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Abstract: Complementary label learning (CLL) is a type of weakly supervised learning method that 
utilizes the category of samples that do not belong to a certain class to learn their true category. 
However, current CLL methods mainly rely on rewriting classification losses without fully leveraging 
the supervisory information in complementary labels. Therefore, enhancing the supervised information 
in complementary labels is a promising approach to improve the performance of CLL. In this paper, 
we propose a novel framework called Complementary Label Enhancement based on Knowledge 
Distillation (KDCL) to address the lack of attention given to complementary labels. KDCL consists of 
two deep neural networks: a teacher model and a student model. The teacher model focuses on 
softening complementary labels to enrich the supervision information in them, while the student 
model learns from the complementary labels that have been softened by the teacher model. Both the 
teacher and student models are trained on the dataset that contains only complementary labels. To 
evaluate the effectiveness of KDCL, we conducted experiments on four datasets, namely MNIST, F-
MNIST, K-MNIST and CIFAR-10, using two sets of teacher-student models (Lenet-5+MLP and 
DenseNet-121+ResNet-18) and three CLL algorithms (PC, FWD and SCL-NL). Our experimental 
results demonstrate that models optimized by KDCL outperform those trained only with 
complementary labels in terms of accuracy. 

Keywords: weakly supervised learning; complementary label learning; knowledge distillation; deep 
neural networks; deep learning 
 

1. Introduction 

Supervised learning is an important branch of machine learning. In supervised multi-classification 
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problems, each sample is assigned a label which indicates the category it belongs to [1]. Supervised 
learning is effective when there are enough samples with high quality labels. However, it is expensive 
and time-consuming to build datasets with a multitude of accurate labels. To solve this problem, 
researchers have proposed a series of weakly supervised learning (WSL) methods, which aim to train 
models with partial, incomplete or inaccurate supervised information, such as noise-label learning [2–5], 
semi-supervised learning [6–9], partial-label learning [10–12], positive-confidence learning [13], 
unlabeled-unlabeled learning [14] and others. 

In this paper, we consider another WSLframework called complementary label learning (CLL). 
We show the difference between complemtary labels and true labels in Figure 1. Compared to an 
ordinary label, a complementary label indicates the class that the sample does not belong to. Obviously, 
it is easier and less costly to collect these complementary labels. For example, in some very specialized 
domains, the expert knowledge is very expensive. If complementary labels are used for annotation, we 
need to only determine the extent of the label space and then use common sense to determine which 
category is wrong. It is much simpler and faster to determine which class a sample does not belong to 
than it belongs to. Besides, CLL can also protect data privacy in some sensitive fields like medical and 
financial records because we no longer need to disclose the true information of the data. This not only 
protects data privacy and security, but also makes it easier to collect data in these areas. 

The framework of CLL was first proposed by Ishida et al. [15]. They proved that the unbiased 
risk estimator (URE) only from complementary labels is equivalent to the ordinary classification risk 
when the loss function satisfies certain conditions. In URE, the loss function must be nonconvex and 
symmetric which leads to certain limitations. To overcome this limitation, Yu et al. [16] made cross-
entropy loss usable in CLL by constructing a complementary label transition matrix, and they also 
considered that different labels had different probability of being selected as a complementary label. 
Then, Ishida et al. [17] expanded URE and proposed a CLL framework adapted to more general loss 
functions. This framework still has an unbiased estimator of the regular classification risk, but it works 
for all loss functions. Chou et al. [18] optimized URE from gradient estimation, and proposed that 
using surrogate complementary loss (SCL) to obtain unbiased risk estimation, which effectively 
alleviated the problem of overfitting in URE. Liu et al. [19] applied common losses such as categorical 
cross entropy (CCE), mean square error (MSE) and mean absolute error (MAE) to CLL. Ishiguro et 
al. [20] conducted a study on the problem that complementary labels may be affected by label noise. 
To mitigate its adverse effects, they selected losses with noise robustness which satisfied weighted 
symmetric condition or a more relaxed condition. Recently, Zhang et al. [21] broadened the setting of 
complementary label datasets and discussed the case that the datasets contained a large number of 
complementary labels and a small number of true labels at the same time. They proposed an adversarial 
complementary label learning network, named Clarinet. Clarinet consists of two deep neural networks, 
one to classify complementary labels and true labels, and the other to learn from complementary labels. 

Previous studies on CLL always focus on rewriting the classification risk under the ordinary label 
distribution to the risk under the complementary label distribution and exploring the use of more loss 
functions [15–19]. These rewriting risk techniques prove the consistency relationship between the risk 
of complementary label classification and the risk of supervised classification. This enables the 
classifier to perform accurate classification using only the complementary labels. However, in this 
process, only complementary labels are involved in the risk calculation, and the information contained 
in them is extremely limited, which results in consistently lower performance of CLL compared to 
supervised learning. Therefore, we aim to enhance the supervision information of the complementary 
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labels to further improve the performance of CLL. In this paper, we propose a two-step complementary 
label enhancement framework based on knowledge distillation (KDCL). It consists of the following 
components: 1) a teacher model trained on complementary label dataset to generate soft labels which 
contain more supervision information as label distribution; 2) a student model trained on the same 
dataset to learn from both soft labels and complementary labels; 3) a final loss function to integrate 
loss from soft labels and complementary labels and update parameters of the student model. We use 
three CLL loss functions to conduct experiments on several benchmark datasets, and compare the 
accuracy of the student model before and after enhancement by KDCL. The experimental results show 
that KDCL can effectively improve the performance of CLL. 

 

Figure 1. Comparison of the complementary labels (bottom) with the real labels (top). 
Complementary label is one of categories the image does not belong to. 

2. Preliminaries 

2.1. Learning from true labels 

Supposing that the input sample is a 𝑑 -dimensional vector 𝑥 ∈ ℝ   with class labels 𝑦 ∈
1,2, . . . , 𝐾  , where 𝐾  stands for 𝐾  classes in the dataset. Giving a training set 𝐷 𝑥 , 𝑦  

with 𝑁  samples, all of which independently follow the same distribution 𝑝 𝑥, 𝑦  . The goal of 
learning from true labels is to learn a mapping relation 𝑓 𝑥  from the sample space ℝ  to the label 
space 1,2, . . . , 𝐾  and 𝑓 𝑥  is also called a classifier. We want 𝑓 𝑥  to minimize the multi-class 
classification risk: 

𝑅 𝑓 𝔼 , ~ 𝐿 𝑓 𝑥 , 𝑦 , 1  

where 𝐿 𝑓 𝑥 , 𝑦  is multi-class loss function, 𝑓 𝑥  is usually obtained by the following equation: 

𝑓 𝑥 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ , ,…, 𝑔 𝑥 , 2  

where 𝑔 𝑥 : ℝ → ℝ . In deep neural networks, 𝑔 𝑥  is the prediction distribution of the output 
from the last fully connected layer. 

In general, distribution 𝑝 𝑥, 𝑦  is unknown. We can use the sample mean to approximate the 
classification risk in Eq (1). 𝑅 𝑓  is empirically estimated as 𝑅 𝑓 : 

𝑅 𝑓
1
𝑁

𝐿 𝑓 𝑥 , 𝑦 , 3  
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where 𝑁 is the number of training data and 𝑖 is the 𝑖-th sample. 

2.2. Learning from complementary labels 

In CLL, each sample 𝑥 is assigned only one complementary label 𝑦. Therefore, the dataset is 
switched from 𝐷 𝑥 , 𝑦   to 𝐷 𝑥 , 𝑦  , where 𝑦 ∈ 1,2, . . . , 𝐾 \ 𝑦   and 𝐷 𝐷 . 𝐷 
independently follow an unknown distribution �̅� 𝑥, 𝑦 . If all complementary labels are selected in an 
unbiased way, which means that they have the same probability of being chosen, �̅� 𝑥, 𝑦   can be 
presented as: 

�̅� 𝑥, 𝑦
1

𝐾 1
𝑝 𝑥, 𝑦 . 4  

Supposing that 𝐿 𝑓 𝑥 , 𝑦  is complementary loss function, we can obtain similar multi-class 
risk as Eq (1) in distribution �̅� 𝑥, 𝑦 : 

𝑅 𝑓 𝔼 ̅ , ~ 𝐿 𝑓 𝑥 , 𝑦 . 5  

To our best knowledge, Ishida et al. [15] are the first to prove that the difference between Eq (1) and 
Eq (5) is constant when the loss function 𝐿  satisfies certain conditions and this constant 𝑀  only 
depends on the number of categories 𝐾: 

𝑅 𝑓 𝐾 1 𝔼 ̅ , ~ 𝐿 𝑓 𝑥 , 𝑦 𝑀 

𝐾 1 𝑅 𝑓 𝑀.               6  

All coefficients are constant when the loss function satisfies the condition. So it is possible to 
learn from complementary labels by minimizing 𝑅 𝑓  in Eq (6). Then, they rewrite one-versus-all 
(OVA) loss 𝐿  and pairwise-comparison (PC) loss 𝐿  in ordinary multi-class classification as 
𝐿  and 𝐿  in CLL: 

𝐿 𝑔 𝑥 , 𝑦
1

𝐾 1
𝑙 𝑔 𝑥 𝑙 𝑔 𝑥 ,  

𝐿 𝑔 𝑥 , 𝑦 𝑙 𝑔 𝑥 𝑔 𝑥 , 7  

where 𝑙 𝑧 : ℝ → ℝ is a binary loss and it must be nonconvex and symmetric, such as sigmoid loss. 
𝑔 𝑥   is the same as Eq (2) and 𝑔 𝑥   is the 𝑦 -th element of 𝑔 𝑥  . Finally, the unbiased risk 
estimator of 𝑅 𝑓  can be obtained by sample mean: 

𝑅 𝑓
𝐾 1

𝑁
𝐿 𝑓 𝑥 , 𝑦 𝑀. 8  
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Although it is feasible to learn a classifier that minimizes Eq (8) from complementary labels, the 
restriction on the loss function limits the application of URE. Yu et al. [16] analyze the relationship 
between ordinary and complementary labels in terms of conditional probability: 

𝑃 𝑦 𝑗|𝑥 𝑃 𝑦 𝑗|𝑦 𝑖 𝑃 𝑦 𝑖|𝑥 , 9  

where ∀𝑖, 𝑗 ∈ 1,2, … , 𝐾 . When all complementary labels are selected in an unbiased way, 𝑃 𝑦|𝑦  
can be expressed as a transition matrix 𝑄: 

𝑄

⎣
⎢
⎢
⎢
⎡ 0 ⋯

1
𝐾 1

⋮ ⋱ ⋮
1

𝐾 1
1

𝐾 1
0 ⎦

⎥
⎥
⎥
⎤

, 10  

where each element in 𝑄  represents 𝑃 𝑦 𝑗|𝑦 𝑖  . Since the true label and the complementary 
label of the sample are mutually-exclusive, that is 𝑃 𝑦 𝑗|𝑦 𝑖 0. Therefore, the entries on the 
diagonal of the matrix are 0. 

Combining Eqs (5), (9) and (10), we can rewrite 𝑅 𝑓  as: 

𝑅 𝑓 𝔼 ̅ , 𝐿 𝑄 𝑔 𝑥 , 𝑦 , 11  

where 𝐿  is cross-entropy loss which is widely used in deep learning. The classification risk 𝑅 𝑓  
in Eq (8) is also consistent with the ordinary classification risk 𝑅 𝑓  [16]. 

3. Complementary label learning based on knowledge distillation 

3.1. Framework architecture 

In image classification, outputs from the last fully connected layer of a deep neural network 
contain the predicted probability distribution of all classes after the Softmax function. Comparing with 
a single logical label, the outputs carry more information. Hinton et al. [22] define the outputs as soft 
labels and propose a knowledge distillation framework. We draw on the idea of knowledge distillation 
and hope to improve the performance of CLL by enhancing complementary labels through soft labels. 

In the framework of knowledge distillation, Hinton et al. [22] modify the Softmax function and 
they introduce the parameter 𝑇  to control the smoothness of soft labels. The ordinary Softmax 
function can be expressed as follows: 

𝑦
𝑒𝑥𝑝 𝑦

∑ 𝑒𝑥𝑝 𝑦
, 12  

where 𝑦  is the predicted probability of the 𝑖-th class, 𝑒𝑥𝑝 ⋅  is the exponential function and 𝑦  is 
the predicted output of the classification network for the 𝑖th class. The Softmax function combines 
the prediction outputs of the model for all classes, and uses the exponential function to normalize the 
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output values in the interval [0,1]. 
The rewritten Softmax function is as follows: 

𝑦
𝑒𝑥𝑝 𝑦

𝑇
∑ 𝑒𝑥𝑝

𝑦
𝑇

. 13  

We present a comparison of the smoothness of soft labels for different 𝑇  in Figure 2. As 𝑇 
gradually increases, soft labels will become smoother. Actually, 𝑇 regulates the degree to the attention 
to the negative labels. The higher 𝑇, the more attention is paid to negative labels. 𝑇 is an adjustable 
hyperparameter during training. 

 

Figure 2. The smoothness of soft labels for different 𝑇. The higher 𝑇, the smoother soft 
labels will be. 

For one sample, soft labels not only clarify its correct category, but also contain the correlation 
between other labels. More abundant information is carried in soft labels than the complementary label. 
If we add an extra term to the ordinary supplementary label classification loss and introduce soft labels 
as additional supervision information, CLL will perform better than using only complementary labels. 
Of course, we need a model with high accuracy to produce soft labels, which will make the soft labels 
more credible. This model is also trained by complementary labels. 

Taking advantage of this property, we propose KDCL, a complementary label learning framework 
based on knowledge distillation. The overall structure is shown in Figure 3. 

KDCL is a two-stage training framework consisting of a more complex teacher model with higher 
accuracy and a simpler student model with lower accuracy. First, the teacher model is trained with 
complementary labels on the dataset and predicts all samples in the training set. The prediction results 
are normalized by the Softmax function with 𝑇 𝑡 𝑡 1  to generate soft labels 𝑆 . Second, the 
student model is trained and its outputs are processed in two ways, one to produce the soft prediction 
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results 𝑆  with 𝑇 𝑡 𝑡 1 , and the other to output ordinary prediction results 𝑃  with 𝑇 1. 
Then, the KL divergence between 𝑆   and 𝑆   is calculated, and the complementary label loss 
between 𝑃   and the complementary labels is calculated at the same time. The two losses are 
weighted to obtain the final distillation loss. Finally, parameters of the student model will be updated 
by the final loss. 

 

Figure 3. The framework architecture of KDCL. 𝛼 and 𝛽 are the weighting factors to 
balance KL loss and complementary loss. 

In KDCL, the final loss consists of Kullback-Leible (KL) loss and complementary loss. On the 
one hand, the student model needs to learn knowledge from the teacher model to improve its ability. 
On the other hand, the teacher model is not completely correct, and the student model also needs to 
learn by itself to reduce the influence of the teacher model’s errors on the learning process. It is better 
to consider both of them. 

3.2. Loss function design 

The final distillation loss consists of two parts and it can be expressed as follows: 

𝐿 𝛼𝐿 𝐿 , 14  

where 𝐿   denotes the KL divergence and 𝐿   denotes the complementary loss. Given the 
probability distributions 𝑝   from the teacher model and 𝑝   from the student model, their KL 
divergence can be expressed as follows: 

𝐿 𝑝 , 𝑝 𝑝 𝑙𝑜𝑔
𝑝
𝑝

, 15  

where 𝑖 denotes the 𝑖-th element in tensor 𝑝  or 𝑝 . 
We select three complementary losses for KDCL. They are the PC loss proposed by Ishida et al. [15], 
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FWD loss proposed by Yu et al. [16] and SCL-NL loss proposed by Chou et al. [18]. Supposing that 
𝑝  is the probability distribution for sample 𝑥 from the student model and 𝑦 is the complementary 
label of 𝑥, these complementary losses are shown in Eqs (16)–(18). 

𝐿 𝑝 , 𝑦
𝐾 1

𝑛
𝑝 𝑝  

𝐾 𝐾 1
2

𝐾 1, 16  

𝐿 𝑝 , 𝑦 𝑦 𝑙𝑜𝑔 𝑄 𝑝 , 17  

𝐿 𝑝 , 𝑦 𝑦 𝑙𝑜𝑔 1 𝑝 , 18  

where 𝐾 denotes the number of categories of the dataset, and 𝑄  denotes the transpose of 𝑄 which 
is a 𝐾 𝐾 square matrix with all entries 1 𝐾 1⁄  except the diagonal. 

With parameters 𝑝 , 𝑝  and 𝑦, the final loss can be expressed in more detail as follows: 

𝐿 𝑝 , 𝑝 , 𝑦 𝛼𝐿 𝑝 , 𝑝 𝐿 𝑝 , 𝑦 19  

𝐿 𝑝 , 𝑝 , 𝑦 𝛼𝐿 𝑝 , 𝑝 𝐿 𝑝 , 𝑦 20  

𝐿 𝑝 , 𝑝 , 𝑦 𝛼𝐿 𝑝 , 𝑝 𝐿 𝑝 , 𝑦 21  

𝛼 is the weighting factor, which is used to control the degree of influence of soft labels on the 
overall classification loss. The values of 𝛼 will be determined in the experiment. 

4. Experiments 

We evaluate and compare the student models optimized by KDCL with the same models only 
trained by complementary labels on four public image classification datasets. Three complementary 
label losses including PC loss [15], FWD loss [16] and SCL-NL loss [18], are used as loss functions 
for training the models. All the experiments are carried out on a server with a 15 vCPU Intel(R) Xeon(R) 
Platinum 8358P CPU @ 2.60GHz, 80 GB RAM and one RTX 3090 GPU with 24 GB memory. 

4.1. Datasets 

Four benchmark image classification datasets, including MNIST, Fashion-MNIST(F-MNIST), 
Kuzushiji-MNIST(K-MNIST) and CIFAR10, are used to verify the effectiveness of KDCL. 

MNIST: consists of 60,000 28 × 28 pixel grayscale images for training and 10,000 images for 
testing, with a total of 10 categories representing numbers between 0 and 9. 

F-MNIST: is an alternative dataset to MNIST and consists of 10 categories, 60,000 training 
images and 10,000 test images, each with a size of 28 × 28 pixels. 

K-MNIST: is a dataset derived from 10 Japanese ancient characters widely used between the 
mid-Heian period and early modern Japan, which is an extension of the MNIST dataset. K-MNIST 
contains a total of 74,000 gray-scale images of 28 × 28 pixels in 10 categories. 
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CIFAR10: consists of 60,000 32 × 32 color images, 50,000 of which are used as the training set 
and 10,000 as the test set. Each category contains 6000 images. 

4.2. Experimental settings 

Following the settings in [15,17,18], we use an unbiased way to select complementary labels for 
samples in all datasets. Besides, we apply two different sets of teacher-student networks to these 
datasets. Specifically, for MNIST, F-MNIST and K-MNIST, we chose Lenet-5 [23] as the teacher 
model and MLP [24] with 500 hidden neurons as the student model. Because these datasets are 
relatively simple, simple networks can work well. For CIFAR10 dataset, since color images are more 
difficult to be classified, we need deeper CNN to extract features. We choose DenseNet-121 [25] as 
the teacher model and ResNet-18 [26] as the student model. 

In the setting of training details, for MNIST, F-MNIST and K-MNIST, we train Lenet-5 and MLP 
with 120 epochs and use SGD as the optimizer with a momentum 0.9 and a weight decay of 0.0001. 
The initial learning rate is 0.1 and it is halved every 30 epochs. The batch size is set to 128. For 
CIFAR10 dataset, we train DenseNet-121 and ResNet-18 with 80 epochs and use SGD as the optimizer 
with a momentum 0.9 and a weight decay of 0.0005. The learning rate is from {1e-1, 1e-2, 5e-3, 1e-3, 
5e-4, 1e-4} and it is divided by 10 every 30 epochs. 

4.3. Parameter sensitivity analysis 

In Figure 4, we make a parameter sensitivity analysis of the distillation temperature 𝑇 in Eq (13) 
and the soft label weighting factor α in Eqs (19)–(21). 

 

Figure 4. Test accuracy results of different 𝑇 with fixed α and comparison results of 
different 𝛼  with fixed 𝑇 . The experiments are conducted with Lenet-5 and MLP on 
MNIST, F-MNIST, K-MNIST and Desenet-121 and Resnet-18 on CIFAR-10. 

We first explore the influence of different distillation temperature 𝑇. As we can see, when 𝑇 1, 
which means directly using the probability distribution output by the teacher model as soft labels 
without softening, KDCL exhibits the worst accuracy. This is because when the temperature is low, 
there is a significant difference in soft labels between positive and negative classes, making it difficult 
for the student model to learn effectively. As 𝑇 gradually increases, the soft labels become more and 
more smooth, and student model can easily learn the knowledge in soft labels, and the accuracy is 



17914 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 17905–17918. 

gradually improved. When 𝑇 80, the gap between positive and negative classes in soft labels is 
extremely small, as well as the influence of negative classes is too large, which leads to the accuracy 
no longer increasing, or even decreasing. 

Then, we further investigate the optimal value of soft label weighting factor 𝛼. We follow the 
setting in Hinton et al. [22], and set 𝛼 in the range of 0 to 1. On the same dataset, the change of 𝛼 
does not have a great impact on the accuracy of KDCL. This indicates that the KDCL model parameter 
optimization process is not sensitive to the hyperparameter 𝛼. Nevertheless, the model still achieves 
higher accuracy when 𝛼 0.5. 

Based on the above analysis, we will set 𝑇 80, 𝛼 0.5 in subsequent experiments. 

4.4. Experimental results 

We show the accuracy for all models with three complementary label losses before and after being 
optimized by KDCL on four datasets. The results are presented in Table 1. 

Table 1. Comparison of classification accuracies between different methods using different 
network architectures on MNIST, F-MNIST, K-MNIST and CIFAR-10. 

Dataset MNIST F-MNIST K-MNIST CIFAR-10 

Model Lenet-5 MLP KDCL-MLP Lenet-5 MLP KDCL-MLP Lenet-5 MLP KDCL-MLP Lenet-5 MLP KDCL-MLP 

PC 89.94% 83.78% 86.10% 77.22% 76.67% 77.42% 67.77% 60.52% 60.34% 38.31% 32.74% 33.37% 

FWD 85.35% 83.67% 84.61% 85.35% 83.67% 84.61% 86.85% 70.86% 75.41% 60.74% 44.93% 46.65% 

SCL-NL 98.18% 92.06% 94.33% 85.93% 83.69% 84.66% 86.85% 70.59% 75.25% 61.64% 40.46% 45.98% 

In Table 1, we show the experimental results of KDCL, where we compare the performance of 
the student model optimized by KDCL with that trained only with complementary labels across 
different losses and datasets. On MNIST, which is a relatively simple and easy dataset, all methods 
can achieve high accuracies. With the help of KDCL, we improve the accuracy of MLP from 83.78% 
to 86.10% with PC loss, 92.07% to 94.32% with FWD loss and 92.06% to 94.33% with SCL-NL loss. 
SCL-NL loss performs better among three loss functions. Besides, after being enhanced by KDCL, the 
accuracy of KDCL-MLP falls between the accuracy of MLP model and Lenet-5. On F-MNIST, which 
is more complex than MNIST, all methods have a slight decrease. Our KDCL achives 77.42% with 
PC loss, 84.61% with FWD loss and 84.66% with SCL-NL loss. On K-MNIST, which is more complex 
than F-MNIST, when using PC loss, our method does not significantly improve the accuracy of MLP, 
but we improve 4.55% with FWD loss and 4.66% with SCL-NL loss. On CIFAR-10, which is the most 
complex among the four datasets, there is a significant drop in accuracies. Nevertheless, the student model 
can still be optimized by KDCL, demonstrating its robustness and effectiveness across different datasets. 

We show the testing process of all models in Figure 5. 
In Figure 5, we present the convergence speed of all models in our experiments. The results show 

that the student model distilled by KDCL converges faster than that trained only with complementary 
labels. This indicates that the model can learn the features of the images more accurately and efficiently 
when utilizing both soft labels and complementary labels. 

Additionally, we observe that the PC loss exhibits a decrease in accuracy on more challenging 
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datasets, particularly on CIFAR10. This is because the PC loss uses the Sigmoid function as the 
normalization function, which can lead to negative values in the loss calculation and prevent the model 
from finding better parameters when updating. This phenomenon becomes more pronounced on the 
CIFAR10 dataset, where a peak appears. However, KDCL can alleviate this phenomenon and shift the 
peak to a later epoch. This demonstrates the effectiveness of KDCL in addressing the limitations of 
existing CLL methods and improving the performance of complementary label learning. 

 

Figure 5. Comparison of the testing process of teacher models, student models and KDCL-
student models on four datasets. 

5. Discussion 

In this study, we established a knowledge distillation training framework for CLL, called KDCL. 
As stated in the introduction, the supervision information in complementary labels is easily missed. 
The proposed framework employed a deep CNN model with higher accuracy to soften complementary 
labels to soft labels. Both soft labels and origion complementary labels are used to train the 
classification model. After the optimization of KDCL, compared to just using the normal CLL methods, 
the accuracy has been improved by 0.5–4.5%. 

The main limitation lies in multiple aspects. First, KDCL’s performance could be influenced by 
the choice of teacher-student models and CLL algorithms. Our experiments utilize specific 
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combinations of models and algorithms, and the results may vary with different configurations. By 
choosing better CNN networks and more excellent CLL algorithms, KDCL can achieve better 
performance on more difficult datasets. Another drawback of the proposed scheme is time cost. Due 
to the two-stage training framework of KDCL, which involves training a high-accuracy teacher model 
using complementary labels, the overall training time cost of KDCL is relatively high. Training a high-
accuracy model typically takes a considerable amount of time, which poses a challenge to the 
efficiency of KDCL. In addition, KDCL is only tested on public datasets, and the data distribution is 
relatively uniform. In the future, we also consider expanding the application scope of KDCL to use 
dynamically imbalanced data for CLL, or to combine with hybrid deep learning models [27–29]. 

6. Conclusions 

In this paper, we give the first attempt to leverage the knowledge distillation training framework 
in CLL. To enhance the supervised information present in complementary labels, which are often 
overlooked in existing CLL methods, we propose a complementary label enhancement framework 
based on knowledge distillation, called KDCL. Specifically, KDCL consists of a teacher model and a 
student model. By adopting knowledge distillation techniques, the teacher model transfers its softened 
knowledge to the student model. The student model then learns from both soft labels and 
complementary labels to improve its classification performance. The experimental results on four 
benchmark datasets show that KDCL can improve the classification accuracy of CLL, and maintain 
robustness and effectiveness on difficult datasets. 
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