
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Youry Pii,
Free University of Bozen-Bolzano, Italy

REVIEWED BY

Guido Fellet,
University of Udine, Italy
Martina Mazzon,
University of Bologna, Italy

*CORRESPONDENCE

Hua Zhang

zhanghua4553@sina.com

RECEIVED 02 August 2023
ACCEPTED 19 September 2023

PUBLISHED 12 October 2023

CITATION

Fallah N, Pang Z, Lin Z, Lin W, Mbuya SN,
Abubakar AY, Fabrice KMA and Zhang H
(2023) Plant growth and stress-regulating
metabolite response to biochar utilization
boost crop traits and soil health.
Front. Plant Sci. 14:1271490.
doi: 10.3389/fpls.2023.1271490

COPYRIGHT

© 2023 Fallah, Pang, Lin, Lin, Mbuya,
Abubakar, Fabrice and Zhang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 12 October 2023

DOI 10.3389/fpls.2023.1271490
Plant growth and stress-
regulating metabolite response
to biochar utilization boost crop
traits and soil health

Nyumah Fallah1,2, Ziqin Pang1,2, Zhaoli Lin1, Wenxiong Lin2,
Sylvain Ntambo Mbuya3, Ahmad Yusuf Abubakar1,
Kabore Manegdebwaoga Arthur Fabrice2,4 and Hua Zhang1*

1Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou, China, 2Fujian Provincial Key Laboratory of Agro-
ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry
University, Fuzhou, China, 3Département de production végétale, Laboratoire de Recherche en
Biofortification, Defense et Valorisation des Cultures (BioDev), Faculté des Sciences Agronomiques,
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Introduction: The utilization of biochar (BC) as a soil amendment in agriculture

has gained significant traction among many farmers and researchers, primarily

due to its eco-friendly role in boosting crop output. However, the performance

of specific metabolites (e.g., zeatin, melatonin, sucrose, and phenyllactic acid) in

the various tissues of sugarcane plant (leaf, stem, and root) and rhizosphere soil-

deemed plant growth and stress regulators in a long-term BC-amended field

remains poorly understood. Additionally, literature on the shift in soil attributes

and crop growth triggered by the strong response of these bioactive compounds

to longterm BC utilization remains undocumented.

Methods: Metabolome integrated with highthroughput sequencing analyses

were conducted to identify and quantify the performance of plant growth and

stress-regulating metabolites in a long-term BC-amended field. Additionally, we

investigated how the response of these compounds to BC-treated soil

influences crop traits and soil biochemical properties.

Results: We also identified and quantified the performance of pathogenic

bacteria and unraveled the association between these compounds and

potential plant growth-promoting bacteria. The BC-supplemented soil

significantly boosted the crop traits, including brix, sucrose content, and

chlorophyll, as well as soil nutrients, such as soil total nitrogen (TN),

ammonium (NH4
+-N), and nitrate (NO3

--N). We also noticed that metabolite-

deemed plant growth and stress regulators, including melatonin and phenyllactic

acid, were enriched considerably in the stem and root tissues of the BC-

amended soil. Zeatin in the leaf, stem, and root tissues exhibited the same

trend, followed by sucrose in the leaf tissue of the BC-treated soil, implying that

the strong response of these compounds to BC utilization contributed to the

promotion of crop traits and soil quality. Pathogenic bacteria belonging to
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Proteobacteria and Acidobacteria were suppressed under the BC-supplemented

soil, especially in the root tissue and rhizosphere soil, whereas plant growth-

regulating bacteria, mainly Bradyrhizobium, responded strongly and positively to

several metabolites.

Discussion: Our finding provides valuable information for agronomists, farmers,

and environmentalists to make informed decisions about crop production, land

use, and soil management practices. Proper soil assessment and understanding

of the interaction between the attributes of soil, BC, and metabolites are essential

for promoting sustainable agriculture practices and land conservation.
KEYWORDS
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1 Introduction

The world’s growing population has necessitated more food

production (Van-Dijk et al., 2021). Farmers heavily rely on

agriculture inputs, including insecticides, pesticide products, and

chemical fertilizers, to boost crop growth and production to meet

this challenge (Popp et al., 2013; Pang et al., 2022). However,

adopting these agricultural inputs has been associated with several

environmental issues, including depletion of soil nutrients, microbial

abundance, diversity, and community. Blanchet et al. (2016)

documented that soil biological properties (e.g., microbial biomass,

phospholipid-derived fatty acid contents, and earthworm biomass

and composition) and crop yield performed poorly under nitrogen

(N)-treated soil compared with organic amendments soil. Likewise,

Luan et al. (2020) found that soil organic carbon (C), available N,

phosphorous (P), and microbial communities and functional

diversity reduced under N application. Carpenter et al. (1998)

reviewed the non-point pollution of surface waters with N and P.

They revealed that eutrophication was a widespread problem in lakes,

estuaries, rivers, and coastal oceans induced by the over-enrichment

with P and N. Hence, farmers are increasingly pressured to safely and

sustainably boost agricultural productivity without compromising

environmental quality (Bulluck et al., 2002). One alternative to

synthetic agriculture inputs is adopting an organic farming system.

Organic farming is a sustainable and holistic agricultural system

that highlights the use of natural materials and processes to enhance

soil quality, plant health, and ecosystem balance (Watson et al., 2002).

Organic soil amendment practices, such as compost, manure, and

biochar (BC), have shown great potential in reverting the adverse

environmental impacts of synthetic agriculture (Schärer et al., 2022).

These substrates play key roles in moderating greenhouse gas

emissions, establishing reliable C storage, and promoting

environmental functions (Woolf et al., 2010), primarily due to its

distinct characteristics (e.g., high porosity, typically alkaline, and large

specific surface area) (Tan et al., 2017). Additionally, this substrate

can alter a wide range of soil attributes (Abujabhah et al., 2018; Pang

et al., 2022), namely, soil pH, soil water-holding capacity, bulk

density, soil C and N content, and microbial community. For
02
instance, Ginebra et al. (2022) found that wood BC-treated soil

boosted soil total C, reduced soil nitrous oxide (N2O) emissions,

and promoted soil C storage. Gul et al. (2015) also documented that

BC produced from wood and lignocellulosic-rich feedstocks had

beneficial effects on soil microbial abundance. Similarly, a recent

study revealed that BC-treated soil was crucial in mitigating soil N2O

emissions in a continuous cropping system (Yang et al., 2022).

However, BC being rich in C but low in crucial soil nutrients, such

as P, potassium (K), and N (Jindo et al., 2014), could trigger poor soil

microbial response and other soil attributes (Ramlow et al., 2019).

Wang et al. (2015b) revealed that the reduction in ammonia-

oxidizing bacterial abundance reduced N nitrification in an orchard

field supplemented with BC. It was recently reported that BC-

supplemented soil triggered a decrease in ammonium (NH4
+-N)

and nitrate (NO3
−-N) (Martı ́ et al., 2021). Ramlow et al. (2019) also

documented that BC application did not influence N availability

within the entire soil profile under a broadcast woody BC in

Colorado. These discrepancies could be mainly associated with the

characteristics of BC, soil composition, and crop types (Liu et al.,

2021), which have made it more challenging to precisely estimate the

structural effect of BC on vital soil attributes, including soil N and

plant metabolites in agriculture soils. As such, it is vital to conduct

further studies to comprehensively understand how BC structural

effect influences other soil parameters, such as metabolites.

Plant metabolites/bioactive compounds are deemed essential

mediators between species, the environment, and agricultural

systems (Hartmann, 2007). In the past decades, a large body of

research has shed light on the roles of metabolites in plant growth,

development, and productivity (Erb and Kliebenstein, 2020; Pang

et al., 2021). These compounds also act as antibiotics,

photoprotectants, signaling molecules (Mithöfer and Boland,

2012), repellents, and toxins to protect plants against insect pests

(Hu et al., 2021). We recently pointed out that the high presence of

D-fructose 6-P, D-glucose 6-P, and glucose1-P in sugarcane plant

were key in promoting high sugar accumulation (Yuan et al., 2022).

In a related study, metabolites, including flavonoids, phenolic,

anthocyanins, proanthocyanidins, and carotenoids, were crucial in

maintaining and enhancing crop rinds (Junaid Rao et al., 2022). In
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addition, the excretion of these compounds in soil environments

can influence a wide range of soil attributes, particularly in plant

rhizosphere zones (Wen et al., 2022). Panchal et al. (2022)

mentioned that plant bioactive compounds functioned as a source

of soil organic C in forests and grasslands. A related study revealed

that the strong response of purine metabolism to the sugarcane/

peanut intercropping system improved soil pH, total P, K, available

N, acid phosphatase, and urease activities (Tang et al., 2022).

However, information regarding the performance of specific

metabolites within the various tissues of sugarcane plant (leaves,

stems, and roots) and the rhizosphere soil, which are considered

regulators of plant growth and stress, in a field subjected to long-

term utilization of BC remains poorly understood. Additionally,

literature on the shift in soil parameters (e.g., soil biochemical

properties and disease-causing bacteria) and crop traits triggered by

the strong response of these compounds to long-term BC utilization

remains undocumented. Hence, this work aims to (i) illuminate the

underpinning mechanism of how the strong response of zeatin,

melatonin, sucrose, and phenyllactic acid to BC utilization shapes

crop growth and soil biochemical properties and (ii) identify and

quantify the performance of pathogenic bacteria and unraveled the

association between these compounds and potential plant growth-

promoting bacteria.
2 Materials and methods

We conducted a field experiment from March 2019 to

December 2022 at the Sugarcane Research Center of Fujian

Agriculture and Forestry University (26°08′N, 119°23′E) in

Cangshan District, Fujian Province, China. The region has an

annual average temperature of 20°C, 1,369 mm rainfall, and a

subtropical climate. The experiment was conducted in a

randomized block design consisting of two treatments: biochar

applied at the rate of 20 t ha−1 (BC) and control (CK). Each

treatment contained three replicates, covering an area of 25 m2.

Sugarcane stalks were cut approximately 10–12 cm in length,

maintaining two buds on each set. Subsequently, 10 sets were

planted in each row, ensuring a spacing of 0.3 m between plants

and 0.5 m between rows (Fallah et al., 2021). We supplemented the

BC and CK treatments with 375 kg/hm2 of compound fertilizer (N-

P2O5-K2O 15-15-15) in April 2019. The BC was made from

sugarcane straw, using fast pyrolysis (550−650°C). The sugarcane

variety “ROC22” was adopted as planting material. It is a common

sugarcane variety in Fujian Province, China. It possesses high yield,

high sugar content, drought resistance, strong tillering ability, a

high stemming rate, excellent growth, cold resistance, remarkable

adaptability, and disease hardiness. Additional information

regarding the study site is mentioned in Table 1.
2.1 Sampling and preparation of
rhizosphere soil and plant tissues

Sampling of the rhizosphere soil and various plant tissues,

including leaf, stem, and root, was conducted in December 2022
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2023a). In summary, random sampling of plant tissues of three

healthy sugarcane plants was carried out from each plot as a

biological replicate. The plant tissues were washed using

phosphate buffer solution and cleaned using 75% alcohol cotton.

We wrapped the samples in tin foil, placed them in liquid nitrogen

for 5 min, stored in dry ice, transported to the laboratory, and stored

at −80°C. The sample of soil taken from the plant root zones was

classified as rhizosphere soil, with each group of the soil sample

containing three replicates. Finally, we generated a total of 36

samples. Later, we air-dried a portion of the soil sample, which

was ground and sieved using a 2-mm mesh to investigate soil

chemical properties.
2.2 Assessment of sugarcane traits and soil
chemical properties

Extech Portable Sucrose Brix Refractometer (Mid-State

Instruments, CA, United States) was used to estimate sucrose

content and measured using the formula: sucrose (%) = Brix

(%) × 1.0825–7.703 (Yuan et al., 2022). A random sampling of 25

sugarcanes was conducted in each row to estimate the diameter of

the plants using a vernier. Sugarcane heights were measured in

centimeters (cm) from the soil’s surface to the sugarcane’s top by

randomly sampling 25 plants in each row using a meter rod. We

added the average of three replicates to determine the mean of

sugarcane heights.

An element analyzer (vario MAX cube, Germany) was used to

estimate the TN. Soil potential of hydrogen (pH) was tested using a

glass electrode pH meter. We used fresh soil samples to extract soil

NO3
−-N and NH4

+-N with 2.0 M KCl and calculated using a

continuous-flow analyzer (San++, Skalar, Holland) (Zhao

et al., 2019).

The soil samples were incubated using buffer sodium

carboxymethylcellulose solution and cellulose activity (glucose,

mg/g 24 h, 37°C) to assess colorimetrically by measuring a

decrease in 3,5-dinitrosalicylic acid from reducing sugar. We

estimated soil urea activity (NH3-N, mg/g 24 h, 37°C) using

sodium hypochlorite colorimetry and improved sodium
TABLE 1 Initial characteristics of the soils and biochar.

Parameters
Soil
properties

Biochar
properties

Total carbon (TC), kg−1 7.22 35.08

Total nitrogen (TN), kg−1 3.54 2.09

Potential of hydrogen (pH) 8.89 10.11

Available potassium (AK), kg−1 9.01 13.66

Available phosphorous (AP), kg−1 13.11 7.07

Organic matter (OM), kg−1 16.22 7.82

Electrical conductivity (EC), dS m−1 3.11 3.2

Carbon/nitrogen ration (C/N) 2.03 16.78
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phenolate. Acid phosphatase activity was tested using a nitrophenyl

phosphate disodium substrate (phenol, mg/g, 1 h, 37°C). Soil b-
glucosidase activity was measured with a colorimetric p-

nitrophenol assay after buffering the soil with p-nitrophenyl-b-
glucopyranoside (p-nitrophenyl, mg/g, 1 h, 37°C). The

measurement of soil urease activity involved incubating the

samples with 20 mL of citric acid buffer (pH 6.7) and 10 mL of

10% urea solution at 37°C (24 h) to assess the release of NH4
+-N

(Sun et al., 2014).
2.3 Metabolite extraction, processing,
and annotation

We conducted metabolite extractions following the methods

documented in previous works (Chen et al., 2013; Chenkun et al.,

2021). The various samples were ground into powder at 30 Hz using

a mixer mill (MM400, Retsch) for 1.5 min after freeze-drying. We

used 100 mg powder to conduct metabolite extraction. The

extraction was performed at night at 4°C using 0.8 mL aqueous

methanol (methanol: H2O2, 70:30, v/v) and pure methanol and

subsequently centrifuged for 10 min at 10,000 g. We collected,

homogenized, and filtered the supernatants (SCAA-104, 0.22 mm

pore size; ANPEL Shanghai, China, www.anpel.com.cn/). Detailed

information regarding further processing and annotation of the

samples was documented in recent studies (Fallah et al., 2022).
2.4 Extraction of DNA, PCR amplification,
sequencing, and data processing

The extraction of genomic DNA was performed by employing

the Fast DNA™ Spin Kit (MP Biomedicals, LLC, Santa Ana, USA)

using 0.5 g fresh soil as recommended by the manufacturer. DNA

absorbance (A260 and 280 nm) was computed using BioTek

Synergy H1 Hybrid Multi-Mode Microplate Reader (BioTek,

USA) to investigate the quantity and quality of DNA. The

bacterial 16S rRNA gene hypervariable V3–V4 region was

amplified using 341F and 805R primers. PCRs were conducted in

a 50-µL combination using 1 mM dNTPs (deoxynucleoside

triphosphate), 1 × PCR buffer, 1 U of Platinum Taq, DNA

template (10 ng), and each primer at 5 µM. PCR amplifications

with an initial denaturation at 94°C (3 min), denaturation (five

cycles at 94°C, 30 s), annealing at 45°C (20 s), and extension at 65°C

(30 s) were performed. We subsequently carried out denaturation

(20 cycles at 94°C) (20 s), annealing at 55°C (20 s), extension at

72°C (30 s), and the last extension at 72°C (5 min). Finally, an

Illumina HiSeq 2500 platform (2 × 250 paired ends) at Biomarker

Technologies Corporation, Beijing, China, was employed to

conduct high-throughput sequencing. The raw data were later

deposited on the NCBI Sequence Read Archive platform

(accession no. PRJNA929962).

FLASHwas adopted tomerge the paired-end reads of the original

DNA fragments (Tan et al., 2017). The paired-end reads appropriated

to each sample were aligned to a sample-specific barcode. Sequence

clusterings were conducted with operational taxonomic units (OTUs)
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annotated for each sequence using the Ribosomal Database Project

(RDP) (Wang et al., 2007). Sequences that contained low quality and

did not correspond with the barcode or primer with a high average

quality score (Q ≥ 20) or without ambiguous base pairs were

excluded. We then clustered all the sequences at 97% nucleotide

similarity. Taxonomic classification was carried out using the SILVA

database (SILVA Release 138, Bacteria), and biomarker biocloud

platform (www.biocloud.net) was used to conduct the

bioinformatics analysis.
2.5 Statistical analysis

We employed Bioconductor (http://www.bioconductor.org/)

package “Mfuzz” and R software (http://www.r-project.org/) to

investigate the expression patterns of metabolites based on fuzzy

c-means. We adjusted the fuzzification parameter to m = 2 and

the number of clusters to c = 12 to retain the soft clustering of the

entire metabolite. Ternary plot analysis was conducted using R

language-based packages, namely, grid and ggtern, an extension

of the package ggplot2 to identify the upregulated and

downregulated metabolites in the different compartments.

Interactive networks of plant–soil systems and metabolites

were conducted to establish the associat ion between

metabolites in the different compartments and under both

treatments (Toju et al., 2016). The correlations between

metabolites and plant growth-promoting bacteria were

assessed using a correlation matrix. The potential pairwise

Spearman ’s ranks were determined and displayed using

Cytoscape (version 3.6.1). ANOVA was used to evaluate the

test data and visualized with GraphPad Prism (version 10.0.0).

Tukey’s HSD test (p < 0.05) was used to compare the difference

between mean values. The Biomarker biocloud platform

(www.biocloud.net) was used to generate the rest of the used

in this work.
3 Results

3.1 Sugarcane traits and soil chemical
properties respond to biochar-
supplemented soil

Sugarcane traits responded strongly to the BC-supplemented

soil. For instance, the crop brix, sucrose content, and chlorophyll

content significantly increased (p < 0.05) under the BC-

supplemented soil compared with the CK treatment (Figures 1A–

C). Additionally, Figure 1D showed that the crop weight was

promoted under the BC-supplemented soil, but no significant

difference was observed between both treatments.

Meanwhile, we also noticed that soil chemical properties,

including phosphatase, b-glucosidase, and cellulase, peaked

considerably (p < 0.05) under the BC-supplemented soil than the

CK treatment (Figures 1E–G). In addition, soil urease activity under

the BC-supplemented soil outperformed those in the CK treatment
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but revealed no significant difference (Figure 1H). Figures 1I–K

demonstrates that soil NH4
+-N, followed by TN and NO3

−N, were

significantly increased (p < 0.05) under the BC-supplemented soil

relative to the CK treatment. In addition, soil pH exhibited a 55.01%

increase under the BC-supplemented soil compared with a 44.99%

increase under the CK treatment (Figure 1L).
3.2 Metabolite composition and relative
abundance in the different compartments
under the different treatments

We conducted principal coordinate analysis (PCoA) to

assess metabolite composition in the various compartments

under both treatments . The metabol i te composi t ion

d i s t r ibu t ion t rend was la rge ly compar tment -dr iven

(Figure 2A). The relative abundance of metabolite taxa in the

different compartments, including prenol lipids (31.42%), fatty

acyls (21.12%), organooxygen compounds (10.78%), steroids

and steroid derivatives (8.73%), and benzene and substituted
Frontiers in Plant Science 05
derivatives (3.53%), was dominant. Furthermore, a number of

taxa, including carboxylic acids and derivatives (1.61%),

flavonoids (1.89%), isoflavonoids (0.83%), phenols (0.52%),

pyridines and derivatives (0.14%), and other (18.44%) were

more prevalent (Figure 2B). Figure 2C reveals that these

aforementioned taxa were more pronounced in the rhizosphere

soil of the BC-supplemented soil, followed by the rhizosphere

soil of the KC treatment.
3.3 Expression pattern of metabolites
detected in the various treatments in the
different plant compartments

Figure S1 further indicates that the distribution pattern of

metabolite composition was primarily compartment-driven,

suggesting that metabolite composition is more sensitive to

different plant compartments rather than fertilization.

Mfuzz package was later used to explore the expression pattern

of metabolite composition in each compartment under the BC-
B C D

E F G H

I J K L

A

FIGURE 1

Bar graphs illuminating crop traits (A–D). Soil enzyme activities: (E–H), followed by soil TN, total nitrogen (I); soil NH4
+-N, ammonium (J); NO3

−-N,
nitrate (K); and pH, potential hydrogen (L). Graph with asterisk mark depicts significant differences between treatments, while “ns” stands for not
significant (Tukey test, p < 0.05).
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supplemented soil (Figure 3A) and the CK treatment (Figure 3B).

The results showed that a number of essential metabolites peaked in

the different clusters. In the BC-supplemented soil, jasmonic acid

was among many metabolites that peaked in the leaf tissue in cluster

1. Moreover, benzaldehyde and benzene were some of the

metabolites demonstrating a similar trend in cluster 2 in the root

and leaf tissues. Similarly, phenylacetic acid and fluridone in cluster

3 peaked considerably in the stem tissue, whereas tyramine,

homoveratric acid, and sebacic acid were considerably high in the

stem and root tissues of clusters 4 and 5, respectively. In addition,

mesaconate, biocytin, and abscisic acid were some of the dominant

metabolites that peaked in the leaf tissue in clusters 6 and 7,
Frontiers in Plant Science 06
respectively. Abscisic aldehyde, acetoin, and traumatic acid were

among the dominant metabolites detected in rhizosphere soil in

clusters 8, 9, and 10, respectively. Apigenin exhibited a similar

pattern in the root and leaf tissues in cluster 11, whereas

paromomycin increased significantly in cluster 12, especially in

the root tissue (Figure 3A; Table S1).

In the CK treatment, apigenin and jasmonic acid were among

the metabolites that peaked in both rhizosphere soil and leaf tissue

in cluster 1. Ononin and pogostone revealed a similar trend in the

stem and rhizosphere soil in clusters 2 and 3, respectively. Tyramine

and daidzein were some of the metabolites that were considerably

expressed in the root tissue in clusters 4 and 6, whereas pisatin,
B

C

A

FIGURE 2

Principal component analysis (PCoA) of the entire metabolites in the various samples (A). Relative abundance of metabolites detected in the entire
compartments under the different treatments (B). K-means clustering trend chart displaying the decrease and increase trends of metabolites under
both treatments in the various plant compartments. The color lines in the graph symbolize the average change trend of metabolite in each k-means
cluster between groups (C). BC_Rhi, rhizosphere soil of the biochar-supplemented soil; BC_R, root tissue of the biochar-supplemented soil; BC_S,
stem tissue of the biochar-amended soil; BC_L, leaf tissue of the biochar-supplemented soil; followed by CK_R, control root tissue; CK_Rhi, control
rhizosphere soil; CK_S, control stem tissue; and CK_L, control leaf tissue. Different lowercase letters signify the various groups or categories of samples.
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succinic acid semialdehyde, and retinal exhibited a similar pattern

in the leaf tissue in clusters 5, 8, and 9, respectively. Likewise,

coumestrol was considerably expressed in the rhizosphere soil in

cluster 7, whereas sucrose and betanin in clusters 10 and 12 peaked

in stem and root tissues, respectively. Abscisic acid demonstrated a

similar trend in both root and leaf tissues (Figure 3B; Table S2).
3.4 Differentially upregulated and
downregulated metabolites in the different
compartments of the crop

Ternary plot analysis was performed to identify the specific

metabolites that were upregulated or downregulated in the different

compartments in each treatment (Figures 4A, B; Tables S3, 4). The
Frontiers in Plant Science 07
analysis revealed that a number of key metabolites were significantly

upregulated (p < 0.05) in the different compartments of the BC-

supplemented soil, including sucrose and melatonin in the stem and

root tissues, respectively. Similarly, phenyllactic acid was

considerably upregulated (p < 0.05) in the stem and root tissues

whereas zeatin exhibited a similar trend in the leaf, stem, and root

tissues (Figure 4A; Table S3). On the other hand, biotin sulfone

revealed the opposite in the leaf tissue (Figure 4B; Table S4).

In the CK treatment, bacampicillin was significantly upregulated

(p < 0.05) in the stem tissue, whereas apiin revealed a similar pattern

in the leaf, stem, and root tissues (Figure 4C; Table S5). However,

some essential metabolites, namely, methyl jasmonate and salicylic

acid, were downregulated in the leaf, stem, and root tissues of the CK

treatment. Abscisic aldehyde and sucrose demonstrated the same

trend in leaf and root tissues (Figure 4D; Table S6).
B

A

FIGURE 3

Cluster analysis revealing the expression pattern of metabolites in the different plant tissues/compartments under the BC-supplemented soil (A) and
the CK treatment (B).
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3.5 Differentially abundant, enriched
pathways, and annotated metabolites in
the different compartments of the crop

The differential abundance of metabolites showed that steroid

biosynthesis, anthocyanin biosynthesis, and monoterpenoid

biosynthesis performed better in the BC rhizosphere soil

compared with the CK rhizosphere soil (Figure S2A). Similarly,

the BC rhizosphere soil promoted sphingolipid metabolism,
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betalain biosynthesis, and glycerophospholipid metabolism

compared with the CK rhizosphere soil (Figure S2B). Moreover,

benzoxazinoid biosynthesis was significantly higher in the leaf

tissue of the BC amendment compared with the leaf tissue of the

CK treatment (Figure S2C). At the same time, sesquiterpenoid and

triterpenoid biosynthesis and cutin suberin and wax biosynthesis

marked a significant increase in the stem tissue of the BC

amendment compared with the stem tissue of the CK treatment

(Figure S2D).
B

C D

A

FIGURE 4

Ternary plot of the entire metabolites identified in the leaf tissue (BCL_BCRhi), stem tissue (BCS_BCRhi), and root tissue (BCR_BCRhi). Upregulated
metabolites identified in the BC-supplemented soil and the CK treatment (A, C), and downregulated metabolites detected in the BC-supplemented
soil and the CK treatment (B, D). Each circle signifies the downregulated and upregulated metabolites. Its position indicates its relative abundance in
the leaf, stem, root tissues, and rhizosphere soil, and its size symbolizes the average in the compartments. The upregulated or downregulated
metabolite in one compartment relative to the other is characterized by the colored circle. Red circles signify the specific metabolite in the leaf
tissue. Yellow circles indicate the overlapping metabolite in the leaf and stem tissues. Light blue circles depict the overlapping metabolite detected in
the leaf, stem, and root tissues. Green circles symbolize the overlapping metabolite in the leaf and root tissues. Dark blue circles indicate the specific
metabolite detected in the stem tissue. Orange circles signify the overlapping metabolite identified in the stem and root tissues, whereas pink circles
denote the specific metabolite detected in the root tissue.
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The enriched KEGG pathway revealed that carotenoid

biosynthesis, biosynthesis of unsaturated fatty acids, and alpha-

linolenic acid metabolism were enriched considerably in the BC

rhizosphere soil compared with the CK rhizosphere soil, followed

by arginine biosynthesis, limonene and pinene degradation, and

histidine metabolism (Figure S2E). In the root tissue of the BC

amendment, a number of enriched KEGG pathways, including

histidine metabolism; cysteine and methionine metabolism;

glycine, serine, and threonine metabolism; betalain biosynthesis;

glycerophospholipid metabolism; pantothenate and CoA

biosynthesis; aminoacyl-tRNA biosynthesis; and beta-alanine

metabolism outperformed those detected in the root tissue of CK

treatment (Figure S2F). Additionally, the stem tissue of the BC
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amendment exhibited the advantage of significantly enriching

biosynthesis of unsaturated fatty acids, phenylpropanoid

biosynthesis, tyrosine metabolism, and carotenoid biosynthesis

relative to those detected in the stem tissue of the CK treatment

(Figure 5A). The leaf tissue of the BC amendment had a similar

effect on biosynthesis of unsaturated fatty acids, phenylpropanoid

biosynthesis, tyrosine metabolism, and carotenoid biosynthesis

relative to those detected in the leaf tissue of the CK

treatment (Figure 5B).

The pathways of the annotated metabolites of the Human

Metabolome Database (HMDB) showed that lipids and lipid-like

molecules (e.g., fatty acyls and prenol lipids), organic acids and

derivatives (e.g., carboxylic acids and derivatives), and organic
B

C D

E

A

FIGURE 5

Enriched KEGG signaling pathway of metabolites in the stem tissue (A) and the leaf tissue (B) under the BC-supplemented field compared with the
CK treatment. HMDB database annotations display the hierarchy classification matching the superclass and class information of the HMDB database
(C). Lipid maps illuminate the annotated metabolites. The column length characterizes the number of metabolites annotated to a specific
classification (D). The column length represents the metabolites annotated. Metabolite annotation using the KEGG pathway. Entry under the same
box in the figure symbolizes the hierarchical classification notes of the KEGG pathway. The column length represents the number of metabolites
annotated (E).
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oxygen compounds (e.g., organooxygen compounds) were enriched

considerably (Figure 5C). In addition, LIPID MAPS of metabolite

annotation demonstrated that fatty acyls (e.g., fatty acids and

conjugates, eicosanoids, and fatty esters), polyketides (e.g.,

flavonoids), and prenol lipids (e.g. , isoprenoids) were

considerably high (Figure 5D), whereas the KEGG pathway of

metabolite annotation revealed the opposite trend (Figure 5E).
3.6 Bacteria abundance and community in
plant compartments response to biochar-
supplemented soil

Meanwhile, we also identified a number of bacteria in different

plant compartments. The various plant tissues were dominantly

occupied by Proteobacteria, Firmicutes, Bacteroidota, Myxococcota,

Actinobacteriota, Acidobacteriota, Gemmatimonadota,

Nitrospirota, and Patescibacteria (Figure S3A). Figure S3B reveals

that the community composition of these bacteria was region-

specific. For example, bacteria identified in the leaf and stem

tissues (aboveground compartments) were separated from those

in the root tissue and rhizosphere soil (belowground

compartments). Later, we employed BugBase functional analysis

to confirm the suppressive effect of BC on pathogenic bacteria in the

various compartments. We observed that pathogenic bacteria

belonging to Proteobacteria were suppressed under the BC-

supplemented soil relative to those in the CK treatment, especially

in the rhizosphere soil and root tissue. Moreover, pathogenic

bacteria belonging to Acidobacteria and Nitrospirae in the

rhizosphere soil of the BC-supplemented soil were suppressed

relative to those detected in the CK rhizosphere soil. Disease-

causing bacteria belonging to Bacteroidetes exhibited similar

behavior in the leaf tissue of the plant, whereas those belonging

to Firmicutes were also identified in the leaf and stem tissues of the

CK plants, implying that the BC-supplemented soil was effective in

eradicating pathogenic bacteria belonging to Firmicutes

(Figure S3C).
3.7 Metabolite associations with classified
plant growth-promoting bacteria and soil
biochemical properties

Metabolite associations with a number of classified plant growth-

promoting bacteria were performed, and the result indicated that

these targeted bacteria exhibited distinct relationships with a number

of vital plant metabolites belonging to different taxa. Noticeably,

Bacillus had a strong positive correlation with melatonin, whereas

Bradyrhizobium, Mesorhizobium, and Serratia were strongly and

posit ively correlated with abscisic aldehyde, whereas

Flavobacterium displayed a significant positive association with

fexofenadine in the aboveground compartments (stem and leaf

tissues) (Figure 6A; Table S7).

In the belowground compartments (root tissue and rhizosphere

soil), a significant number of metabolites exhibited strong positive

associations with plant growth-promoting bacteria, especially
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Bradyrhizobium. For instance, some important metabolites,

including melatonin and abscisic acid, responded strongly and

positively to Bradyrhizobium, whereas Enterobacter showed a

significant positive relationship with phenyllactic acid and

Serratia had a similar pattern with zeatin. Likewise, Enterobacter

and Frankia were significantly and positively correlated with

phenyllactic acid and melatonin, respectively (Figure 6B; Table S8).

We also evaluated metabolite association with soil chemical

properties. The results showed that some key metabolites exhibited

a significant positive association with soil chemical properties. For

example, sucrose, apigenin, and melatonin tended to favor soil TN.

Moreover, phenyllactic acid and zeatin exhibited a significant

positive association with soil b-glucosidase. Abscisic acid and

jasmonic acid were significantly and positively correlated with soil

phosphatase. Zeatin favored soil NH4
+-N and b-glucosidase,

whereas apigenin and melatonin responded strongly and

positively to soil TN (Table 2).

Meanwhile, we also established the association between

metabolites identified in the various plant tissues with the crop

traits (Tables 3–6). We observed that a number of plant growth and

stress-regulating metabolites detected in the leaf tissue

demonstrated a significant positive correlation with various crop

traits. For example, metabolites, including melatonin, abscisate, and

sucrose, showed a significant positive association with the crop brix.

Likewise, abscisic acid and melatonin exhibited the same pattern

with the crop height and chlorophyll content, respectively (Table 3).

Metabolites identified in the stem tissues, including abscisic

aldehyde, biotin sulfone, and jasmonic acid, showed a significant

positive correlation with the crop brix. Additionally, abscisic acid

and jasmonic acid were significantly and positively associated with

the crop weight whereas biotin sulfone revealed a similar pattern

with the crop chlorophyll content (Table 4). In the root tissue,

metabolites such as abscisate and biotin sulfone revealed a strong

and positive association with the crop brix. In addition, abscisate,

apigenin, and biotin sulfone demonstrated the same trend with the

crop sucrose content (Table 5). However, metabolites identified in

the rhizosphere soil of the crop revealed no significant association

with the traits (Table 6).
4 Discussion

This work aims to illuminate the underpinning mechanism of

how specific plant growth and stress-regulating metabolites respond

to long-term BC utilization shape soil parameters (e.g., biochemical

properties and disease-causing bacteria) and crop growth and

unravel the association between these compounds and potential

plant growth-promoting bacteria. The adoption of BC as a soil

supplement in agriculture has garnered significant traction among

many farmers and researchers, primarily due to its eco-friendly role

in boosting crop output (Panwar et al., 2019). Graber et al. (2010)

documented that BC-treated soil boosted tomato and pepper

development and productivity cultivated in fertigated soilless

media. A related work also shed light on BC’s role in promoting

soil quality and crop growth (Schulz and Glaser, 2012). Here,

sugarcane brix, sucrose, and chlorophyll content increased
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considerably under the BC-supplemented soil. This finding could

partly be ascribed to the high presence of zeatin, melatonin, and

phenyllactic acid, deemed as plant growth and stress regulators

detected in the various plant tissues (Schäfer et al., 2015; Moustafa-

Farag et al., 2020), as shown in Tables 2–5. Furthermore, the ability

of BC to act as a slow-release fertilizer and gradually release

nutrients, including N, and P (Wang et al., 2022a), as it decays,

contributed to this phenomenon. This behavior is consistent with a

previous study, where it was revealed that BC-sustained nutrient

release provided a steady NH4
+N and NO3

-N supply for crop

growth and development (Fallah et al., 2023b), as shown in

Figures 1I–K. A similar phenomenon was documented in the

work of Wang et al. (2022a).
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Supplementing soil with BC is thought to be a sustainable soil

management strategy that promotes soil biochemical parameters,

including soil extracellular enzymes (Burns et al., 2013). BC-treated

soil has typically been found to promote soil enzyme activities

associated with P and N (Bailey et al., 2011). Here, BC

supplemented at the rate of 20 t/hm2 significantly promoted soil

phosphatase, which is consistent with the results of Liu et al. (2017),

where it was reported that phosphatase activities significantly

peaked under BC applied at the rate of 20 t/hm2. This

phenomenon is associated with the crucial role BC utilization

plays in decomposing organic matter, which eventually releases

organic phosphorus compounds (Wu et al., 2023). However, BC-

supplemented soil has also been observed to lower the enzymatic
B

A

FIGURE 6

Network analysis depicting the association between metabolites and plant growth-promoting bacteria detected in the aboveground plant tissues (leaf,
stem), (A) and the belowground compartments (root, rhizosphere soil), (B) Pink and blue lines depict negative and positive correlations, respectively.
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activities tied to ecological processes such as soil C mineralization

(Lehmann et al., 2011), primarily due to the high C content in BC

(Panwar et al., 2019) or the sorption of enzymes by BC (Czimczik

and Masiello, 2007). Here, BC-supplemented soil significantly

promoted soil b-glucosidase and cellulase, which slightly agreed

with Wang et al.’s (2015a) findings. The increase in these C cycling

enzymes could be related to the low availability of a specific nutrient

(e.g., soil pH) due to the high increase in C from BC. Additionally,

the high pyrolysis temperature (550–650°C) at which the BC used in

this study was generated contributed to this phenomenon, as BC

derived from such temperature has shown a promising role in

promoting C cycling enzymes, evident by the findings of Khadem

and Raiesi (2017). We also believe that the potential of BC to adsorb

and retain soil nutrients, inhibiting leaching and making them

available to soil microorganisms and plants over a protracted

period, led to a nutrient-rich environment that promoted the

activity of soil microbes and growth, leading to the promotion of

soil enzyme activity (Ibrahim et al., 2020). Our finding agrees with a

previous work (Jiang et al., 2021), where it was established that BC

utilization significantly promoted enzyme activities, including

sucrose, phosphatase, and catalase activity.

In this study, soil TN, NH4
+N, and NO3

−N peaked under the

BC-supplemented soil, largely due to the highly porous structure

and surface area of BC, which allowed it to adsorb and retain soil N

compounds. This behavior prevents N leaching and loss, making

more N available for crop uptake and microbial activities (Zheng

et al., 2013). The peak in these soil nutrients could be associated

with several factors. Firstly, the interaction of BC with soil organic

matter helps reduce N volatilization (Mandal et al., 2016). Secondly,

the ability of BC to enhance the mineralization of soil N (Yoo and

Kang, 2012), which eventually increases the soil NO3
−-N, explains
TABLE 2 Metabolites identified in the rhizosphere soil correlate with soil
biochemical properties.

raw.r raw.p Metabolites Soil properties

0.94 0 Sucrose TN

−0.83 0.01 Jasmonic acid Urease

−0.83 0.01 Sucrose Urease

−0.83 0.01 Abscisic aldehyde NH4
+-N

0.78 0.02 Phenyllactic acid b-Glucosidase

0.77 0.02 Abscisic acid Phosphatase

0.77 0.02 Jasmonic acid Phosphatase

0.77 0.02 Zeatin NH4
+-N

0.71 0.03 Apigenin TN

0.66 0.03 Melatonin TN

−0.6 0.04 Abscisic aldehyde TN

−0.6 0.04 Abscisic aldehyde NO3
–N

−0.6 0.04 Sucrose NH4
+-N

−0.54 0.05 Abscisic aldehyde Urease

−0.54 0.05 Apigenin Urease

−0.54 0.05 Abscisic aldehyde Cellulase

−0.54 0.05 Apigenin Cellulase

−0.54 0.05 Sucrose Cellulase

0.49 0.06 Zeatin b-Glucosidase

−0.49 0.06 Biotin sulfone NH4
+-N
TABLE 3 Metabolites identified in the leaf tissue correlate with different crop traits.

raw.r raw.p Metabolites Crop traits Tissue/compartment

0.94 0 Melatonin Brix Leaf

0.83 0.04 Abscisic acid Sugarcane weight Leaf

0.83 0.04 Abscisate Brix Leaf

−0.77 0.05 Phenyllactic acid Brix Leaf

0.77 0.05 Sucrose Brix Leaf

0.71 0.05 Melatonin Chlorophyll Leaf

0.71 0.11 Abscisic acid Brix Leaf

−0.66 0.16 Phenyllactic acid Chlorophyll Leaf

0.66 0.16 Sucrose Chlorophyll Leaf

0.66 0.16 Melatonin Sugarcane weight Leaf

0.6 0.21 Abscisate Chlorophyll Leaf

0.6 0.21 Abscisate Sugarcane weight Leaf

0.6 0.21 Apigenin Sugarcane weight Leaf

0.6 0.21 Zeatin Sugarcane weight Leaf

(Continued)
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TABLE 3 Continued

raw.r raw.p Metabolites Crop traits Tissue/compartment

0.54 0.27 Abscisic acid Chlorophyll Leaf

0.54 0.27 Melatonin Sucrose content Leaf

−0.54 0.27 Phenyllactic acid Sucrose content Leaf

0.54 0.27 Sucrose Sucrose content Leaf

−0.49 0.33 Phenyllactic acid Sugarcane weight Leaf

0.49 0.33 Sucrose Sugarcane weight Leaf

−0.49 0.33 Abscisic aldehyde Brix Leaf

0.43 0.4 Abscisate Sucrose content Leaf

-0.37 0.47 Abscisic aldehyde Chlorophyll Leaf

0.37 0.47 Abscisic acid Sucrose content Leaf

−0.37 0.47 Biotin sulfone Sucrose content Leaf

0.37 0.47 Biotin sulfone Sugarcane weight Leaf

−0.37 0.47 Biotin sulfone Brix Leaf

0.37 0.47 Jasmonic acid Brix Leaf
F
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TABLE 4 Metabolites identified in the stem tissue correlate with different crop traits.

raw.r raw.p Metabolites Crop traits Tissue/compartment

0.94 0 Biotin sulfone Brix Stem

0.77 0.01 Biotin sulfone Chlorophyll Stem

0.77 0.02 Abscisic acid Sugarcane weight Stem

0.77 0.03 Jasmonic acid Sugarcane weight Stem

0.77 0.03 Abscisic aldehyde Brix Stem

0.71 0.11 Jasmonic acid Brix Stem

−0.66 0.16 Abscisic aldehyde Sucrose content Stem

0.66 0.16 Biotin sulfone Sucrose content Stem

0.66 0.16 Melatonin Sugarcane weight Stem

−0.6 0.21 Abscisic aldehyde Chlorophyll Stem

0.6 0.21 Zeatin Sucrose content Stem

0.54 0.27 Zeatin Chlorophyll Stem

−0.54 0.27 Apigenin Sugarcane weight Stem

0.54 0.27 Sucrose Brix Stem

0.49 0.33 Jasmonic acid Chlorophyll Stem

−0.49 0.33 Abscisate Sucrose content Stem

0.49 0.33 Abscisic acid Brix Stem

0.43 0.4 Zeatin Brix Stem

−0.37 0.47 Abscisate Chlorophyll Stem

0.37 0.47 Abscisic acid Chlorophyll Stem

0.37 0.47 Biotin sulfone Sugarcane weight Stem
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the mechanism underpinning this behavior (Wang et al., 2015a).

Ultimately, the enhanced microbial activity induced by the

application of BC increased soil NO3
–-N and NH4

+-N. This

outcome aligns with earlier research findings (Wang et al., 2015a;

Fallah et al., 2023c).
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Soil amendment practices can induce a shift in soil attributes,

including metabolite abundance and composition. Rusli et al.

(2022) reported that the total contents of metabolites, including

phenolic, anthocyanin, and flavonoid, peaked considerably in the

tissues of Melastoma malabathricum L. when supplemented with
TABLE 5 Metabolites identified in the root tissue correlate with different crop traits.

raw.r raw.p Metabolites Crop traits Tissue/compartment

0.83 0.04 Abscisate Brix Root

0.83 0.04 Biotin sulfone Brix Root

0.77 0.05 Abscisate Sucrose content Root

0.77 0.05 Apigenin Sucrose content Root

0.77 0.05 Biotin sulfone Sucrose content Root

0.71 0.11 Abscisate Chlorophyll Root

0.71 0.11 Apigenin Chlorophyll Root

0.71 0.11 Biotin sulfone Chlorophyll Root

0.66 0.16 Abscisic aldehyde Chlorophyll Root

0.66 0.16 Abscisic aldehyde Sugarcane weight Root

0.66 0.16 Abscisic aldehyde Brix Root

0.6 0.21 Jasmonic acid Brix Root

0.54 0.27 Abscisic aldehyde Sucrose content Root

0.54 0.27 Apigenin Brix Root

0.49 0.33 Phenyllactic acid Sucrose content Root

−0.49 0.33 Zeatin Sugarcane weight Root

0.43 0.4 Phenyllactic acid Chlorophyll Root

0.43 0.4 Sucrose Chlorophyll Root

−0.37 0.47 Zeatin Brix Root
TABLE 6 Metabolites identified in the rhizosphere soil correlate with different crop traits.

raw.r raw.p Metabolites Crop traits Tissue/compartment

−0.6 0.21 Abscisic aldehyde Chlorophyll Rhizosphere soil

0.6 0.21 Zeatin Sugarcane weight Rhizosphere soil

−0.54 0.27 Abscisic aldehyde Sucrose content Rhizosphere soil

0.54 0.27 Biotin sulfone Sugarcane weight Rhizosphere soil

−0.54 0.27 Abscisic aldehyde Brix Rhizosphere soil

−0.54 0.27 Apigenin Brix Rhizosphere soil

−0.54 0.27 Sucrose Brix Rhizosphere soil

−0.49 0.33 Jasmonic acid Sucrose content Rhizosphere soil

0.49 0.33 Jasmonic acid Sugarcane weight Rhizosphere soil

0.44 0.38 Phenyllactic acid Sugarcane weight Rhizosphere soil

−0.43 0.4 Sucrose Chlorophyll Rhizosphere soil

−0.37 0.47 Abscisic acid Sucrose content Rhizosphere soil

0.37 0.47 Abscisic acid Sugarcane weight Rhizosphere soil
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BC. In this work, some potential plant growth and stress-regulating

metabolites, including zeatin, melatonin, sucrose, and phenyllactic

acid, responded strongly to the BC-supplemented soil. Melatonin is

an important phytohormone mediating diverse plant growth

processes, including crop growth, yield, seed germination, root

elongation, and flowering (Wang et al., 2022b). Teng et al. (2022)

reported that melatonin was crucial in promoting plant sucrose and

fructose. Moustafa-Farag et al. (2020) also highlighted the decisive

aspect of melatonin and its role in mediating environmental

stressors. In their work, they explored the significance of

melatonin in regulating soil pH and heavy metals. We believe

that the ability of BC to alter microbe–plant interactions

eventually influenced the secretion of root exudates, thereby

triggering the promotion of melatonin, which boosted crop traits

and suppressed bacteria pathogens.

Zeatin is regarded as a plant hormone belonging to the

cytokinin family and is crucial in regulating different facets of

plant growth and development (Schäfer et al., 2015). It has also

been documented that zeatin can promote plant nutrient uptake

and translocation. For example, trans-zeatin promoted the ability of

Arabidopsis thaliana plant to fine-tune its shoot growth to adapt to

fluctuating environmental conditions (Osugi et al., 2017). Our

finding suggests that the high presence of zeatin under the BC-

supplemented soil contributed to the increase in crop traits and the

promotion of soil nutrients, especially N, NO3-N, and NH4-N. This

behavior corroborates with a previous study (Kawai et al., 2022), in

which it was established that trans-zeatin biosynthesis belonging to

cytokinin was significantly upregulated in response to the

application of N. This finding also aligns with the results

documented in the work of Kudo et al. (2012), where cis-zeatin, a

type of cytokinin, exhibited a physiological impact on rice growth

and development.

Phenyllactic acid is a phenolic compound that can exhibit

antimicrobial properties, helping plants cope with oxidative stress

triggered by different environmental factors (Kawtharani et al., 2020).

This compound also plays crucial roles in plant physiological

processes, including signal transduction and regulation of growth

and development, as Lavermicocca et al. (2003) documented. These

authors proved that phenyllactic acid induced an unpredictable delay

in the growth of some mycotoxigenic strains, including Penicillium

citrinum and Penicillium verrucosum. Jiang et al. (2022) recently

investigated the performance of phenyllactic acid in inhibiting

Staphylococcus aureus and found that phenyllactic acid was a

potential candidate for controlling S. aureus. These findings are

also consistent with Li et al. (2022) work, implying that the

response of this compound to BC contributed to the suppression of

disease-causing bacteria. Moreover, the stimulatory effect of BC

increased phenyllactic acid through BC–microbe–plant interactions,

eventually triggering the secretion of more root exudates, thereby

boosting vital soil nutrients and crop traits.

Sucrose plays an important role in plants as an energy source,

carbon carrier, storage compound (Ruan, 2014), and involvement

in stress responses (Du et al., 2020). In the plant–soil interface,

sucrose also contributes to the secretion of root exudates, which

promotes beneficial microbial activities (Lopes et al., 2022). Li et al.
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(2020) established that the peak in sucrose metabolism under BC-

supplemented soil promoted microbial functions, eventually

boosting soil health and biochemical properties. Likewise, a study

showed that the breakdown of sucrose was a key strategy for plant

growth improvement (Daloso et al., 2016). In another, Du et al.

(2020) highlighted the importance of the different regulation

strategies in sucrose allocation, transport, and metabolism during

various seed development stages for soybean plants to resist

drought stress. We observed that sucrose was significantly

upregulated in the stem tissue of the BC-supplemented soil,

suggesting that the abundance of sucrose in the stem tissue of the

BC-supplemented soil was key in promoting crop growth and

microbial community (Gunina and Kuzyakov, 2015).
5 Conclusion

Our finding provides valuable information for agronomists,

farmers, and environmentalists to make informed decisions about

crop production, land use, and soil management practices. Proper

soil assessment and understanding of the interaction between the

attributes of soil, BC, and metabolites are essential for promoting

sustainable agriculture practices and land conservation.
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