗G2 − (µ + δ + γ))mI∗G2

,

detJ2 = 1 + (µ − 1)(µ + δ + γ)mI∗G2
+ (1 −

1
µ + δ + γ

)Λβe−mI∗G2 − µ(µ + δ + γ).

According to the Jury et al. [37], the condition for the local stability of the equilibrium E∗G2
is

|trJ2| < detJ2 + 1 < 2. (3.16)

Conditions (3.14) guarantee the validity of the inequality (3.16), which implies that the endemic disease
equilibrium (S ∗G2

, I∗G2
) of subsystem S G2 is locally asymptotically stable.
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4. Dynamical behavior of the Filippov system

In this section, we will study the complex dynamics of the infectious disease switching system (3.3).
This is a complex, nonlinear dynamic system with a threshold strategy, making it difficult to analyze in
detail theoretically. Therefore, we will analyze the bifurcation [38–40] of parameters and the outbreak
state under the influence of initial density by numerical simulations.

4.1. Equilibria bifurcation for the switching system (3.3)

Based on Definition 3.1, this section mainly focuses on the real and virtual equilibrium states of the
two subsystems in system (3.3) and conducts a dynamic behavior analysis on them through numerical
simulations. To clearly demonstrate the existence of various equilibrium parameter spaces, we have
selected γ and ET as bifurcation parameters while fixing other parameters, as shown in Figure 2.
Observing the parameter space plane when ET ranges from 0 to 6 and γ ranges from 0 to 1, it is divided
into five regions. When the recovery rate γ is within the range of [0, 0.325] ∪ [0.725, 1], two regions
can be identified: region I-1 only has the existence of Er

G1
, while region I-2 only has the existence of

Ev
G1

. In the case of intermediate recovery rates (γ ∈ [0.325, 0.725]), it can be observed that Er
G1

and Er
G2

coexist in II-1, Ev
G1

and Er
G2

coexist in II-2, and Ev
G1

and Ev
G2

coexist in II-3. Figure 2 displays various
bifurcaiton phenomena, which provide important insights into how to hold back the disease outbreaks or
control the density of infected individuals in areas below the threshold ET . Through numerical analysis,
we can select an appropriate threshold ET such that the equilibrium state of subsystem S G2 is a virtual
equilibrium state, which can help us achieve our control objectives.

Figure 2. Bifurcation diagram for the existence of equilibria of model (3.3) to γ and ET ,
other parameters are Λ = 1.8,m = 0.4, β = 0.06, µ = 0.05, δ = 0.05.

4.2. Bifurcation analysis about sensitive parameters

Codimension-1 bifurcation analysis is a common method to obtain a preliminary understanding of
dynamic behavior. It provides information about the influence of a specific parameter on dynamics. We
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analyze the codimension one bifurcation diagrams of the parameters µ, δ, and β separately to observe
the type of attractor and its change with the variation of the parameter.

First, we select µ as the bifurcation parameter to study the complex dynamic behavior of system (3.3) while
fixing other parameters as shown in Figure 3. When µ increases from 0.863 to 0.902, periodic solutions,
chaotic solutions, and periodic doubling solutions can be observed. Further, as the parameter µ changes
from 0.8656 to 0.8783, the solution of system (3.3) becomes stable. Notably, at µ = (0.8827, 0.8958),
the system exhibits an obvious chaotic state. The bifurcation diagram illustrates that small perturbations
in parameters can lead to significant changes in the system’s dynamic behavior.

Figure 3. Bifurcation diagram for model (3.3) concerning µ. All other parameters are as
follows: Λ = 0.9, ET = 1,m = 0.04, β = 0.0009, δ = 1.187, γ = 0.1.

Figure 4. Phase-plan of model (3.3) with different δ. All other parameters are as follows:
Λ = 0.9, ET = 1,m = 0.01, β = 0.004, µ = 0.81, γ = 0.1, and [A] δ = 1.18, [B] δ = 1.2, [C]
δ = 1.22, [D] δ = 1.252.
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Second, building upon the bifurcation Figure 3, we held other parameters constant and explored
various states of the system’s solutions by selecting different values of δ, as shown in Figure 4. When
δ = 1.18 in Figure 4 (A), system (3.3) has a stable solution. However, when δ increases from 1.18 to 1.2,
the system exhibits a periodic solution, as shown in Figure 4(B). As δ reaches 1.22 or 1.252, a chaotic
solution abruptly emerges, as depicted in Figure 4 (C),(D). As the parameter continues to change, the
nature of the system’s solutions undergoes fundamental shifts, highlighting the significant influence of
parameters on the system.

Figure 5. Bifurcation diagram for model (3.3) concerning β. All other parameters are as
follows: Λ = 10, µ = 0.049, ET = 3, γ = 0.9, δ = 0.04,m = 0.7.

Figure 6. Bifurcation diagram for model (3.3) concerning β. All other parameters are as follows:
Λ = 10,ET = 9,m = 0.7, δ = 0.03, γ = 0.43, and [A] µ = 0.001, [B] µ = 0.01, [C] µ = 0.1.

Third, we investigate β in the system as the bifurcation parameter, while keeping other parameters
unchanged. Figure 5 exhibitions that the system exhibits very complex dynamic behaviors when β
increases. In particular, in the interval of β ∈ (0, 1.6), the system displays period-doubling branches,

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17783–17802.



17794

chaotic solutions and periodic solutions. In Figure 5, the system (3.3) exhibits multiple periodic and
chaotic solutions, such as for β ∈ [0.04, 0.652]∪ [0.99, 1.45]. This highlights the available impact of the
infection rate on disease transmission.

To further understand the influence of parameter µ on the system in this state, we explore values
between 0.01 and 0.6, as shown in Figure 6, and observe that different natural mortality rates can affect
the system’s dynamic behavior. The bifurcation diagrams of system (3.3) with respect to β under the
influence of µ become increasingly simpler, as depicted in Figures 6 (A)–(C).

4.3. Initial sensitivities

In addition to the significant and sensitive parameters that have a crucial impact on disease transmis-
sion, the initial density of susceptible and infected individuals in a given area can also have varying
effects on the outbreak state of the disease. This section systematically investigates the dynamic behavior
of the switching system (3.3) under different initial conditions.

To investigate the interaction between initial density and media factors, we fix the parameter values
as shown in Figure 7 and analyze the different scenarios presented by different initial densities. In
Figure 7(A), with an initial density of (13,1.7), the numerical simulation results show that the density of
infected individuals never exceeds the given ET = 2, indicating that media factors are not required to
control the outbreak.

However, for initial densities of (12,1.5) or (11.7,2), the results indicate that the system will be
affected by media factors once or twice, and the density of infected individuals will stabilize in the
system area, as shown in Figure 7(B), (C). On the other hand, when the initial density is (11,1), society
must strengthen public’s attention and protective measures through the influence of media factors
multiple times to keep the density of infected individuals below ET .

Figure 7. Switching impact of model (3.3) under different initial densities. All other pa-
rameters are as follows: Λ = 12, ET = 2.5,m = 0.09, µ = 0.55, δ = 1.25, γ = 0.3, and [A]
(S 0, I0) = (13, 1.7), [B] (S 0, I0) = (12, 1.5), [C] (S 0, I0) = (11.7, 2), [D] (S 0, I0) = (11, 1).
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Figure 8. The frequency of disease outbreaks at the initial density (S 0, I0) of the system (3.3). All
other parameters are as follows: Λ = 12,ET = 2.5, µ = 0.55, δ = 1.25, γ = 0.3,m = 0.09, β = 0.15.

Figure 9. The frequency of disease outbreaks at the initial density (S 0, I0) of the system (3.3). All
other parameters are as follows: Λ = 1.7,ET = 2, µ = 0.05, δ = 1.2, γ = 0.3,m = 0.11, β = 0.15.

Furthermore, we analyzed the effect of the initial population density on the outbreak of infectious
diseases by creating a horizontal classification map of susceptibles and infected individuals while
keeping other parameters fixed (see Figure 7). As shown in Figure 8, infectious diseases will not
break out in region I, and the impact of media reports on the population is minimal since the disease
is not serious. In green zone II, an outbreak will occur when the initial population density is within
a certain range. As the number of infected people exceeds the threshold, media coverage will play
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a role in preventing susceptible groups from being infected and controlling the spread of infectious
diseases. There will be two outbreaks in area III, and the media needs to repeatedly emphasize and
remind everyone to pay attention to it. Eventually, there will be no further outbreaks. The solution of
the system in area IV will not be affected by media factors after three outbreaks, while the solution in
area V will experience more than three outbreaks. Clearly, when the number of infected people exceeds
ET , different initial population densities within a certain range will lead to varying outbreak frequencies
of infectious diseases. Similarly, when we vary the values of other parameters, we can also observe
similar phenomena, as shown in Figure 9.

Based on the above analysis, it can be inferred that the initial population density plays a crucial
role in disease outbreaks, and monitoring population density in endemic areas can be beneficial for
preventing and controlling infectious diseases.

4.4. Multiple attractors and coexistence

As previously mentioned, the switching system for infectious diseases reveals various dynamic be-
haviors, including the coexistence of multiple attractors. To better understand its biological significance,
we selected different initial densities while fixing other parameters, as shown in Figure 10.

For instance, when m = 0.066, two infectious disease outbreak attractors exist simultaneously,
exhibiting different outbreak frequencies and amplitudes (i.e., Figure 10(A),(B). On one hand, if the
initial values (S 0, I0) are set to (7.9, 1.91), the attractor exhibits the amplitude and frequency shown
in Figure 10(A), which is approximated by the solution of system (3.3). On the other hand, when the
initial values (S 0, I0) change to (9, 1.8), the amplitudes and frequencies become different from those in
Figure 10(A), displaying a more complex burst pattern, as shown in Figure 10(B).

Figure 10. Coexisting attractors of model (3.3) with different initial values. All other
parameters are as follows: Λ = 16, ET = 2, β = 0.3, µ = 0.8, δ = 1, γ = 0.1; [A] (S 0, I0) =
(7.9, 1.91), [B] (S 0, I0) = (9, 1.8).
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Figure 11 illustrates three periodic outbreak attractors with different amplitudes and periods, which
are selected by fixing three population inputs. If we fix the initial population density as (100, 10),
the three attractors coexist and exhibit different amplitudes and frequencies with different values of
population inputs. Corresponding to Λ = 130, 150, 300, we can observe that the three attractors have
different periods of 3, 6 and 5, respectively. In particular, the periodic attractor in the third condition has
the largest amplitude for both susceptible and infected persons, and the outbreak pattern is the most
complex. In the first case, the outbreak pattern is similar to that in the second case, but the outbreak
cycle is very different.

Based on the analysis of attractors in Figures 10 and 11, it is evident that the initial densities and
population inputs of susceptible and infected individuals may lead to different intervention strategies
for controlling the outbreak of an epidemic. Therefore, in addition to monitoring population density in
endemic areas, it is also necessary to consider population movements.

Figure 11. Coexisting attractors of model (3.3) with different Λ. All other parameters are as
follows: (S 0, I0) = (100, 10), ET = 15,m = 0.1, β = 2.8, µ = 0.18, γ = 0.12, δ = 0.1; [A,B]
Λ = 130, [C,D] Λ = 150, [E,F] Λ = 300.

Furthermore, the initial density also impacts the switching frequency of the infectious disease switching
system (3.3), as depicted in Figure 12 (A)–(C). Notably, Figure 12 (A)–(C) underwent 13 and 15 switching
events, respectively. Figure 12 (D)–(F) illustrate the correlation between switching time and frequency
corresponding to Figure 12 (A)–(C), respectively.

The switching frequency in Figure 12 (D) initially stabilized at 5, subsequently fluctuating within the
range of [4,9], but with an overall increasing trend. The switching frequency in Figure 12 (E) remained
at 5 during the fourth switching and decreased to 4 during the final switching. The switching frequency
in Figure 12 (F) also stabilized at 5 and then rose to 9 during the last switching event. Elevated system

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17783–17802.



17798

switching occurrences imply a need for more frequent implementation of control measures. This, in turn,
indirectly escalates media coverage frequency and the associated reporting costs. Consequently, accounting
for the initial value becomes imperative when devising strategies for managing infectious diseases.

Figure 12. Switching frequency (S–F) and switching time (S–T) of system (3.3). Parameters
are ET = 10,m = 0.1, β = 0.3, µ = 0.8, γ = 0.1, δ = 1,Λ = 15. The initial densities from top
to bottom are (3.88, 7.95), (4.61, 5.47) and (7.25, 4.71).

5. Concluding remarks

In this paper, we research the dynamics model of infectious disease affected by media reports and the
threshold of infected persons. We derived and established a discrete switching infectious disease model
and performed a qualitative analysis of its subsystem. The dynamic behavior of the model was analyzed
using various methods, including codimension two bifurcation diagrams, codimension one bifurcation
diagrams and initial sensitivity. We found that multiple parameters and population density in an area can
influence infectious disease outbreaks under the influence of vectors, providing important information
for the eradication of infectious diseases. Our results highlight the need to consider media reports and
population movements when monitoring and controlling infectious diseases. To explore the dynamic
behavior of the model, we employ qualitative analysis techniques related to differential equations to
study the existence and stability of equilibria in the subsystems. Using codimension two bifurcation
analysis, we identify regions where the system has true and false equilibria, as shown in Figure 2. Based
on these findings, a reasonable threshold ET can be designed for preventing and treating infectious
diseases to maintain a stable true equilibrium in system (3.1) and a virtual equilibrium in system (3.2),
thereby promoting disease eradication.
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Since various parameters can potentially affect the dynamic behavior of the system, we analyzed
the possible bifurcation behavior of system (3.3) as shown in Figures 3–6, which exhibits a variety of
dynamic behaviors such as periodic and chaotic solutions, multistability and period doubling bifurcations.
The branching diagram reveals that the path to chaos is very intricate, demonstrating that hidden factors
such as infection rate, natural mortality, mortality due to disease, etc., affect the dynamic behavior
of the system. The media reports influence factor m indirectly affects the changes in these factors.
This illustrates that people’s influence through media reports can increase awareness of prevention
and lead to corresponding preventive and control measures, thereby reducing the spread of diseases.
Furthermore, we also explored the relationship between the initial population density and the prevention of
infectious diseases. Figures 7–9 provide evidence that changes in population density, under the influence
of media reports, can cause different disease outbreaks through the codimension two bifurcation map and
the codimension one bifurcation map. Furthermore, Figure 10 shows that different population densities,
when the fixed m remains unchanged, will produce different attractors and the complexity of system
dynamics will also differ. The coexistence of three attractors in Figure 11 also reflects that different
population inputs lead to similar phenomena. Therefore, reasonable and effective monitoring and control
of population densities and inputs in epidemic areas, under the influence of the media, is conducive to
prevent and control the infectious diseases.

Moreover, we have presented the switching frequency and switching time of the system (3.3)
under various initial conditions, highlighting the relationship between initial density and the control of
infectious diseases. The results demonstrate that the initial density of susceptible and infected individuals
influences the ultimate state following the onset of infectious diseases, as illustrated in Figure 12. The
variability in switching frequencies further reinforces this observation. Hence, incorporating the initial
value becomes a significant aspect in the study of infectious disease switching systems.

We have investigated the dynamic behavior of the infectious disease switching system under the
influence of media coverage. However, the limitation of medical resources also affects the speed
and efficiency of disease control. If the maximum hospital capacity is significantly lower than
the threshold of media response, it would be crucial to incorporate the resource limitation into the
infectious disease switching model. This is an important topic for future research both theoretically
and practically. Furthermore, for comparative analysis, regarding the continuous counterpart of the
discrete switching infectious disease model, we will employ the Filippov switching model to depict it.
We will provide corresponding comparative studies as well. This is a meaningful topic that deserves
further in-depth investigation.
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