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Abstract: The use of mathematical models to make predictions about tumor growth and response
to treatment has become increasingly prevalent in the clinical setting. The level of complexity within
these models ranges broadly, and the calibration of more complex models requires detailed clinical
data. This raises questions about the type and quantity of data that should be collected and when,
in order to maximize the information gain about the model behavior while still minimizing the total
amount of data used and the time until a model can be calibrated accurately. To address these questions,
we propose a Bayesian information-theoretic procedure, using an adaptive score function to determine
the optimal data collection times and measurement types. The novel score function introduced in
this work eliminates the need for a penalization parameter used in a previous study, while yielding
model predictions that are superior to those obtained using two potential pre-determined data collection
protocols for two different prostate cancer model scenarios: one in which we fit a simple ODE
system to synthetic data generated from a cellular automaton model using radiotherapy as the imposed
treatment, and a second scenario in which a more complex ODE system is fit to clinical patient data
for patients undergoing intermittent androgen suppression therapy. We also conduct a robust analysis
of the calibration results, using both error and uncertainty metrics in combination to determine when
additional data acquisition may be terminated.
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1. Introduction

In recent decades, mathematical modeling has frequently been used to advance our understanding
of tumor evolution [1–5]. Modeling of cancer can be performed from the complex, highly-refined
cellular level to a more “macro” level view, where we assume that the tumor acts as a mass of
homogeneous tissue. Estimating the parameter values of such models requires detailed data, which
may take many forms [6, 7]. The models can then be used to make predictions about the evolution of
the tumor and its response to various treatment modalities, including radiotherapy, chemotherapy,
immunotherapy, and viral therapy, among others. Recent technological advances have made it
possible to collect a wide variety of data describing tumors, from the molecular level to the tissue
level. Collecting data at multiple time points can aid in the calibration of mathematical models, which
can be tailored to incorporate the available data. However, some data collection can be prohibitively
expensive or invasive; this raises questions about how much data—and of what type—is needed to
make accurate clinical predictions using mathematical models, and when this data should be
collected.

In the age of personalized medicine, clinicians are turning to individualized treatment protocols,
each tailored to the unique patient. Mathematical modeling can play a significant role here; given
data from an individual tumor, we can calibrate a model and determine patient-specific parameter
values which may give insight into the efficacy of the proposed treatment regimen for that individual.
However, it is important that we bridge the gap between the idealized math modeling framework and
the clinical constraints. While highly complex models can be insightful as far as determining the
underlying mechanisms of the tumor and predicting how different cell populations might interact, at
the clinical level, we are very constrained in the level of detail that might be inferred from the available
data. The question then is: can an inherently simplistic model calibrated solely from a very small
budget of crude data (i.e., estimated tumor volumes from MRI scans or estimates of a tumor biomarker
in the bloodstream) still yield useful information regarding predicted response to treatment? Our work
adds to a growing collection of literature that aims to inform data collection schedules in clinical
oncology [8–10].

Because data collection in a clinical oncology setting is both expensive and potentially invasive for
the patient, clinicians are constrained to a very sparse budget of measurements. In practice, a clinician
might collect one or two tumor volume scans prior to treatment, and then forego measuring again
until the treatment period has ended [11–13]. Due to the expense of data collection, it is imperative
that we optimize the information content from those scans that can be collected. A variety of methods
for optimal experimental design have been utilized in previous work, including the use of profile
likelihood to resolve practical nonidentifiability in [14], parallel tempering and LASSO regression
methods in [15], and structural identifiability and sensitivity analysis in [16]. In this work, we utilize a
high-to-low fidelity model calibration framework that chooses the set of high-fidelity data points to be
collected in such a way as to maximize their information content with respect to inferring parameters
of a lower-fidelity model, which can then be used to make predictions about future outcomes [17]. In
general, the high-fidelity setting may represent computationally expensive models such as multiscale
models or agent-based models, or may represent the acquisition of experimental or clinical data,
which is physically expensive to obtain. On the contrary, low-fidelity/low-cost models such as
spatially-averaged differential equation models can be easily evaluated once validated [18, 19].
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In [20], the authors employed such a sequential experimental design framework to determine an
optimal selection of temporal data for model calibration. In that work, a score function was proposed as
a means of adapting the pre-existing sequential design framework to handle temporal data, as opposed
to other studies [21, 22] which dealt solely with non-temporal data (i.e., spatial design conditions). In
addition to trying to maximize the reduction in parameter uncertainty through the choice of a highly
informative data point, we also sought to penalize the algorithm for skipping too many data points,
since the temporal data framework does not allow for those points to be subsequently collected at a
later date. In [20], this penalization step relied upon a penalization parameter k, which was varied over
the interval [0, 1] in an attempt to optimize the efficiency and accuracy of the model calibration. The
previous study tested this algorithm on three sets of synthetic data of varying radiation response types,
and concluded that the optimal k value varies depending on the strength of patient response to the
radiotherapy treatment. For instance, in scenarios where the tumor was highly sensitive to radiation,
the model calibration procedure benefited most from the use of a k value near or at 1. Scenarios with
data that was less responsive tended to favor k values in the low-to-middle spectrum, i.e., k = 0 to
k = 0.3.

Although this framework was demonstrated to be effective in determining which scans to select for
model calibration, the previous study did have several weaknesses. Most notably, the reliance of the
choice of parameter value k upon the strength of the patient’s response to therapy was constrictive;
an optimal k value could not be determined until the general shape of the data could be assessed,
which required at least several data points. In a highly restrictive scan budget scenario—i.e., in the
clinical scenarios we are attempting to mimic—this means that an optimal k value realistically cannot
be determined in time to have a positive impact on the algorithm efficiency. In this work, we propose
a new adaptive score function, which adjusts the penalty at each step of the algorithm based on the
anticipated final measurement—that is, we optimize the penalty term in accordance with how much
further change is anticipated in the system dynamics over the remainder of the treatment period—in
place of using a static parameter k.

We conduct an analysis of the model calibration resulting from this new adaptive score function
with mean-square error, as was used in [20]. Additionally, we supplement this with uncertainty-based
analysis, using credible intervals constructed by propagating parameter posterior distributions through
the model to assess the level of certainty in the resulting model trajectory. The uncertainty analysis
relies solely on the data that has been collected up to the current day, so it provides a more practical
assessment of confidence in the model predictions for use in a clinical setting.

In addition to testing the algorithm on synthetic data generated from a cellular automaton model
with an imposed radiotherapy treatment protocol, as in [20], we also test our algorithm on clinical
patient data from prostate cancer patients, which includes measurements of both the prostate-specific
antigen (PSA) tumor biomarker and serum androgen levels [23]. We calibrate a subset of the
parameters in an ODE system [24] to an early subset of the PSA data using our adaptive score
function, in order to assess how well the inferred model can predict future behavior. We also test our
algorithm using multiple metrics, by making both PSA and androgen levels available to be chosen at
each step of the sequential design procedure. In both cases, the resulting calibration and prediction
results are compared to two potential pre-determined data allocation designs, and the sequence of data
points chosen by our algorithm is demonstrated to yield the best mean-squared-error both for the
inference period as well as for an extrapolated prediction period.
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We begin in Section 2 by describing the algorithm development, including the necessary
background in Bayesian parameter estimation and sequential design and the formulation of the
adaptive score function. Our metrics for model assessment are discussed in Section 3. Section 4
describes the low-fidelity ordinary differential equation models and corresponding high-fidelity data
for both applications that we use to illustrate the algorithm. The first application is radiotherapy
treatment of prostate cancer, using synthetic data obtained from a cellular automaton model; the
second is use of intermittent androgen suppression therapy (IAS) to treat prostate cancer, using
clinical data from [23]. Section 5 presents the results obtained by applying our adaptive algorithm to
the synthetic radiotherapy data and to the clinical IAS data. We demonstrate the benefit of our
adaptive information-based design procedure by comparing our results with those obtained using
alternative pre-determined design schemes. Section 6 summarizes the findings of the investigation
and discusses their implications.

2. Methodology for optimal data collection

In this section we introduce the methodology used to determine optimal experimental designs for
high-fidelity data collection in order to best inform our low-fidelity model parameters. The
methodology is based upon a sequential experimental design procedure that employs Bayesian
inference at each step. As the general procedure formed the basis of a previous study, we direct the
reader to [20] for further details, and focus here on the introduction of our new adaptive score
function for balancing the choice of an informative data point with the need to gather data early
during the treatment period, so that treatment protocols can be altered mid-course in the event that the
model trajectory predicts an undesirable outcome.

2.1. Overview of sequential experimental design procedure

Recall that our overarching goal is to accurately calibrate our model parameters using as little data
as possible, ideally finishing early on during the treatment phase so as to allow for modified treatment
if the predicted outcome is not ideal. As such, we need a way to determine which potential data points
will be most informative for our parameter set; that is, given a choice of potential days at which to
collect data and a choice of quantities that can be measured, which collection of measurements will
maximize the reduction in uncertainty of the low-fidelity model parameters? To answer this question,
we utilize a sequential experimental design framework, in which data points are acquired one-by-
one and parameter estimates are updated between each data acquisition using a Bayesian inference
framework. Because the Bayesian perspective assumes that parameters are random variables with
associated densities that can be repeatedly updated to reflect information from newly acquired data,
this method is ideally suited for our sequential framework.

Assuming a current data set Dn−1 = {d̃1, d̃2, . . . , d̃n−1}, consisting of high-fidelity measurements
(i.e., synthetic or experimental data), and a set of possible design conditions Ξ, we select the design
condition ξn ∈ Ξ that will maximize the reduction in uncertainty of the low-fidelity model parameters θ
when d̃n—the data point resulting from collecting experimental (or synthetic) data at condition ξn—is
added to the existing data set. We can quantify the predicted information contribution of design ξn upon
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parameter set θ by computing the mutual information, denoted by I, between these two quantities,

I(θ; dn | Dn−1, ξn) =
∫
D

∫
Ω

p(θ, dn | Dn−1, ξn) log
p(θ, dn | Dn−1, ξn)

p(θ | Dn−1)p(dn | Dn−1, ξn)
dθ ddn, (2.1)

where dn represents the predicted value of d̃n using our low-fidelity model, D is the full set of all
unknown future observations, andΩ describes the admissible parameter space. The mutual information
provides a measure of parameter uncertainty reduction; a larger MI value indicates potential for a
greater acquisition of knowledge about the parameter values than a small MI value, given the inclusion
of the data point(s) corresponding to the experimental design under scrutiny. In practice, the high-
dimensional integral in (2.1) is typically estimated via the kth-nearest neighbor (kNN) method proposed
by Kraskov et al. [25]. For more details on the derivation of Eq (2.1) and computational methods used
to estimate it in practice, we point the reader to [20–22, 25].

In a standard non-temporal sequential design framework utilizing MI as a metric to be optimized,
one would compute the MI for each of the potential design conditions and choose the condition which
maximizes the MI as the next condition for experimental or synthetic evaluation. After evaluation of
this data point, the parameter set is re-calibrated using a Bayesian Metropolis algorithm and the
computation of MI begins anew for all remaining design conditions. The algorithm can be terminated
when either (a) a user-defined threshold for model accuracy or uncertainty is achieved, or (b) a
pre-defined data allocation budget is exhausted. A visual outline of the standard sequential design
procedure for high-to-low fidelity model calibration is given in Figure 1, where dℓ(θ, ξn) denotes the
low-fidelity model evaluated at parameter set θ and design condition ξn, while dh(ξn) denotes the
corresponding high-fidelity model (or data) evaluation at that same design condition.

Figure 1. Multi-fidelity framework for sequential data collection and model calibration.

2.2. Score function

For a scenario such as this investigation, in which design conditions represent days at which data
can be collected, we require an adaptation to the standard methodology. Because collecting data at
time tn precludes the collection of data for all times ti with i < n, we must account for the potential
loss of information from skipped data points. Additionally, skipping far ahead in time to obtain an
informative data point towards the end of the treatment schedule impedes our goal of calibrating the
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model parameters early in time, to allow for potential modification of the treatment regimen. In a
previous study [20], we proposed an extension to the sequential MI framework using a score function
that would reward a user for choosing a point with a large MI but simultaneously penalize them for
skipping too many intermediate days. This score function contained a penalization parameter, k, which
could be tuned via visual inspection of the data to increase or decrease the penalty term as appropriate;
for patients whose data was highly dynamic, a steeper penalty could be imposed via a larger k value,
in order to force the algorithm to choose designs near in time to the recently collected data. On the
contrary, for patients whose trajectories were relatively stable, the penalty term could be adjusted so
that data collection would be more sparse, enabling calibration to be performed on a smaller budget
with negligible loss of information.

While the previously employed score function successfully identified appropriate data collection
protocols for patients with various responses to treatment, the reliance of the procedure on identifying
an optimal penalization parameter value k a priori was constrictive, especially since that parameter
value could not be optimized without some prior knowledge of how the patient would respond to
treatment. By testing a variety of different k values on the interval [0, 1], it was found that for tumors
that were highly sensitive to treatment, larger values of k were optimal, while the algorithm favored
smaller values of k for those patients that were less responsive, as expected. Exploiting this observation,
we now amend this score function to allow for better optimization of our algorithm without the need
for an additional penalization parameter or a priori knowledge of how a patient will respond.

Suppose that the current data set Dr consists of high-fidelity observations Dr = {d̃1, d̃2, . . . , d̃r},
where d̃r = d̃(tr) is the most recently appended data point, collected at time tr. Among all possible
future data points, d̃r+1, d̃r+2, . . . d̃N , we wish to determine which design will yield the most information
about our model parameters. For each of the remaining designs, we calculate the mutual information
at step r, denoted I(θ; d(ti) | Dr), for i = r + 1, r + 2, . . . ,N. We then rescale the mutual information
values to adhere to the interval [0, 1], so that the information quantity will be on the same order of
magnitude as the forthcoming penalty term. We denote these rescaled MIs at step r as {R(i, r)}Ni=r+1.
In the standard sequential design procedure where choosing one design condition does not preclude
subsequent collection of others, this would be the quantity that we would seek to maximize.

To create the penalty term for temporal data collection, we begin by summarizing the potential
information loss from skipping points r + 1 through i − 1 using the ratio

Information Loss Ratio =

i−1∑
j=r+1

R( j, r)

N∑
ℓ=r+1

R(ℓ, r)
,

which totals the rescaled mutual information of all skipped points and divides by the sum of the rescaled
mutual information across all possible remaining design conditions. In the previous study [20], this
ratio was appended to the penalty weight parameter k and subtracted from the mutual information to
yield the employed score function.

Rather than rely on an unknown weight parameter in this study, we replace k with an adaptive
penalty coefficient designed to alter the penalty term in one of two ways: (a) to increase the penalty
when the current dynamics still differ drastically from the expected ending point and (b) to decrease the
penalty when it is suspected that the final outcome of the model trajectory is close to being established.
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We employ a symmetric absolute error that compares the previously chosen high-fidelity measurement,
d̃r, to the anticipated final measurement based on the low-fidelity model prediction (i.e., the low-fidelity
model prediction for the final day of treatment), dN , calculated as

Penalty Coefficient =

∣∣∣∣∣∣ d̃r − dN

d̃r + dN

∣∣∣∣∣∣.
This quantity is bounded on the interval [0, 1], provided that d̃r and dN are not both simultaneously
zero. (Computationally, if both terms are zero, there is no further dynamical change expected, and so
we set the penalty coefficient equal to zero.) In practice, this means that for a quantity that is still
expected to undergo a lot of change over the course of the remaining treatment period (as assessed by
using a prediction from the current calibrated model trajectory), the penalty for skipping data points is
relatively high; for quantities that appear to have stabilized in size near the expected final outcome,
the penalty is close to zero, allowing for sparser data collection to minimize costs. In the event that
measurements for multiple quantities are able to be collected, as in Section 5.2, we calculate the
penalty coefficient for each measurement type separately and use the maximum symmetric absolute
error across all quantities, to favor a more conservative design scheme in terms of choosing a point
closer in time to those already observed. The specific form of the penalty coefficient was chosen in
order to meet our objective of quantifying the distance from the expected final measurement while
also remaining bounded on [0, 1], such that the magnitude of the penalty is comparable to the
magnitude of the term to which it is applied. Certainly, other choices which meet these criteria—such
as a squared symmetric error—could be considered.

Combining the three relevant quantities, we obtain our finalized score function for design condition
i at step r:

S (i, r) = R(i, r)︸︷︷︸
Rescaled MI

−

∣∣∣∣∣∣ d̃r − dN

d̃r + dN

∣∣∣∣∣∣︸    ︷︷    ︸
Penalty Coefficient

·


i−1∑

j=r+1
R( j, r)

N∑
ℓ=r+1

R(ℓ, r)

︸           ︷︷           ︸
Information Loss Ratio

, for i = r + 1, . . . ,N. (2.2)

Throughout the remainder of this investigation, Eq (2.2) will be used to select the next design condition
for data acquisition at each cycle of the algorithm.

3. Analyzing model accuracy and uncertainty

Section 2 outlined a procedure for choosing optimal design conditions at which to collect data in a
sequential manner. But when should we terminate the algorithm? The user has two options. If there
are no constraints on the data collection budget, the user might define a goal that they wish to meet
in terms of model accuracy or reduction of uncertainty; this might take the form of a user-defined
error or uncertainty threshold. Once this goal is attained, the user may terminate the algorithm. In a
more likely scenario, there are significant constraints on the data collection budget due to expensive or
invasive scanning or sampling procedures that will force termination of the algorithm. For this scenario,
the user must determine whether an adequate reduction in uncertainty or error has been achieved. This
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analysis will assist the user in deciding whether the resulting model is reliable enough to be used for
decision-making at the clinical level.

Though the previous study in [20] relied solely on error analysis to determine the predictive power
of the final model, here we expand our model assessment to include an uncertainty analysis component.
This is a more suitable assessment method in practice, since a user can measure the level of uncertainty
in the model at any point using only the data collected so far, but cannot measure the full error in the
model until after data collection has ceased, using the metric as defined.

3.1. Error analysis

Our previous study [20] relied solely on error analysis as a means of determining the number of
scans required to achieve model accuracy. We conduct that analysis here again, and compare how
the goals of achieving model accuracy (i.e., error reduction) and model certainty (i.e., uncertainty
reduction) align.

To assess model error, we calculate the mean-square-error (MSE) between the low-fidelity model
predictions and the high-fidelity synthetic or experimental data for all possible scan choices, given by

MSE =
1
n

n∑
i=1

(yi − f (xi; θ))2,

where yi represents the high-fidelity synthetic data measurement on day i and f (xi; θ) represents the
low-fidelity model prediction at day i given current estimated parameter set θ, for each cycle of the
algorithm. We use this metric to demonstrate how the low-fidelity model trajectory converges toward
the “truth” data as the scan number increases—that is, the model fit to the subset of chosen data tends
to improve in fit to the full set of possible high-fidelity data points over time.

The drawback to using this metric for model assessment is that in practice, one would not have
access to all of these high-fidelity data evaluations for computation. Given only the data points about
which the user is actually aware, it is difficult to assess whether the model parameters have converged to
the values that will create the idealized model fit across the entire data regime. Using only the selected
scans, a final error could potentially be informative, but this is in essence a “hindsight” analysis; we
cannot compute this error until all data have been collected. Thus, we supplement our error analysis in
this investigation with an uncertainty analysis, and investigate how either one might be used to assess
convergence towards the ideal model fit.

3.2. Uncertainty analysis

The use of Bayesian methods for parameter estimation provides an ideal setting for performing
uncertainty quantification. The posterior distributions for each of the parameter values can be
propagated through the model to simulate the full array of resulting trajectories that might arise. In
essence, one can directly observe the uncertainty in the model output that arises from the uncertainty
in the parameter inputs. In this study, we construct 95% credible intervals for the model output by
propagating the parameter posterior density chains through the model, then plotting the middle 95%
of trajectories to accompany the chosen model fit (the fit utilizing the set of parameter values which is
found to maximize the likelihood function).

As a metric for quantifying the amount of uncertainty in our model predictions, we estimate the
area of the credible interval after each data acquisition. As the uncertainty in the model parameters is
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generally reduced with each new added data point, this manifests as a tighter credible interval about
the fitted model trajectory; we can observe how the area of the interval trends generally downward with
each new data collection.

The major benefit to conducting uncertainty analysis, as opposed to error analysis, is that it can be
considered “foresight analysis.” Given only the data that we have already collected, we can measure
the uncertainty in the model trajectory for future times and assess whether this uncertainty has been
reduced to an acceptable level to allow for decision-making based on the model. However, it should
be noted that just because the model uncertainty has been reduced to an acceptable level does not
guarantee that the model fit to future data will be decent. We recommend a two-fold approach: waiting
for the model uncertainty to be reduced while also checking that the model trajectory has stabilized
across the previous few data additions; observing the trajectory fluctuating with each added point
suggests that the model may require additional data in order to settle upon a best fit.

4. High-to-low fidelity model systems for demonstration

In this section, we present two high-to-low fidelity model systems to demonstrate the effectiveness
of the proposed data collection framework. We consider two different treatments for prostate cancer:
radiotherapy and intermittent androgen suppression therapy. In both applications, the low-fidelity
models are ordinary differential equation systems, presented in Sections 4.1.1 and 4.2.1, respectively.
For high-fidelity data, we consider the use of both synthetically generated data (Section 4.1.2) as well
as clinical data (Section 4.2.2).

4.1. Prostate cancer with radiotherapy treatment

The first application we consider is radiotherapy treatment of prostate cancer. We assume a
scenario of collecting tumor volume data to monitor the treatment response; thus, an ODE model
describing the tumor volume dynamics is used as the low-fidelity model. For the purpose of a
proof-of-concept investigation that requires comparing errors and uncertainties across different
collections of data measurements that may occur as often as once per day, we make use of synthetic
high-fidelity data generated from a more complex in silico cellular automaton (CA) model.

4.1.1. Radiotherapy: low-fidelity differential equation model

The low-fidelity model that we use for calibration is an ODE model that governs the total tumor
volume over time. The model describes the time evolution of the total tumor volume, V(t), using a
logistic growth model with an effective growth rate A and carrying capacity B:

dV
dt
= AV

(
1 −

V
B

)
. (4.1)

We denote them as effective parameters, since the effective growth rate A includes the net effect of
proliferation and natural cell death, and the carrying capacity is scaled accordingly—see [26] for
details. In this simple low-fidelity model, we assume that any cells that transition to a necrotic state
due to sustained oxygen or nutrient deprivation are removed from the tumor instantaneously; that is,
we view the tumor as a homogeneous mass of proliferating, viable cells.
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The radiotherapy (RT) treatment protocol is modeled using the linear-quadratic model [27, 28] to
account for the effects of RT, which is a reasonable choice of model for fast-growing tumors [29]. In
this model, the fraction of cells that survive exposure to a single administered dose d of RT is given by

Survival fraction, S F = e−αd−βd2
, (4.2)

where α and β represent tissue-specific radiosensitivity parameters (for single-strand and
double-strand DNA breaks, respectively), and d is the radiotherapy dosage. We incorporate a typical
radiotherapy regimen for solid tumors, with daily doses of 2 Gy administered Monday through Friday
for six consecutive weeks, initiated following a two-week growth observation period. We assume that
the irradiated cell fraction is removed immediately from the tumor volume, similarly to the
instantaneous removal of necrotic cells in our base model. We reformulate the low-fidelity model with
radiotherapy under these assumptions, as:


dV
dt = AV

(
1 − V

B

)
, for t+i < t < t−i+1,

V(t+i ) = exp(−αd − βd2) V(t−i ),
(4.3)

where ti (for i = 1, 2, . . . , n) denote the times at which an RT dose is delivered, and V(t±i ) denote the
tumor volume just before and after radiotherapy is administered. Previous work [26] has illustrated
that the full parameter set [A, B, α, β] is unidentifiable in the sense that multiple sets of parameters
may yield the same model output. As such, we use two pre-treatment data points at days 8 and 15 to
estimate and subsequently fix parameters A and B, and fix the α/β ratio to be 1.5, a typical value for
prostate cancer [30]. We then initiate the algorithm with a single data point during the treatment phase
(day 19, the first Friday of RT), and estimate β only, which serves as a measure of the strength of the
patient response to treatment. We employ a flat prior distribution ofU(0, 1) for β.

4.1.2. Radiotherapy: high-fidelity synthetic data

In place of experimental data for this proof-of-concept application, we generate high-fidelity
synthetic data using the hybrid cellular automaton (CA) model from [20, 26], adapted from the model
described in [31]. We use this model to generate a series of synthetic data representing virtual
patients, consisting of tumor spheroids that differ in their response to radiosensitivity. In the model,
cells are arranged on a discrete lattice representing a two-dimensional square cross-section through a
three-dimensional cancer spheroid in vitro. Notable features of the model include a heterogeneous
cancer population and stochastic cell cycle, coupled with spatially heterogeneous oxygen levels
modeled by a reaction-diffusion equation. The surrounding oxygen levels determine whether each cell
is in a proliferating, quiescent, or necrotic state. See [20, 31] for a detailed description of the
CA model.

The baseline parameter values that are used to generate data using the CA model are shown in
Table A1 of the supplementary material, while detail about the key parameters that are varied to
generate distinct synthetic spheroids is provided below. These parameter values are estimated using
experimental data from the prostate cancer cell line, PC3, in [31]. Radiotherapy in the CA model is
implemented using the linear-quadratic model detailed in Eq (4.2). The probability of survival for all
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proliferating cells in the CA model is identical to the survival fraction in the low-fidelity model. In the
CA model, the quiescent cells are 2

3 times as likely as the proliferating to be irradiated, in order to
reflect the lower sensitivity to radiation-induced DNA damage for quiescent cells, in comparison to
proliferating cells.

We generate a virtual cohort of 27 tumor spheroids using the CA model, for calibration testing. In
order to generate spheroids with a range of responses to radiotherapy, we vary the mean cell cycle time,
τ̄cycle (in hours), the radiosensitivity parameter α, and the ratio α/β. We generate one virtual spheroid
with each combination of parameter values listed in the ranges below, while fixing all other parameter
values at the values listed in Table A1.

τ̄cycle ∈ [15, 22, 30],
α ∈ [0.014, 0.5, 0.14],
α/β ∈ [1, 1.5, 2].

Next, by visually inspecting the simulation results, we separate the 27 virtual spheroids into three
categories: non-responders, weak responders, and strong responders. We observe similar patterns
among the spheroids in each category with respect to the quality of fits and to the timing of and number
of scans chosen using the score function in Eq (2.2). For simplicity, we choose one representative from
each category to present in Section 5.1, each of which is reflective of the average behavior across the
simulations in its category. Our chosen representative non-responder is generated using the parameter
values τ̄cycle = 22, α = 0.014, and α/β = 1. Our chosen representative weak responder is generated
using the parameter values τ̄cycle = 22, α = 0.05, and α/β = 1.5, and our chosen representative strong
responder is generated using the parameter values τ̄cycle = 15, α = 0.14, and α/β = 1. The synthetic
tumor volume data of the three representative virtual patients are shown in Figure 2.

Figure 2. High fidelity synthetic data of tumor volume trajectory subject to radiotherapy for
the three chosen representatives: strong responder (left), weak responder (middle), and non-
responder (right). The data is generated by the hybrid CA model using parameters described
in Section 4.1.2 and Table A1.

4.2. Prostate cancer with intermittent androgen suppression therapy

Our second application problem applies our approach to real clinical data, in which prostate cancer
patients were treated with intermittent androgen suppression therapy (IAS), a treatment developed to
help reduce the side effects of continuous androgen suppression therapy (CAS) while also delaying the
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transition of prostate cancer cells from androgen-sensitive to androgen-resistant [32]. Measurements of
both PSA and serum androgen levels are reported for each patient at each data collection time. As our
low-fidelity model, we consider an ODE system developed in [24] that tracks the dynamics of cancer
cells, PSA, and androgen levels.

4.2.1. IAS therapy: low-fidelity differential equation model

The low-fidelity ODE model that we use for calibration describes the dynamics of PSA level P(t),
intracellular androgen level Q(t), serum androgen level A(t), and two prostate cancer cell populations:
androgen-dependent cancer cells x1(t) and androgen-independent cancer cells x2(t) [24]. The system
of equations is as follows:

dx1

dt
= max

(
µ

(
1 −

q1

Q

)
x1, 0

)
− dx1(x1 + x2) − c

K
Q + K

x1

dx2

dt
= max

(
µ

(
1 −

q2

Q

)
x2, 0

)
− dx2(x1 + x2) + c

K
Q + K

x1

dQ
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= m(A − Q) −

µ(Q − q1)x1 + µ(Q − q2)x2

x1 + x2
(4.4)
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)
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dP
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(
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(
1 −

q1

Q

)
x1, 0

)
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(
σ2

(
1 −

q2

Q

)
x2, 0

)
− ϵP,

where the intermittent treatment is controlled by the function

u(t) =

0, on treatment
1, off treatment

Parameter interpretations can be found in Table A2 in the supplementary material. Further details
regarding the construction and interpretation of this model can be found in [24]. As reported in [24],
the parameter subset {q2, γ1, A0, σ2} is expected to contain some of the most sensitive parameters; thus,
we estimate this subset and fix all other parameters at the values listed in Table A2. As in [33], the
initial values A(0) and P(0) are taken to be the first reported values of the clinical data set. The initial
population of x2 is assumed to be some fraction of the initial x1 population, representing the fact that we
begin with mostly androgen-sensitive cells. The initial intracellular androgen level, Q(0) is assumed to
be a fraction of the initial serum androgen level, A(0). For further discussion of the determination of
appropriate initial conditions, see [33].

4.2.2. IAS therapy: high-fidelity clinical data

In this model system, we study our approach using clinical data provided in [23]. We consider a
single patient (Patient 39), for whom the response to treatment is fairly representative of the full group.
The PSA and serum androgen level dynamics of the patient for 3.5 cycles of treatment are displayed in
Figure 3. The patient begins the treatment at the start of data collection (day 0). Once their PSA level
has declined below a predetermined threshold, the hormone therapy is temporarily halted; this occurs
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around day 300, as indicated by both the PSA and serum androgen levels beginning to increase. One
full cycle of “on-off” treatment has concluded around day 440, at which point the cycle begins anew.

Figure 3. High fidelity clinical data for prostate cancer Patient 39 undergoing intermittent
androgen suppression therapy in [23]; both PSA and serum androgen levels are included.

While PSA is the primary metric used for assessing prostate tumor growth in the clinic, we will
make use of both PSA alone as well as PSA and serum androgen measurements in combination in
Section 5.2, to see how acquiring multiple types of data may enhance the predictive capability of the
calibrated low-fidelity model. Practically, both of these quantities can be measured using a simple
blood test, and so allowing for the inclusion of androgen measurements is not a prohibitive suggestion.

5. Results

5.1. Prostate cancer with radiotherapy

We first test our algorithm on synthetic CA data using the models presented in Section 4.1,
representing three different types of radiotherapy response: a strong responder, weak responder, and
non-responder. In each case, data from days 8 and 15 of the growth observation period is used to
estimate and fix the growth parameters, A and B, and then the algorithm is initiated using a single
additional treatment data point (day 19, the first Friday of treatment), with only β being estimated.
Figure 4 displays the calibration of the model to the strong responder data and corresponding credible
interval after each tumor volume scan is chosen by the algorithm. In this case, the algorithm chooses
15 points over the full course of the six-week treatment, with a preference for scans near the start of
each treatment week. We note that a large number of scans are chosen in this case because our score
function penalizes skipping points when the current dynamics differ substantially from the expected
ending behavior, which is observed for most of the treatment period for the strong responder. Figure 5
shows the posterior distributions for treatment parameter β as the model is re-calibrated when
additional scans are added. We observe that the density plots become more narrow and shift to the
right as more data is added to inform a more accurate estimate of the parameter value. The parameter
appears to be reasonably well-informed after nine treatment scans are collected in this case
(coinciding with the stabilization of the model trajectory from step-to-step), suggesting that it may not
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be necessary to continue collecting data until the termination of treatment in order to establish a
well-calibrated model for clinical predictions.

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 6 Iteration 8

Iteration 10 Iteration 12 Iteration 15

Figure 4. RT strong responder. Credible interval evolution over scan progression. The first
plot shows the initial calibration using data at days 8, 15, and 19, with radiotherapy beginning
at day 15 and following the treatment schedule described in Section 4.1.1. The points that
are filled indicate data used for model calibration at the current iteration, whereas unfilled
points represent scans that are not being used for calibration. The subsequent plots show the
progression as the following scans are added. Both accuracy and uncertainty continuously
generally improve as scans are added; these metrics are quantified in Figure 8.

In the weak responder case, the dynamics stabilize very quickly, so the penalty for skipping points is
small after the first treatment scan is chosen. Additionally, the sawtooth behavior of the model observed
during the treatment stage means that different scan choices have varying mutual information, further
encouraging the algorithm to skip certain points in favor of later, more informative choices. As a
result, only five scans are chosen throughout the course of the treatment period, as is shown in Figure
6. We also observe in this figure that the credible interval is small after two iterations of the algorithm,
suggesting that it is sufficient to take two treatment scans, one in week 1 and one in week 3, in order to
determine the level of treatment response from such a patient.
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Figure 5. RT strong responder. Comparing the posterior distribution of estimated parameter
β as scans are added and the parameter estimate is updated. The employed prior distribution
for β isU(0, 1).

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5

Figure 6. RT weak responder. Credible interval evolution over scan progression. The first
plot shows the initial calibration using data at days 8, 15, and 19. The subsequent plots show
the progression as the following scans are added. The accuracy and uncertainty are quantified
in Figure 8.

A non-responder has a nearly flat trajectory, as shown in Figure 7, so all points are essentially
equally informative. Due to the penalty for skipping points, the score function favors the early points
over later points, so the algorithm begins its scan selection close to the start of treatment and chooses
each subsequent scan to be close to the previous one. If the algorithm is allowed to proceed until it
runs out of scan choices, this yields a large total number of scans. However, due to the nearly constant
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dynamics in this case, only one or two early scans are needed in practice to assess such a patient’s
response level. In the clinic, this would be sufficient evidence to suggest that a patient will likely not
respond well to this treatment and may benefit from switching to an alternative therapy modality.

Iteration 1 Iteration 2 Iteration 15

Figure 7. RT non-responder. Credible interval evolution over scan progression. The first plot
shows the initial calibration using data at days 8, 15, and 19. The subsequent plots show the
progression as the following scans are added. Only the initial and final iterations are shown,
since intermediate iterations are similar in terms of error and uncertainty. The accuracy and
uncertainty are quantified in Figure 8.

Figure 8 displays the progression of error and uncertainty as additional scans are added and the
model is re-calibrated for the strong responder, weak responder, and non-responder. Note that the
initial uncertainty measure—using only one treatment scan—is misleading. With only one point to fit,
there is a single value of β that provides an essentially perfect fit to this data; thus, there is no uncertainty
in the random variable for β at this point. In fact, this trend persists even into the second scan for the
strong-responder, due to the close alignment of the first two points. Only once the third treatment
point is added do we see significant noise in the data, and a resulting wider posterior distribution
for β which in turn yields a wider credible interval. In general, the uncertainty metric should not be
trusted when the number of data points is close to the number of parameters being estimated. Once
we overcome this sparsity of data in comparison to parameters, we observe a downward trend in both
error and uncertainty as scans are added for calibration in nearly all cases, outside of a small increase
in uncertainty at the end of the non-responder calibration. We can also use these plots to determine
when to terminate the algorithm—when the model parameter values are sufficiently informed—rather
than continuing to collect data until the end of treatment. In particular, using pre-determined thresholds
for error and uncertainty, the algorithm could be terminated once both the error and uncertainty for the
model calibration reach a level below the corresponding threshold. For example, if we used thresholds
of 2 for uncertainty and 10−3 for error, then we could stop the strong responder calibration after 7
additional treatment scans (i.e., after day 37). Likewise, we could terminate the algorithm for the weak
responder after 4 additional scans at the end of treatment, and for the non-responder after just one
additional scan on day 20.
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Strong responder

Weak Responder

Non-Responder

Figure 8. RT all responders. Reporting error and uncertainty by day of scan (left) and by
additional scan number (right), for all responder types as shown in Figures 4, 6, and 7.

In order to assess the utility of our adaptive algorithm for choosing preferred collection days, we
compare the error and uncertainty from our first six chosen scans, for the strong responder and
non-responder, and the five chosen scans for the weak responder, with two potential pre-determined
design schemes using six scans each. The choice of six scans is based upon a common scanning
protocol for this treatment regimen, in which one scan is collected for each of the six weeks of
treatment [10]. Our first design scheme for comparison is to collect tumor volume scans on the first
six days of treatment, essentially front-loading the data collection; the second is the standard schedule
choosing one scan per week, on each Friday, throughout the course of the six-week treatment phase.
The choice of these two comparative design schemes allows us to observe how the model calibration
would perform under different conditions; for instance, what would happen if we completed our

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17986–18017.



18003

six-scan data collection as early as possible in order to allow maximum time for treatment
intervention (design #1), versus utilizing the entire time frame with evenly-spaced scans in an attempt
to reduce uncertainty and error over the full treatment interval (design #2). The use of our algorithm
allows for the pursuit of both goals—early data collection and reduction of uncertainty and
error—simultaneously. As noted previously, not all of our responders truly require six scans; however,
we use six scans in this analysis to demonstrate a side-by-side comparison to the predetermined scan
designs with all other variables fixed.

First 6 Scans Weekly Scans Chosen 6 Scans

First 6 Scans Weekly Scans Chosen 5 Scans

First 6 Scans Weekly Scans Chosen 6 Scans

Figure 9. Comparison of design schemes: choosing the first six points (left), versus one scan
per week (middle), versus algorithm choice of scans (right). The trajectories are shown for
the strong responder (top), the weak responder (middle), and the non-responder (bottom).
See Table 1 for corresponding values.

The top row of Figure 9 shows the fitted model trajectories and credible intervals for the three
design schemes in the strong responder case. Choosing the first six scans does not provide sufficient
information about the treatment response, leading to a relatively large error between the fitted model
and the data. The results from both weekly scans and the six scans chosen by our algorithm are
comparable in both error and uncertainty. We note that our chosen 6 scans produce a comparable result
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in about half the time, around day 30, as compared to day 56 for the weekly scans. Achieving an
early assessment of the treatment response increases the predictive power of the model, which would
provide a significant advantage for clinical decision-making. The comparison of error and uncertainty
for the three design schemes are summarized in Table 1.

Table 1. All responders. Comparing error and uncertainty metrics for three different design
schemes: using the first available data points, using weekly scans, and using the points
selected by the algorithm. Table results corresponds to Figure 9. Note: in all cases, six
scans were used, except for the weak responder algorithm-chosen scan scenario, in which
only five scans were selected.

First Scans Weekly Scans Chosen Scans

Strong
Error 0.0102 0.0013 0.0017
Uncertainty 3.5445 2.4024 2.4587

Weak
Error 0.0056 0.0012 0.0010
Uncertainty 2.0207 1.2887 1.7847

Non
Error 3.42 × 10−4 3.65 × 10−4 3.53 × 10−4

Uncertainty 0.3412 0.2649 0.2409

The middle row of Figure 9 shows the comparison of model trajectories resulting from the three
design schemes for the weak responder data. Again the model calibration using the first six scans
overestimates the tumor size throughout the treatment period, while both the weekly scans and the
scans chosen by our algorithm provide comparably accurate model fits, with small errors and credible
interval areas. In this case, our algorithm achieves comparable results to the weekly scans using only
five scans, in comparison to the six weekly scans.

The comparison of design schemes for the non-responder is shown in the bottom row of Figure
9. In this case, all three schemes produce accurate results, with almost no uncertainty. Even with
using six scans (which, as previously noted, is several more than actually needed for this patient), our
algorithm completes the model calibration in about half the time of the weekly-scan protocol, without
any consequences for error and uncertainty. Again, the error and uncertainty values for the three design
schemes are provided in Table 1.

In summary, for the in silico prostate cancer data, the scans chosen by our algorithm produce more
accurate model trajectories for the strong and weak responders than those produced using the first
six scans, as measured by both error and uncertainty metrics. Our chosen scans produce comparable
results to the weekly design scheme for all three responder types, with our algorithm achieving these
results either much sooner in time (strong and non-responders) or using fewer scans (weak responder).

5.2. Prostate cancer with intermittent androgen suppression therapy

We now test our algorithm on a clinical data set that measures the PSA biomarker as the primary
metric for assessing tumor growth, and also measures the serum androgen level as a secondary means
of assessing the efficacy of an intermittent androgen suppression treatment therapy. We begin by
considering PSA data only, comparable to using only tumor volume measurements in our previous
example. The low-fidelity model and high-fidelity data employed here are described in Section 4.2.
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We initialize the algorithm with two PSA data points at days 0 and 28 (the first two recorded
measurements for this patient), and estimate the parameter set {q2, γ1, A0, σ2}, fixing all other
parameters at the values contained in Table A2. We make available to our algorithm the day choices
of the PSA data from the first 1.5 cycles of treatment (i.e., an “on-off-on” sequence with regards to
androgen suppression). The progression of PSA collection choices and corresponding evolution of the
credible intervals are displayed in Figure 10. An additional five data points are chosen over the course
of the 1.5 cycles to supplement the initial two supplied points. The resulting fit to the data is very
strong; the overall trend in PSA is well-captured, including the peak that occurs around day 450. As
additional scans are added, the uncertainty and error metrics improve, as shown in Figure 11. In this
case, all five data points are needed to achieve the desired thresholds for these metrics and to observe
stabilization of the model trajectory, such that it is no longer changing significantly at each cycle.

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6

Figure 10. IAS therapy with PSA only. Credible interval evolution over scan progression,
fitting to 1.5 cycles of data. The first plot shows the initial calibration using first two PSA
data points. The subsequent plots show the progression as the following scans are added.

Figure 11. IAS therapy with PSA only. Reporting error and uncertainty by day of scan (left)
and by additional scan number (right), fitting to 1.5 cycles of data.
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As before, we compare the outcome of our algorithm with two potential pre-determined data
collection designs. Our algorithm chose five scans: thus, we compare to what would happen if we
used the first five available data points as well as if we used five evenly-spaced data points. The
resulting model trajectories and credible intervals are shown in Figure 12, with numerical metrics
given in Table 2. The data points chosen by our algorithm yield a much stronger mean-squared-error
over all possible high-fidelity points than either of the other two designs. In particular, the first design
scheme fails to capture the return to a near-zero state for PSA at the end of the 1.5 cycles, while the
evenly-spaced design scheme underestimates the peak PSA value. The uncertainty is largest in the
first-five-points scheme, and comparable between the other two designs.

First 5 Scans Evenly-Spaced 5 Scans Chosen 5 Scans

Figure 12. IAS therapy with PSA only. Comparison of design schemes: choosing first five
points (left), versus five evenly spaced points (middle), versus algorithm choice of five points
(right), fitting to 1.5 cycles of data. See Table 2 for corresponding values.

Table 2. IAS therapy with PSA only. Comparing error and uncertainty metrics for three
different design schemes: using the first five available points, using five evenly-spaced points,
and using the points selected by the algorithm, fitting to 1.5 cycles of data. Table corresponds
to Figure 12.

First Scans Evenly-Spaced Scans Chosen Scans
Error 5.80 3.04 1.92
Uncertainty 126.54 31.18 36.13

Of particular interest is whether or not the parameters inferred using the first 1.5 cycles of data
can be used to accurately predict future behavior. We extend the timeline to include 3.5 cycles of
intermittent androgen suppression therapy, and analyze how well the inferred trajectory from each of
the three design schemes is able to capture future dynamics. This comparison is displayed in Figure 13.
Predictably, the design scheme using the first five points is unable to adequately capture trends. In
particular, it fails to capture the necessary return to a near-zero state that triggers the clinician to
discontinue the suppression medication. In the other two design schemes, this return to a near-zero
state is captured, but the oscillations are not maintained at a level that can capture future PSA peaks
during “off” cycles. However, the oscillations from the algorithm-chosen design scheme die down
more gradually, yielding a slightly better MSE over 3.5 cycles of high-fidelity data choices. Numerical
values for the uncertainty and error metrics are included in Table 3.
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First 5 Scans Evenly-Spaced 5 Scans Chosen 5 Scans

Figure 13. IAS therapy with PSA only. Comparison of design schemes: choosing first five
points (left), versus five evenly spaced points (middle), versus algorithm choice of five points
(right), using parameters inferred from 1.5 cycles of data to predict 3.5 cycles of data. See
Table 3 for corresponding values.

Table 3. IAS therapy with PSA only. Comparing error and uncertainty metrics for three
different design schemes: using the first five available points, using five evenly-spaced points,
and using the points selected by the algorithm, using parameters inferred from 1.5 cycles of
data to predict 3.5 cycles of data. Table corresponds to Figure 13.

First Scans Evenly-Spaced Scans Chosen Scans
Error 17.98 18.41 10.85
Uncertainty 665.15 212.81 297.95

Because none of the three design schemes do an adequate job of predicting future PSA dynamics,
we consider whether the predictive capability of our model might be improved by utilizing additional
data sources. In particular, the clinical data used in this study also included serum androgen level for
each data collection day, corresponding to variable A from the model in Eq (4.5). We now make the
day choices for both sets of data (PSA and serum androgen) available to our algorithm, which can
select either measurement type to evaluate on a given day. We allow for both metrics to be chosen on
a particular day, though the procedure is still sequential (e.g., a mutual information calculation might
suggest acquiring PSA data on day 56, and a subsequent calculation performed after recalibrating the
parameters using that PSA data point might suggest acquiring androgen data on day 56). Thus, at
each step of the sequential design procedure, our algorithm is now selecting the most informative data
type/day combination with regards to which (type, day) pair will most reduce the uncertainty in the
parameter set {q2, γ1, A0, σ2}. The algorithm is initiated with two points each of PSA and androgen
data (both collected on days 0 and 28, the first available data points in the set).

The data acquisition progression and credible interval evolution for this scenario is shown in Figure
14, and the chosen data points of each type are recorded in Table 4. Over the course of 1.5 cycles of
treatment, a total of 17 additional points are collected: seven PSA, and 10 androgen data points. It
can be seen that the PSA dynamics are very well-fit over the course of the data acquisition procedure;
additionally, information about the fluctuation in the serum androgen level is obtained.
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Iteration 1 Iteration 2 Iteration 3

...

Iteration 10 Iteration 11 Iteration 12

...

Iteration 16 Iteration 17 Iteration 18

Figure 14. IAS therapy with PSA and serum androgen. Credible interval evolution over scan
progression. The first plot shows the initial calibration using the first two points from each
of PSA and androgen metrics. The subsequent plots show the progression as the following
scans are added.

Table 4. IAS therapy with PSA and serum androgen. Chosen experimental designs, as
reflected in Figure 14.
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Though the algorithm collects a total of 17 data points from start to finish, it can be seen in
Figure 15 that the error and uncertainty metrics and model trajectories have stabilized by the time that
ten additional points have been selected; the additional gain in uncertainty reduction that occurs at
point 17 may not be worth the budget required to collect said data or the time spent waiting for the
reduction.

Figure 15. IAS therapy with PSA and serum androgen. Reporting error and uncertainty by
additional scan number, fitting to 1.5 cycles of data.

We choose to terminate the algorithm at 10 additional scans (six PSA and four androgen), and once
again compare the model output to two potential previously-determined data allocations. For the first
scheme, we use the first five PSA and first five androgen data points (corresponding to days 56, 84,
112, 140, and 168); for the second, we use five evenly-spaced points of each type (corresponding to
days 84, 224, 364, 483, and 623). The resulting model fits and credible intervals for each of the three
design schemes are shown in Figure 16, with numerical values reported in Table 5. The algorithm-
chosen design scheme yields the smallest MSE, with uncertainties being comparable between that and
the evenly-spaced design scheme.

First 10 Scans Evenly-Spaced 10 Scans Chosen 10 Scans

Figure 16. IAS therapy with PSA and serum androgen. Comparison of design schemes:
choosing first ten points (left), versus ten evenly-spaced points (middle), versus algorithm
choice of ten points (right), fitting to 1.5 cycles of data. (See Table 5 for values.)
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Table 5. IAS therapy with PSA and serum androgen. Comparing error and uncertainty
metrics for three different design schemes: using the first ten available points, using ten-
evenly spaced points, and using the points selected by the algorithm, fitting to 1.5 cycles of
data. Table corresponds to Figure 16.

First Scans Evenly-Spaced Scans Chosen Scans
Error 13.29 7.42 6.05
Uncertainty 4231.66 1413.62 1575.57

Once again, we use the parameters inferred during the data acquisition procedure for 1.5 cycles
of treatment to project out to 3.5 treatment cycles and compare the predictive capability of all three
schemes. The results are reported in Figure 17 and Table 6. The first design scheme once again fails
to capture the PSA dynamics. In the evenly-spaced design scheme, while the fit is relatively good
within the fitting regime, the oscillations are not maintained into future treatment cycles, yielding a
large MSE over the full period. On the contrary, the algorithm-chosen design scheme does the best
with regards to capturing future dynamics for both PSA and serum androgen; in particular, this scheme
is the only one in which the PSA level continues to fluctuate with each cycle of androgen suppression
therapy, and the resulting MSE is far superior to that obtained from the alternate design schemes. In
particular, we note that adding information about serum androgen has increased our ability to predict
future oscillatory behavior of PSA as compared to using PSA data only (see Figures 13 (right) versus
17 (right) to observe how the peak PSA values are better matched in the latter).

First 10 Scans Evenly-Spaced 10 Scans Chosen 10 Scans

Figure 17. IAS therapy with PSA and serum androgen. Comparing error and uncertainty
metrics for three different design schemes: choosing first ten points (left), versus ten evenly-
spaced points (middle), versus algorithm choice of ten points (right), using parameters
inferred from 1.5 cycles of data to predict 3.5 cycles of data. (See Table 6 for values.)

Table 6. IAS therapy with PSA and serum androgen. Comparing error and uncertainty
metrics for three different design schemes: using the first ten available points, using ten
evenly-spaced points, and using the points selected by the algorithm, using parameters
inferred from 1.5 cycles of data to predict 3.5 cycles of data. Table corresponds to Figure 17.

First Scans Evenly-Spaced Scans Chosen Scans
Error 33.47 22.45 7.62
Uncertainty 22510.54 7223.40 12741.40
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As a final analysis, we consider whether the performance of our algorithm is robust across a wide
array of patients. From the 66 patients in the study [23], we select the 13 patients for whom data was
collected for at least 3.5 cycles of treatment. For each patient, we use our algorithm to select the
optimal scanning schedule over the first 1.5 cycles of treatment (using both PSA and androgen
collection options), determine the appropriate number of scans to include using our error and
uncertainty metrics, and compare the resulting predictive capability of the model for 3.5 cycles of
treatment against the evenly-spaced scanning design scheme. The results of these tests are displayed
in Figure 18. Analysis of the error comparison reveals that our design scheme outperforms the
evenly-spaced scheme in 10 of the 13 patients, with the remaining three patients having nearly
comparable scores. With regards to uncertainty, our algorithm outperforms the evenly-spaced design
scheme in 11 of the 13 patients. Notably, the largest exception to this trend is Patient 39, which was
showcased above. (A closer look at Figure 17 reveals that the “better” performance of the
evenly-spaced scheme in this case is actually correlated with the poor performance on the error
metric; the oscillatory behavior of the model fades too quickly to capture the trends in the final two
cycles, and since the parameter ranges have been chosen to ensure positive model trajectories, the
resulting credible interval areas are artifically small.)

Figure 18. IAS therapy with PSA and serum androgen. Comparing error and uncertainty
metrics for the evenly-spaced vs algorithm-chosen design schemes across thirteen patients.
Parameters inferred from 1.5 cycles of data are used to predict 3.5 cycles of data.

In summary, our algorithm performs well with regards to inferring parameters using a select few
data points, in both the PSA only and PSA/androgen scenarios. For both cases in our showcased Patient
39, the model fit within the data collection regime is preferable to the alternatively considered design
schemes. Additionally, the algorithm-chosen design schemes tend to outperform the alternatives when
using the inferred parameter values to predict future tumor dynamics across a wide array of patients.

6. Discussion

In this work, we proposed an adaptive-penalized score function to determine an optimal data
collection protocol for maximizing the reduction of uncertainty in parameter estimates during model
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calibration. This score function was used within a Bayesian sequential design framework, to choose
data (type, day) combinations that maximize the information content, while simultaneously
incorporating a penalty for data obtained late in the treatment period. The score function presented in
this work improves upon a previous score function proposed in [20]. Since the optimal value of the
penalization parameter k from the previous work seemed to be closely related to the rate of decay of
the data, we hypothesized that this parameter value might be eliminated by gathering information
about the expected future changes in dynamics. That is, if we can quantify how close the dynamics
are to stabilizing at their final end value, we can use this information to adjust the score function,
either increasing the penalty term to encourage acquisition of data in regions where the dynamics are
changing rapidly, or by decreasing the penalty term to allow for sparser data collection when
information gain from these points would be negligible. The incorporation of this information to the
score function not only allowed us to eliminate the penalization parameter k from the previous study,
but also aligned well with our goal of reducing unnecessary data collection in non-informative
regions.

In addition to updating the score function to reflect information about the expected future change
in dynamics, we have also provided a more robust and thorough verification of the algorithm in this
investigation. The error-based verification metrics of the previous study are now supported by an
uncertainty-based analysis, which relies on the propagation of parameter posterior distributions
through the model to produce a 95% credible interval of model trajectories. The forward-looking
nature of uncertainty analysis provides a more practical means of deciding when the algorithm might
be terminated. By considering the combination of model error, model uncertainty, and the
stabilization of model trajectories, we illustrated how these metrics might be used to decide when
enough data has been collected to suit the purposes of the investigator.

We have tested this methodology using modeling of prostate cancer as an application with two
different sources of high-fidelity data: 1) generating synthetic data from a CA model representing
different strengths of response to radiotherapy, and 2) employing clinical data from a study using
intermittent androgen suppression therapy. Using both error and uncertainty to assess the predictive
power of the corresponding low-fidelity ODE models, we showed that our algorithm chooses data
points that can be used to calibrate the low-fidelity models accurately and efficiently. When compared
to two alternative pre-determined data collection protocols (choosing the first n available data points
and choosing n evenly-spaced data points), the choices made by our algorithm yielded model
trajectories that were either comparable or superior in terms of both error (computing the
mean-squared error over all possible design conditions) and uncertainty (calculating the area of the
credible interval resulting from propagating the estimated parameter posterior densities through the
model), often doing so while simultaneously completing the calibration process earlier in the
treatment cycle, which could allow for alteration of the treatment protocol in cases where the model
predicts a poor outcome. Importantly, in the transition from an idealized setting using synthetic
high-fidelity data (the radiotherapy scenario) to the clinical setting using noisy, real-world data (the
IAS scenario), these trends were maintained. Additionally, using the clinical data study, our algorithm
was shown to produce superior predictive capabilities over the other two alternatives when the
inferred parameters were used to make predictions about future tumor dynamics.

Another benefit of our methodology that we expect to see when applied more generally to clinical
data is the ability to adapt to settings with noisy data. When measurements are less precise, producing
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noisy data, our algorithm senses the variability and will likely choose to sample more points from the
noisy range, whereas a predetermined scanning schedule cannot similarly adapt to the data.
Additionally, in the future we plan to apply our algorithm to varied clinical schedules, to see how well
it can adapt to realistic scheduling issues that may arise due to holidays, staff shortages, etc.
Continued testing upon other low-fidelity models that incorporate additional tumor characteristics and
allow for different data collection metrics or treatment options will increase the flexibility of our
methodology, enabling its application to many different settings in clinical oncology. In future work,
we plan to investigate intervention options for patients that are classified early as non-responders,
including alternative treatment schedules, combination therapies, and switching to new
treatment modalities.
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25. A. Kraskov, H. Stögbauer, P. Grassberger, Estimating mutual information, Phys. Rev. E, 69 (2004),
066138. https://doi.org/10.1103/PhysRevE.69.066138

26. H. Cho, A. Lewis, K. Storey, R. Jennings, B. Shtylla, A. Reynolds, et al., A framework for
performing data-driven modeling of tumor growth with radiotherapy treatment, in Springer
Special Issue: Using Mathematics to Understand Biological Complexity, Women in Mathematical
Biology, (2021), 179–216. https://doi.org/10.1007/978-3-030-57129-0 8

27. E. J. Hall, A. J. Giaccia, Radiobiology for the Radiologist, Philadelphia, 1994.

28. H. Enderling, M. A. Chaplain, P. Hahnfeldt, Quantitative modeling of tumor dynamics and
radiotherapy, Acta Biotheor., 58 (2010), 341–353. https://doi.org/10.1007/s10441-010-9111-z
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Appendix

Table A1. A summary of the parameters used in the CA model of Section 4.1.2 and their
default values. Parameter values are estimated using experimental data from the prostate
cancer cell line, PC3, in [31].

Param. Description Value Units
l Cell size 0.0018 cm
L Domain length 0.36 cm
τ̄cycle Mean cell cycle time Varies h
c∞ Background O2 concentration 2.8 × 10−7 mol cm−3

D O2 diffusion constant 1.8 × 10−5 cm2s−1

cQ O2 concentration threshold for proliferating cells 1.82 ×10−7 mol cm−3

cN O2 concentration threshold for quiescent cells 1.68 ×10−7 mol cm−3

κP O2 consumption rate of proliferating cells 1.0 ×10−8 mol cm−3s−1

κQ O2 consumption rate of quiescent cells 5.0 ×10−9 mol cm−3s−1

pNR Rate of lysis of necrotic cells 0.01 hr−1
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Table A2. A summary of the parameters used in the low-fidelity ODE model of Section 4.2.1
and their fixed values. Fixed parameter values were estimated using an fmincon procedure
in Matlab, employing the parameter ranges reported in [24] and initial conditions design
from [33].

Param. Description Value Units
µ max proliferation rate 0.0247 [day]−1

q1 minimum cell quota for x1 to proliferate 0.5232 [nmol][day]−1

q2 minimum cell quota for x2 to proliferate Estimated [nmol][day]−1

d density death rate 0.0294 [L]−1[day]−1

c max mutation rate 1.0062e-5 [day]−1

K half-saturation constant for mutation 1.4667 [nmol][day]−1

γ1 androgen production rate by testes Estimated [nmol][day]−1

γ2 androgen production rate by adrenal
gland

0.0602 [nmol][day]−1

A0 homeostasis serum androgen level Estimated [nmol]
δ androgen degradation rate 0.0867 [day]−1

m diffusion rate from A to Q 0.3755 [day]−1

b baseline PSA production rate 0.0001 [g][nmol]−1[day]−1

σ1 max PSA production rate by x1 0.9998 [g][nmol]−1[L]−1[day]−1

σ2 max PSA production rate by x2 Estimated [g][nmol]−1[L]−1[day]−1

ϵ PSA clearance rate 0.0431 [day]−1

x1(0) initial population of androgen-sensitive
prostate cancer cells

0.0199 [L]

x2(0)∗ proportion determining initial population
of androgen-resistant cells

0.0169 —

Q∗0 proportion factor determining initial Q
amount

0.5000 —
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