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Lactobacillus paracasei has significant potential for development and application
in the environmental field, particularly in addressing malodor pollution. This study
aims to investigate the cellular response of L. paracasei B1 under high-density
culture conditions. The selected strain has previously shown effective deodorizing
and bacteriostatic abilities. Transcriptomics techniques are employed to dissect
the nutrient metabolism pattern of L. paracasei B1 and its response mechanism
under environmental stress. The study characterizes the functions of key
differentially expressed genes during growth before and after optimizing the
culture conditions. The optimization of fermentation culture conditions
provides a suitable growth environment for L. paracasei B1, inducing an
enhancement of its phosphotransferase system for sugar source uptake and
maintaining high levels of glycolysis and pyruvate metabolism. Consequently,
the strain is able to grow and multiply rapidly. Under acid stress conditions,
glycolysis and pyruvate metabolism are inhibited, and L. paracasei B1 generates
additional energy through aerobic respiration to meet the energy demand. The
two-component system and quorum sensing play roles in the response and
regulation of L. paracasei B1 to adverse environments. The strain mitigates
oxygen stress damage through glutathione metabolism, cysteine and
methionine metabolism, base excision repair, and purine and pyrimidine
metabolism. Additionally, the strain enhances lysine synthesis, the alanine,
aspartate, and glutamate metabolic pathways, and relies on the ABC transport
system to accumulate amino acid-compatible solutes to counteract acid stress
and osmotic stress during pH regulation. These findings establish a theoretical
basis for the further development and application of L. paracasei B1 for its
productive properties.
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1 Introduction

Lactobacillus paracasei (also name “Lacticaseibacillus paracasei”), a member of the
Lactobacillus genus, shares a close relationship with Lactobacillus casei and Lactobacillus
rhamnosus in terms of phylogeny and fermentation characteristics. L. paracasei possesses
bacteriostatic immune-regulatory properties and can metabolize and synthesize various
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bioproducts (Zapasnik et al., 2022). Consequently, it has significant
applications in clinical medicine, food fermentation, industrial
production, environmental remediation, and other fields,
garnering attention both domestically and internationally
(Zapasnik et al., 2022). L. paracasei is a prominent functional
species for efficient deodorization in combating malodor
pollution. L. paracasei secretes lipases and glycosidases and
utilize nutrients from their environment to produce organic acids
such as acetic acid, butyric acid, and lactic acid (Rueda-Robles et al.,
2022). The resulting reduction in environmental pH inhibits the
growth of other malodorous microorganisms. Additionally, the
organic acids, diacetyl, and hydrogen peroxide produced by
Lactobacillus metabolism possess broad-spectrum bactericidal
effects (Rueda-Robles et al., 2022). They also produce
antibacterial substances such as bacteriocins and antimicrobial
peptides, effectively inhibiting the growth of pathogens like
Staphylococcus aureus, Salmonella, Legionella, and Escherichia
coli, as well as antagonizing the growth of most Gram-negative
bacteria (Rueda-Robles et al., 2022). During fermentation, the
production of diacetyl, 3-hydroxybutanone, and volatile organic
acids by lactic acid bacteria results in the evaporation of fruity,
aromatic flavors that physically mask odors and create a pleasant
atmosphere (Verma et al., 2022). In landfills, livestock production,
and solid waste composting, L. paracasei has been applied as a
deodorizing microorganism as revealed by our previous work
(Zhang et al., 2021).

Transcriptomics is the study of all transcriptomes in samples to
identify and determine genes related to phenotypes by identifying
genes that are differentially expressed (Liu P. et al., 2020). In the case
of Lactobacilli, transcriptomics is used to study the functions and
pathways involved in their growth and to optimize and enhance
their metabolic capacity. For example, Laakso et al. investigated the
changes in gene expression of L. rhamnosus GG when grown in
industrial whey medium in a controlled bioreactor. Transcriptome
and proteome analyses showed differential expression of a large
number of genes and proteins, particularly those involved in
carbohydrate, nucleotide, and lipid metabolism. The transition
from the exponential growth phase to the stationary phase was
characterized by a positive response of transporter proteins during
the shift from glucose to galactose utilization. This suggests that the
growth and metabolism of L. rhamnosus GG have several
adaptations to nutritional conditions (Laakso et al., 2011).

In addition, the transcriptome can be used to understand the
differences in the culture of key metabolic pathways of the strain in
different environments and stages, and to determine the
requirements of the strain for different nutrients (Liang et al.,
2020). Feng’s study on the transcriptional differences during the
growth of Lactobacillus paracasei PC-01 showed that the transcript
levels of amino acid metabolism pathways related to aspartic acid
and glutamic acid gradually increased after the logarithmic growth
period, and therefore these nutrient substrates could be
supplemented with the fermentation process in order to
strengthen the growth ability of the strain (Feng, 2021). Similarly,
Jiao investigated the sugar metabolism pathway of Enterococcus
faecalis under aerobic respiration and found that the genes coding
for the aerobic respiration chain were constitutively expressed.
These genes mainly drove the conversion of lactate into ethanol
by regulating key genes of the pyruvate and butyric acid metabolism

pathway. By optimizing the culture medium through the addition of
hemoglobin, the final number of viable bacteria of LD33 of E. faecalis
increased significantly (Jiao, 2016). Thus, transcriptome can provide
valuable insights and guidance for the industrial production of
Lactobacilli by resolving their nutritional consumption pattern,
optimizing the growth medium, reducing non-essential
nutritional costs, and increasing the amount of growth or
products produced.

Furthermore, Lactobacilli often encounter environmental stress
during the growth process, such as acid, salt, heat, and oxygen stress
(Cataldo et al., 2021). Under these stresses, lactic acid bacteria
initiate stress responses to mitigate the damages. For example,
Lee et al. found that Lactobacillus reuteri overexpressed genes
related to glucose metabolism under low pH regulation through
transcriptome analysis. This suggests that higher energy metabolism
is required under low pH conditions, and a large number of
intermediary metabolites for energy metabolism will be produced
to maintain additional energy supply (Lee et al., 2010). Similarly,
Lactobacillus fermentum IMDO can alter major metabolic pathways,
such as converting fructose to mannitol and raising acetate, to
ensure energy supply under acid stress (Vrancken et al., 2008).
Under salt stress, Lactobacillus plantarum FS5-5 decreases the
expression levels of genes related to carbohydrate metabolism,
amino acid transport and metabolism, vitamin synthesis, and
nucleotide metabolism. This behavior may be a protective
measure to limit metabolic acquisition under stressful conditions
(Song et al., 2017). By studying the stress responses of Lactobacilli
and implementing corresponding protective measures, the survival
rate of Lactobacilli in industrial production can be improved.

Lactobacillus paracasei exhibits variations in substance and
energy metabolic activities during different stages of fermentation
and under different culture conditions (Zhang et al., 2021). These
variations are driven by complex metabolic networks that involve
various biochemical processes, including cellular metabolism and
genetic information processing. One of the main challenges in the
industrial application of Lactobacillus is the limited theoretical
understanding of cellular metabolism and regulation. The
mechanisms of stress response during growth and metabolism
are particularly understudied. Advances in transcriptomics
technology can help characterize the growth and nutrient
metabolic patterns in regulatory lactic acid bacteria, shedding
light on the stress mechanisms operating under environmental
stress. Moreover, these insights can contribute to a
comprehensive understanding of the physiological properties of
lactic acid bacteria, ultimately improving their production
performance in fermentation processes.

By using transcriptomics to analyze the metabolic network of L.
paracasei, we can identify differences in gene expression between
samples at different fermentation stages or culture conditions. This
analysis helps us understand the dynamic fluctuations in material
and energy metabolism, as well as the diversity of cellular
metabolism and functions. In this study, we cultured L. paracasei
B1, a strain isolated in our previous study (Zhang et al., 2021), under
two different fermentation modes, under or without fermentation
optimization. We considered the mid-log phase and stationary
phase as crucial time points for investigation. We conducted
transcriptome sequencing on samples at different growth stages
within the same fermentation mode, as well as between different
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fermentation modes at the same growth stage. Our aim was to
analyze the correlation of gene expression patterns across samples
during fermentation processes and identify differentially expressed
genes (DEGs).

2 Materials and methods

2.1 Sampling during fermentation

This study utilized two distinct fermentation modes of
Lactobacillus paracasei B1, a strain isolated in our previous study
(Zhang et al., 2021), over a period of 40 days: one before
fermentation optimization and one after fermentation
optimization. Experiment 1 utilized a simple batch culture, while
Experiment 2 implemented the culture conditions after
fermentation optimization as outlined in our previous study
(Zhang et al., 2022). The specific control parameters that differed
between the two fermentation modes are summarized in Table 1.
The mid-log phase (μ = μ max) and the stationary phase (μ = 0) were
chosen as the critical time points for sampling during the
fermentation process. For Experiment 1, the sampling points
were designated as CK1 and CK2, while for Experiment 2, they
were labeled as T1 and T2. The samples at each point were collected
in triplicate.

Growth curves and specific growth rate curves were generated by
monitoring OD600. Samples were collected during the logarithmic
growth phase (μ = μ max) and the stationary phase (μ = 0), with three
replicates for each experiment.

Both sets of fermentation experiments were conducted in a 50 L
fermenter using the optimized combination of fermentation
medium: sucrose 37.8 g/L, yeast extract 33.7 g/L, K2HPO4 7 g/L,
KH2PO4 7 g/L, MgSO4 0.2 g/L, MnSO4 0.02 g/L, Tween-80 0.1 g/L,
glycerol 0.1 g/L, Vitamin B3 0.01 g/L, and cysteine hydrochloride
0.2 g/L. Other fermentation parameters, including temperature, pH,
bacterial density, and residual sugar, were also measured.

2.2 Sample preparation

The fermentation broth was examined microscopically, and the
bacterial count in each sample was required to be ≥1×108. A 1.5 mL
aliquot of the fermentation broth was transferred to a 2 mL RNase-
free centrifuge tube with a screw cap and a pointed bottom. The tube
was then centrifuged at 14,000 g for 10 min at 4°C. After
centrifugation, the supernatant was discarded, and the bacterial
pellet was rapidly frozen in liquid nitrogen for at least 1 h before
being stored at −80°C.

2.3 Sequencing library construction and
high-throughput sequencing

Total RNA was extracted from the samples following the
instructions provided with the TRlzol reagent. Genomic DNA
was removed using DNaseI. The quality of RNA was assessed
using a 2100 Bioanalyzer, and its concentration and purity were
determined using a NanoDrop 2000. High-quality RNA samples
were then utilized for sequencing library construction.

RNA-specific libraries were reconstructed using Illumina
TruSeq RNA Sample Preparation Kit, employing 5 μg of total
RNA per set. The RiboZero rRNA Removal Kit was used to
eliminate rRNA, and mRNA was fragmented using
Fragmentation buffer. Subsequently, cDNA reverse transcription
synthesis, end-pairing, A-base separation, and junction ligation were
performed based on the Illumina manual. cDNA fragments between
200 and 300 bp were selected through electrophoresis on a 2%
agarose gel. These fragments were then amplified using Taq
high-fidelity polymerase (Q5 Hot Start High-Fidelity DNA
Polymerase, NEB) for 15 PCR cycles. Prior to sequencing, the
quality of the libraries was assessed using a NanoDrop
microspectrophotometer and Labchip bioanalyzer. Finally, the
paired libraries (150 bp × 2) were sequenced using an Illumina
NovaSeq 6000 sequencer (LC-Bio Technology Co., Ltd., Hang Zhou,
Zhejiang Province, China).

The high-quality genome of L. paracasei B1 was used as a
reference for mapping RNA reads. The genomic DNA of L.
paracasei B1 was isolated using the protocol from Platero et al.
(Martín-Platero et al., 2007) and sequenced on PacBio Sequel II
platform using a single SMRT cell at the LC-Bio Technology Co.,
Ltd., Hang Zhou, Zhejiang Province, China. The genome was
assembled using Flye v2.7 (Kolmogorov et al., 2020). The ORFs
were predicted using Prodigal (Hyatt et al., 2010).

The transcriptome raw data have been make available in the
NCBI Sequence Read Archive (SRA) database at https://www.ncbi.
nlm.nih.gov/sra/PRJNA1020974. The genome assembly of
Lactobacillus paracasei is available at https://ngdc.cncb.ac.cn/
bioproject/browse/PRJCA020011.

2.4 Bioinformatics analysis

2.4.1 Raw data statistics and quality control
Raw data obtained from Illumina high-throughput sequencing

downstream often contain junction sequences, low-quality
sequences, too short sequences, and sequences containing too
many N bases, which can impact the accuracy of subsequent
assembly and comparison. Therefore, it is necessary to cut and

TABLE 1 Difference of experimental fermentation control parameters.

Cultivation conditions Experiment 1 Experiment 2

Temperature 35°C The first 8 h were kept at 40°C and then the temperature was changed to 35°C

pH — 5.5 ± 0.25

Supplementation — Feedback flow supplementation (sucrose + growth factors)

Note: “-“ means no control.
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filter the data to obtain high-quality clean data. The software used
for this purpose is fastp (v0.23.2, https://github.com/OpenGene/
fastp). The fastp filtering QC requirements include discarding
sequences with less than 50 bases and limiting the number of N
bases to 6. Additionally, the quality value should be greater than or
equal to Q15 to be considered qualified. After filtering through the
fastp quality control sequence, the data was deemed of high quality
(Chen et al., 2018).

2.4.2 Reference sequence comparison
To assess the quality of the cleandata, it was compared with the

genome sequence of L. paracasei B1. The genome sequence was
derived from the whole genome data of the strain that was
sequenced and spliced in our laboratory. The comparison was
performed using STAR software (v2.7.9a, https://github.com/
alexdobin/STAR/) (Dobin et al., 2013).

2.4.3 Gene expression quantification and analysis
The quantification of gene expression levels was carried out

using RSEM software (v1.3.3, http://deweylab.biostat.wisc.edu/
rsem/). This approach helps to remove the effects of RNA
sequencing depth and gene length (Li and Dewey, 2011).

Transcript expression was quantified after importing the bam
files generated during the bowtie comparison process into RSEM.
The gene expression was then calculated. RSEM provides
quantitative results in units of FPKM, read counts, and TPM. For
this study, FPKM was used to examine the quantitative level of gene
expression.

2.4.4 Differential expression gene screening
Differential expression analysis enables the comparison of gene

changes across different experimental groups. In this study, we
conducted comparisons of transcriptome expression levels within
and between experimental groups. Specifically, we compared
transcriptome expression levels during the mid-log phase and stable
period, while keeping the fermentationmode treatment constant. These
specific comparisons were CK1 vs. CK2 in Experiment 1 and T1 vs.
T2 in Experiment 2. Furthermore, we also compared transcriptome
expression levels between the log phase and stable period, considering
two different fermentation modes: CK1 vs. T1 and CK2 vs. T2.

2.4.5 Functional enrichment analysis of
differentially expressed genes

There were three biological replicates for each treatment in this
experiment. Differential gene expression analysis was performed
using DESeq2 software (v1.36.0, https://bioconductor.org/packages/
release/bioc/html/DESeq2.html). DESeq2 employs a statistical
model to predict the significance of gene differences. The
screening thresholds used were |Log2Fc| ≥ 1 and p-value <0.05
(Li and Dewey, 2011).

In this study, we performed sequence functional annotation and
classification using EggNOG mapper v2 (http://eggnog-mapper.
embl.de/). This tool utilizes the HMMER algorithm for sequence
matching. After annotating the sequences with EggNOG-related
classification systems such as COG, KEGG, and GO (Cantalapiedra
et al., 2021), we conducted enrichment analysis.

Furthermore, we compared the differentially expressed genes
with homologous genes in the KEGG Orthology database (https://

www.kegg.jp/kegg/ko.html) to determine the localization and
function of the differentially expressed genes in the metabolic
pathway. This analysis allowed us to understand the response of
L. paracasei B1 metabolism regulation mechanism to environmental
changes during the fermentation process.

The horizontal gene transfer (HGT) profile, “mobileome”, of
Lactobacillaceae was identified as follows: The Integrated Microbial
Genomes Annotation Pipeline (IMGAP) v.5.0 (Markowitz et al.,
2010) under default mode was used to identify horizontally
transferred genes (HTGs) in the genomic sequences of
Lactobacillaceae available at Genbank/IMG database, as conducted
in previous studies (Li et al., 2023). It used the following criteria to
determine which genes inside the trialed genomes were horizontally
transferred from remote descendants: genes with the finest BLASTP
matches (most significant bit scores) or over 90% of the best hits
discovered beyond the phylogenetic clade of the trialed genome
(i.e., from remote phylum, class, etc.) and with lower-scoring
matches or no hits within the original phylogenetic clade of the
trialed genome. BLASTN was then applied to map the DEGs L.
paracaseiB1 onto the “mobileome” of Lactobacillaceae to detectDEGs
putatively affected by the HGT process with threshold: sequence
identity >90%, E-value < 1e−10.

3 Results and discussion

3.1 Experimental sampling points and
grouping

The effects of the two fermentation modes on the growth of L.
paracasei B1 varied significantly. Experiment 2, which was
optimized for fermentation control, had a maximum growth
density of 2.221, while Experiment 1 had a maximum growth
density of 1.295.

The key time points selected for the fermentation process
were the mid-log phase (μ = μ max) and the stationary phase (μ =
0). In Experiment 1, the mid-log phase occurred at 16 h and the
stationary phase occurred at 28 h. These time points were
labeled as CK1 and CK2, respectively. In Experiment 2, the
mid-log phase occurred at 20 h and the stationary phase
occurred at 28 h. These time points were also labeled as
T1 and T2, respectively. Figure 1 shows the changes in the
growth density of the two fermentation modes and the moments
of the sampling points. Among the four sampling points, the
pH of CK2 was the lowest at 3.42, followed by CK1 at 4.53, and
T1 and T2 both at 5.5.

3.2 Assessment of total RNA purity and
integrity

RNA is susceptible to degradation during sample collection,
processing, and isolation, resulting in a decline in its integrity and
quality. Moreover, low-quality RNA can significantly affect the
accuracy of gene expression levels and differential analysis
(Romero et al., 2014). Hence, it is crucial to implement rigorous
quality control measures to evaluate the quality of RNA extracted
from the samples, including assessing its purity and integrity. The
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outcomes of these assessments are presented in Supplementary
Table S1 and Supplementary Figure S1.

3.3 Sequencing and filtering results

The rawdata from each sample underwent fastp filtering to obtain an
average of more than 4 million clean reads. The sequencing evaluation
report for the sample clean reads is shown in Supplementary Table S2.
Q20 and Q30 are the proportions of total bases in the samples with
quality scores ≥20 and ≥30, respectively. The Q20 and Q30 across all
samples reached more than 97% and 92%, respectively. The GC content
represented theGC content, whichwasmore than 46%on average. These
results indicate that the clean reads after quality control (QC) were in
compliance with the requirements.

3.4 Whole genome sequence mapping

The filtered data from all samples were mapped to the assembled
whole genome sequence of the strain. The Supplementary Table S3
shows the number of uniquely mapped reads, which indicates the total
number of sequences that were successfully aligned to a unique position
on the genome. On average, the unique mapping rate was 94.64%. The
unmapped reads and the unmapped reads ratio represent the total
number and percentage of sequences that could not be aligned to the
genome, with an average of 5.37%. These results suggest that the
sequenced sequences have a high alignment rate with the genome
sequences, which makes them suitable for subsequent analysis.

3.5 Quantification of gene expression

The quantification of gene expression involves considering the
number of reads that are present in a gene region. However, it is
important to note that this number is influenced by factors such as
gene length and sequencing depth. Additionally, the read data exhibit a

positive correlation with both gene length and sequencing depth. Given
that these factors can vary across each sample, it is necessary to normalize
them. The Fragments Per Kilobase of exon model per Million mapped
fragments (FPKM) is used for this purpose. FPKM is calculated by
dividing the number of normalized reads by the length of the gene. A
higher FPKMvalue indicates a higher level of gene expression (Zhao et al.,
2021). In Supplementary Table S4, the FPKM values are divided into five
intervals, and the number of genes falling within each expression level
interval is counted. This provides statistics on the distribution of genes
across different levels of expression. The distribution of gene expression
density is commonly employed in illustrating the distribution of
expression levels in individual samples. As depicted in Supplementary
Figure S2, the x-axis of the distribution plot represents log10(FPKM+1),
while the y-axis denotes the density of genes whose expression falls within
a given interval. The 12 samples exhibit a relatively consistent distribution
of expression levels, with more concentrated peaks. This suggests that the
expression of each sample is largely similar.

3.6 Sample clustering and correlation
analysis

Principal component (PCA) and correlation analyses were
conducted on the samples based on gene expression. The PC
analysis in Figure 2A shows that PC1, representing the first
principal component, contributes 83.13% to the overall variance,
while PC2, representing the second principal component,
contributes 12.42% to the overall variance. Together, PC1 and
PC2 account for 95.55% of the overall variance. The samples from
the four sampling points are observed to be clustered based on PC1 and
PC2, with no outlier samples. This indicates good sample repeatability.
Additionally, there is no overlap when setting 95% confidence intervals
for each sampling point, suggesting significant differences between the
samples. Among them, CK2 is the furthest away fromCK1, T1, and T2,
indicating a large variability or variance in CK2 compared to the other
samples. This suggests that CK2 has distinct transcriptome
characteristics and different gene expression patterns.

FIGURE 1
The variations in growth density (A) and growth rate (B) over time, along with the corresponding sampling points for two fermentation modes,
labeled as CK1, CK2, T1, and T2.
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The correlation analysis in Figure 2B confirms the PCA results. The
samples from the same growth stage sampling point show obvious
clustering, with CK2 having the lowest correlation with the other
sampling points. When comparing two sampling points at a time,
samples from CK1 and T1, both sampled at the mid-log phase, show
higher correlation. On the other hand, samples from the mid-log phase
and stabilization time under the same fermentation mode show lower
correlation.

The results suggest that there were significant differences in gene
expression patterns at each stage of fermentation before and after
optimization of L. paracasei B1. There is a high correlation between
samples in the middle of the logarithmic phase in both fermentation
modes, indicating similar gene expression patterns. The effect of
fermentation optimization is smaller during the middle and early
stages of fermentation, as evidenced by the low correlation and
significant difference in gene expression patterns in the stationary
phase of both fermentation modes. This may be due to the fact that
in the late stage of fermentation without optimization, the strains
experience increased environmental stresses, leading to significant
changes in gene expression to enhance environmental adaptability
and stress resistance. A similar pattern is observed between the mid-
log phase and stable period under unoptimized fermentation, where
increasing environmental stress leads to low correlation and significant
differences in gene expression. On the other hand, after fermentation
control optimization, there is a higher correlation in gene expression
patterns between the mid-log phase and stable period, which may be
attributed to the reduced environmental fluctuation through culture
addition optimization and the smooth transition of gene expression
patterns between different fermentation stages.

3.7 Screening of differentially expressed
genes

Genes with significant changes were identified as DEGs through
differential gene analysis by comparing gene expression between the
two groups. The number of significantly upregulated and

downregulated genes in the samples was determined using
DESeq2 to analyze the expression matrix of the count values
(Figures 3A–D).

Most expressed genes did not exhibit significant changes
between samples (|Log2Fc| < 1). A total of 627 DEGs were
detected in CK1 vs. CK2, including 377 upregulated genes and
250 downregulated genes. Similarly, a total of 607 DEGs were
detected in T1 vs. T2, including 259 upregulated genes and
348 downregulated genes. Although the number of differentially
expressed genes was similar in both fermentation modes, the trends
of upregulation and downregulation were opposite. This may
indicate opposite characteristics in gene expression trends
between the two groups of experiments before and after the
optimization of CK2 and T1 vs. T2 culture conditions. In
CK1 vs. T1, a total of 507 DEGs were detected, with 289 genes
upregulated and 219 genes downregulated. In CK2 vs. T2, a total of
671 DEGs were detected, with 407 genes upregulated and 264 genes
downregulated. This suggests that more gene expression was
significantly induced in the fermentation mode under
unoptimized culture conditions as environmental stresses
increased over time.

After tallying the number of DEGs at each sampling point, the
DEGs that were common and distinct among each sample were
further analyzed to identify common and specific DEGs in the two
fermentation modes. This analysis was illustrated in Figure 3E using
Venn diagrams. Among all samples, a total of 68 shared DEGs were
found among the comparison group. Moreover, there were
171 DEGs that were shared in both CK1 vs. CK2 and T1 vs.
T2 fermentation modes. It is shown that these 68 shared DEGs
exhibit a high correlation in their response to the changing
environment. Even slight changes in the culture environment
induced alterations in the expression levels of these genes. After
removing these 68 shared DEGs, all the remaining DEGs may be
associated with the phase transition during fermentation. The
remaining set of 103 DEGs, after removing the 68 shared DEGs,
could be potentially linked to the fermentation phase transition.
Furthermore, in CK1 vs. CK2, there were 121 specific DEGs, while in

FIGURE 2
Sample principal component (A) and correlation analysis (B).
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T1 vs. T2, there were 257 specific DEGs. These findings suggest that
these two different sets of DEGs are highly specific and exhibit
varying gene expression patterns due to environmental stress or
fermentation optimization.

There were 208 shared DEGs between the comparison groups
CK1 vs. T1 and CK2 vs. T2. Additionally, there were 312 DEGs
specific to CK1 vs. T1 and 476 DEGs specific to CK2 vs. T2. These
DEGs represent the differential gene expression caused by
fermentation optimization before and after the two growth
phases. The shared DEGs play a global role in the fermentation
process, while the specific DEGs in CK1 vs. T1 and CK2 vs.
T2 represent differentially expressed genes influenced by stress
and fermentation optimization in the mid-log phase and
stationary phase of fermentation, respectively. The specific DEGs
among different samples are considered key genes and analyzing
them can provide insights into the response of L. paracasei B1 to
environmental stresses during fermentation and the gene regulatory
pathways influenced by fermentation optimization. This analysis
can be valuable for optimizing future fermentation processes.
Figures 3F, G illustrate the overlap of upregulated and
downregulated genes among the DEGs in the different
comparison groups. Specifically, CK1 vs. CK2 had 53 upregulated
DEGs and 78 downregulated DEGs, while T1 vs. T2 had
78 upregulated DEGs and 78 downregulated DEGs. These
changes in gene expression are hypothesized to reflect alterations
in metabolic pathways during different growth stages. In CK1 vs.
CK2, there were 146 specifically upregulated DEGs and
272 specifically downregulated DEGs. In contrast, T1 vs. T2 had
258 specifically upregulated DEGs and 126 specifically

downregulated DEGs. Conversely, the optimization of
fermentation during T1 vs. T2 resulted in most genes being
expressed during the growth period to facilitate growth and
metabolic processes for faster growth and proliferation. Further
analysis is needed to determine if these DEGs are associated with
specific biological pathways or functional modules in order to
provide a comprehensive explanation of these results. Further
examination of DEGs in CK1 vs. T1 and CK2 vs. T2 revealed
that there were 98 shared upregulated DEGs and 48 shared
downregulated DEGs. Furthermore, there were 197 specific
upregulated DEGs and 299 specific downregulated DEGs in
CK1 vs. T1, as well as 295 specific upregulated DEGs and
181 specific downregulated DEGs in CK2 vs. T2. These findings
indicate that L. paracasei B1 exhibits varying gene expression
patterns and engages in different metabolic pathways at different
growth stages within the same fermentation mode and among
different fermentation modes at the same growth stage. These
variations reflect changes in the expression levels of functional
genes, enabling microorganisms to meet their own growth,
development, and adaptation needs in response to the changing
environment during growth stage transitions and in the presence of
different culture conditions.

The differentially expressed genes identified through screening
were categorized based on genome annotation information or
compared to database annotation information. Subsequently,
key pathways and molecular mechanisms involved in the
biometabolic process were examined to gain a better
understanding of the growth and metabolic mechanisms of L.
paracasei B1, as well as its stress response mechanisms under

FIGURE 3
Volcano map of differentially expressed gene between samples: (A) CK1 and CK2, (B) T1 and T2, (C) CK1 and T1, (D) CK2 and T2. (E) Differentially
expressed genes Venn diagram between samples. Venn diagrams of upregulated DEGs (F) and Downregulated DEGs (G) between samples. (H) KEGG
classification histogram of DEGs. (I) DEGs GO classification histogram (TOP20). (J) DEGs GO classification histogram (TOP10 for each category).
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environmental stress. This analysis provides a theoretical
foundation for optimizing the metabolic capacity of
Lactobacillus and enhancing its environmental tolerance.

3.8 Annotation of differentially expressed
genes

The KEGG database (Kyoto Encyclopedia of Genes and
Genomes) is a comprehensive database that integrates functional
information related to the genome, gene products, and metabolic
pathways (Kanehisa and Sato, 2020). It provides systematic analysis
of the metabolic pathways of gene products and compounds within
the cell, as well as the functions of these genes. The results of the
comparison with the KEGG database are presented in Figure 3H. At
the class I level, the differentially expressed genes were primarily
classified into Metabolism (34.74%), Brite Hierarchies (27.79%),
Environmental Information Processing (11.86%), and Genetic
Information Processing (8.61%). At the class II level, the
differentially expressed genes were mainly categorized into
Carbohydrate Metabolism (15.93%), Genetic Information
Processing (12.63%), Membrane Transport (9.19%), Amino Acid
Metabolism (4.75%), and Translation (4.27%). According to the
KEGG annotation results, the observed differences in gene
expression across different fermentation modes and growth
stages were primarily associated with carbohydrate metabolism,
protein synthesis, membrane transport, and gene expression
regulation.

The COG (Clusters of Orthologous Groups) database is a
functional annotation database that categorizes homologous
proteins based on their function and evolutionary relationships
(Galperin et al., 2021). By comparing differentially expressed
gene sequences with those in the COG database, one can infer
the biological function of the encoded protein. The results presented
in Figure 3I indicate that a majority of the sequences were annotated,
with only a small percentage being functionally unknown (21.9%).
The annotated sequences were associated with various functions,
such as replicative recombination and repair (10.2%), transcription
(9.26%), carbohydrate transport and metabolism (9.10%), amino
acid transport and metabolism (6.52%), and inorganic ion transport
andmetabolism (5.23%). These results suggest that the differences in
growth and evolutionary relationships among the sampling sites are
not fully understood. It can be inferred that the physicochemical
variations in the growth environment between the sampling sites
lead to changes in the nutritional requirements of the cells.
Additionally, there is evidence of DNA damage, mutation and
repair during the fermentation process, as indicated by the
prevalence of the “replication, recombination, and repair” category.

Figure 3J depicts the results of the comparison of differentially
expressed genes with the Gene Ontology (GO) database, which
serves as a standardized functional annotation tool for genes,
proteins, and other biomolecules (Blake et al., 2015). The DEGs
in this study were annotated to 1,580 GO Terms, which were
categorized into Biological Process (BP, 61.4%), Molecular
Function (MF, 19.69%), and Cellular Component (CC, 18.9%).
The transcriptome of the strain as a whole was broadly regulated
and influenced by the two fermentation modes and the shift in the
growth phase of the fermentation process.

3.9 Enrichment analysis of DEGs between
CK1 and CK2 groups

The comparison of CK1 vs. CK2 groups represents the
differentially expressed genes that exhibited upregulation or
downregulation during the mid-log phase and stable period in
the experimental group prior to the optimization of the
fermentation culture conditions. Figure 4A illustrates the
upregulation of genes associated with ribosomes, fatty acid
synthesis and metabolism, fructose and mannose metabolism,
propionic acid metabolism, pyruvic acid metabolism,
phospholambanic acid synthesis, and the carbon fixation pathway
during the mid-log phase.

Ribosomes are organelles responsible for protein synthesis.
Among the ribosomal proteins, EF-Tu assists in ribosome and
tRNA recognition and pairing, regulating the rate and precision
of protein synthesis through the formation of the intermediate
isopeptidyl-tRNA-EF-Tu complex. Additionally, the auxiliary
secretory channel protein SecY is responsible for the
transmembrane translocation of precursor proteins (Gumbart
et al., 2009; Liu et al., 2014). In the middle of the logarithmic
phase, the genes encoding these two proteins (RP-S10, RP-L3, RP-
S17, RP-L14, etc.) were significantly upregulated, as shown in
Supplementary Figure S3. This suggests that L. paracasei
B1 rapidly produces a large number of ribosomes to meet the
demands of both rapid proliferation and metabolic load during
the logarithmic phase. However, as the cell enters the stationary
phase, proliferation gradually ceases and metabolic activities slow
down substantially. Consequently, the demand for ribosomes
decreases and, accordingly, the expression levels of ribosome-
related genes are reduced. The T1 vs. T2 comparison group
yielded similar results, with the expression levels of ribosome-
related genes decreasing from high to low from the middle of the
logarithmic phase to the stationary phase. This trend aligns with the
bacteria’s proliferation and growth attenuation process, suggesting
that the expression levels of ribosomal genes can serve as indicators
of the growth process (Liu T. J. et al., 2020).

Most carbohydrate metabolism pathways, such as fructose
and mannose metabolism, propionate metabolism, pyruvate
metabolism, and glycolysis, are significantly enriched and
expressed at high levels during the logarithmic growth phase.
These metabolic pathways produce ATP, NADH, and various
metabolites. Additionally, glycolysis, pyruvate metabolism, and
sugar source metabolism are closely linked, providing a large
amount of energy and metabolites for further metabolism of
other products. The level of pyruvate metabolism is often
positively correlated with the efficiency of sugar source
utilization, and is an important parameter for growth
(Milanovic et al., 2012). Therefore, the abundance of DEGs in
the carbon metabolic pathway reflects the efficient utilization of
sugar sources and active metabolic activities of L. paracasei
B1 during its rapid growth and reproduction (Zhan et al.,
2023). Previous studies have shown that the transfer of such
carbon metabolic genes has led to the domestication of
Penicillium species. This transfer enhances their capacity to
use monosaccharides and optimize carbon absorption for
fermentation, allowing them to survive in environments with
nutrient deficiencies (Ropars et al., 2020).
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On the other hand, the downregulation of genes associated with
glycolysis and pyruvate metabolism in the post-stationary phase
(Figure 4B), when compared to the mid-log growth phase, can be
attributed to two main factors. Firstly, the growth rate of the strain
weakens and the intracellular demand for substances and energy
decreases. Secondly, when the culture environment has a lower pH,
it leads to the formation of a proton gradient difference between the
intracellular and extracellular environments, resulting in an
increased intra-proton flux. This disrupts the stable internal
environment required for glycolysis and pyruvate metabolism
(Bedoya-Correa et al., 2019). In this study, we hypothesize that
the downregulation of gene expression in these pathways is mainly
affected by the latter factor, as a significant amount of energy is
needed to maintain intracellular stability and to transport protons to
the extracellular environment using H+-ATPase in an acidic
environment (Zhang et al., 2016).

Lipophosphatidic acid is an important component of the cell
membrane of Gram-positive bacteria. Upregulation of
lipophosphatidic acid synthesis pathway genes in the middle of
the logarithmic growth phase increases the content of
lipophosphatidic acid in the cell wall, enhancing cell wall density
and reducing proton permeability. This prevents the inward flow of
H+ and improves acid tolerance (Wei et al., 2021). The synthesis of
lipophosphatidic acid is correlated with the expression of genes
involved in carbohydrate metabolism pathways, but their expression
is downregulated in the stable growth phase. Lipophosphatidic acid
(LPA) synthesis is reduced despite the lower environmental
pH during the steady state phase. Synthesis of LPA necessitates
significant uptake of raw materials and energy, including
diacylglycerol (DAG), uracil diphosphoglucose (UDP-Glc), and
uracil diphosphogalactose (UDP-Gal), as illustrated in
Supplementary Figure S4. However, in the later stages of
fermentation, bacteria utilize primary metabolites more

conservatively, which requires the cell to enhance other antacid
mechanisms to maintain intracellular homeostasis during growth
and metabolism (Wiegand et al., 2013).

After entering the stationary phase, the majority of differentially
expressed genes showed enrichment in various pathways, including
oxidative phosphorylation, pyrimidine and purine metabolism, two-
component system, glycerophospholipid metabolism, and base
excision repair. These genes were significantly upregulated
(Supplementary Figure S5).

The two-component system (TCS) is a crucial mechanism of cell
signaling and metabolic regulation that is widely present in bacteria.
It senses external environmental changes and stimuli through
membrane receptor kinases and transmits intracellular response
regulator molecules to regulate the physiological activities of cells.
This enhances their adaptability to the environment (Tiwari et al.,
2017). The enrichment of genes related to the two-component
system during the stationary phase reflects the positive response
of L. paracasei B1 to environmental changes (Huynh and Stewart,
2011). Gene enrichment in phosphorus limitation, the acidic
environment, redox signaling, and CAMP signaling and response
pathways (as presented in Supplementary Figure S5), suggests that
the strain is capable of sensing phosphorus shortage, changes in pH,
and redox potential through two-component systems (TCS) during
the stationary phase. This activation initiates a cascade of responsive
reactions that aid microorganisms in adapting to environmental
changes, including phosphorus allocation, resistance to acid-
induced stress, and aerobic respiration.

Cationic antimicrobial peptide (CAMP) is a class of small
molecular weight peptides with a positive charge. In addition to
triggering cellular signaling processes, such as the activation of
transcription factors, alteration of gene expression, and regulation
of cellular metabolism, CAMP also helps to enhance microbial
adaptation to the environment and improve their ability to

FIGURE 4
Enrichment bubble diagram of DEGs betweenCK1 vs. CK2: (A) upregulation, (B) downregulation. Abundance of DEGs in pathways: (C)Glycolysis, (D)
Pyruvate metabolism, (E) Oxidative phosphorylation and (F) Purine and pyrimidine metabolic pathways. Genes associated with aerobic respiration and
upregulated in L. paracasei B1 under low pH conditions are marked with red color.
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survive and resist external stresses (Yang et al., 2013; Zhao et al.,
2022). The rejection behavior of CAMP suggests the presence of a
high concentration of CAMP accumulation, which can trigger
microbial adaptive responses, such as over-expression or damage.
The DltAC gene is involved in encoding the D-alanine-
polyphosphatidylcholine ligase subunit protein. It catalyzes the
formation of positively charged D-alanine-phosphatidylcholine,
which repels CAMP and helps to maintain stable endogenous
levels of CAMP (Li et al., 2007).

In the later stages of fermentation, when there is an
accumulation of organic acids resulting in an acidic environment,
certain strains of bacteria, such as Lactobacilli, undergo metabolic
reconfiguration to adapt to these conditions. This adaptation is
necessary because low pH inhibits glycolysis and pyruvate
metabolism, requiring alternative pathways for energy production
(Koponen et al., 2012).

Most Lactobacilli typically respire anaerobically, but some
strains possess genes encoding the respiratory electron transport
chain, including cydAB manipulators that can produce heme-
dependent cytochromes. This enables aerobic respiration in the
presence of oxygen, heme, and menaquinone (Duwat et al.,
2001). Aerobic respiration in Lactobacilli leads to increased
expression and activity of enzymes such as NADH oxidase and
NADH peroxidase, enhancing their ability to compete with lactate
dehydrogenase for NADH molecules. This redirection of pyruvate
metabolism towards the production of acetate, ethanol, and diacetyl
instead of lactate improves their adaptability (Pedersen et al., 2008).

Enrichment analysis of CK1 and CK2 revealed that L. paracasei
B1 was enriched for several DEGs in the oxidative phosphorylation
pathway, which is crucial for energy metabolism. These DEGs
included the atpCDG gene, responsible for encoding F-type ATP
synthase, and the cydAB gene, responsible for encoding cytochrome
bd ubiquinone oxidase. From this, it can be inferred that L. paracasei
B1 has the ability to obtain energy through a combination of aerobic
and anaerobic respiration (Papadimitriou et al., 2016). It has been
shown that Acetobacter regulates intracellular sodium ion content
through the horizontally acquired ATP synthase, which is associated
with stress resistance (Matsutani et al., 2020). Additionally, the genes
involved in the pyruvate metabolic pathway showed significant
upregulation during the steady state phase. For instance, the gene
encoding pyruvate oxidase (spxB), responsible for converting
pyruvate to acetylphosphate, was upregulated 6.28-fold. Similarly,
the genes encoding acetic acid kinase (ackA), which catalyzes the
conversion of acetylphosphate to acetic acid, and lactate-2-
oxygenase (E1.13.12.4), which catalyzes the conversion of lactate
to acetic acid and CO2, were upregulated 6.28-fold and 4.53-fold,
respectively, at the gene expression level.

Figures 4C–E demonstrates the gene expression of DEGs
enriched in glycolysis, pyruvate metabolism, and oxidative
phosphorylation pathways during four sampling points. It shows
that genes related to glycolysis and pyruvate metabolism are largely
downregulated, while genes related to aerobic respiration are
upregulated in L. paracasei B1 under low pH conditions (marked
with red color). This suggests that L. paracasei B1 enhances aerobic
respiration at low pH to obtain additional energy to supplement
inhibited glycolysis and pyruvate metabolism (Sudawan et al., 2016).

L. paracasei B1 is capable of fulfilling its cellular metabolic
energy requirements through reversible aerobic respiration.

However, this ability comes with a high risk due to the
production of reactive oxygen species (ROS) such as hydrogen
peroxide and superoxide anion (Maresca et al., 2018). ROS not
only attack intracellular molecules, affecting the rate of cell growth,
but also have the potential to damage cell structure and genetic
information, ultimately leading to cell death (Chen et al., 2023). This
may explain the inability to stabilize and the gradual decrease in
bacterial density during the late growth phase before the
optimization of fermentation culture.

The upregulation of DEGs enriched in the base excision repair
pathway confirms the aforementioned observation. During DNA
replication, oxidative stress caused by ROS results in various types of
DNA damage, including oxidative damage, DNA strand breaks, base
modification, and cross-linking damage. These damages severely
compromise the integrity and stability of DNA, and the base
excision repair mechanism plays a crucial role in repairing DNA
damage (Whitaker et al., 2017; Srinivas et al., 2019). In the stationary
phase, genes encoding formamidopyrimidine-DNA glycosylase
(Fpg), 3-methyladenine-DNA glycosylase (Tag), and DNA
polymerase I (DpoI) are upregulated 2.22-fold, 3.77-fold, and
2.83-fold, respectively. These enzymes are responsible for
removing and scavenging the modified residues in DNA after
DNA damage (Fang et al., 2017). Notably, formamidopyrimidine-
DNA glycosylase is one of the key endonucleases involved in the
DNA repair process. It catalyzes the excision reaction of gaps or
aberrant bases between purine and thymine molecules in DNA
induced by oxidants in the bacterium. It is capable of recognizing
oxidative damages such as 8-hydroxyguanine and 2,6-dioxoadenine
in DNA and excising them from the DNA molecule (Boiteux et al.,
1990). Despite the enhanced mechanisms of base excision repair
employed by the strains to repair damaged DNA, they were still
unable to prevent the decline in bacterial density.

There are 19 differentially expressed genes that are enriched and
upregulated in the purine and pyrimidine metabolic pathways, as
shown in Figure 4F. These pathways assist in cellular repair of DNA
damage for cell survival. Not only do purine and pyrimidine
metabolism provide bases for the DNA repair process per se, but
their intermediary metabolites can also induce and promote DNA
repair (Zhou et al., 2020). In purine metabolism, when UV light
causes oxidative damage to intracellular guanine dinucleotides, cells
can utilize precursor guanosine circuits to enhance guanine
deaminase activity and synthetic yield for DNA repair (Cheong
and Lee, 2020). Similarly, pyrimidine metabolism can promote DNA
repair by regulating the levels of pyrimidine dinucleotides and
nucleotides, such as uracil, in vivo (Berger et al., 2008).

The 19 downregulated differentially expressed genes in
Figure 4F are mainly concentrated in six functional modules:
follitropic purine synthesis, follitropic pyrimidine synthesis,
guanine ribonucleotide synthesis, pyrimidine deoxyribonucleotide
synthesis, pyrimidine deoxyribonucleotide synthesis, and
deoxyribonucleotide synthesis. This suggests that, after oxygen
stress-induced DNA damage, L. paracasei B1 provides DNA
repair by enhancing purine and pyrimidine metabolism to
provide the required bases and nucleotides for DNA repair.
Enhancement of purine and pyrimidine metabolism is very
effective in increasing the survival rate of Lactobacillus.
Additionally, Lactococcus lactis can alter its purine metabolism
(deoB, guaA, and tktA) to increase its tolerance to a variety of
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FIGURE 5
Enrichment bubble diagram of DEGs between T1 vs. T2: (A) upregulation, (B) downregulation. Abundance of DEGs in pathways: (C) compatibility
solute synthesis and transport. (D) Enrichment annotation of DEGs in quorum sensing (QS) with blue borders representing upregulated genes in the mid-
log phase and red borders representing upregulated genes in the stationary phase.
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stresses after heat stress (Gonzalez et al., 2017). Purines have also
been used in Lactobacillus plantarum processing to attenuate cell
membrane and DNA loss, thus improving survival by adding
purines (Ma, 2022). Purines and pyrimidines can assist
Lactobacillus in coping with environmental stress and effectively
improve the survival rate of the strain. Furthermore, the previous
response pathway to phosphorus limitation can be utilized by
adding purines, pyrimidines, and phosphorus-containing
inorganic salts as nutrients in the mid- and late-stages of
fermentation.

3.10 Analysis of enrichment of DEGs
between T1 and T2

The comparison of between T1 and T2 groups represents the
comparison of gene expression between the mid-logarithmic period
and the stable period of post-fermentation control optimization
(Figure 5A). The differentially expressed genes in this comparison
are enriched in carbohydrate metabolism, amino acid metabolism,
lipid metabolism, membrane transport, and other pathways.

L. paracasei B1 exhibited high activity in various metabolic
pathways during the mid-log phase. These pathways included
glycolysis, starch and sucrose metabolism, galactose metabolism,
and the breakdown of organic acids such as pentose phosphate,
glyoxylate, dicarboxylic acid, and butyric acid. This suggests that
optimizing the fermentation conditions provided a suitable
environment for the strain to efficiently utilize nutrients for
growth and metabolism during this stage.

In the logarithmic phase, there was an enrichment of genes
related to the Phosphotransferase system (PTS). The PTS system is
responsible for the active transport and phosphorylation of sugars in
bacteria, and intensifying PTS enhances the uptake of carbon
sources, leading to increased carbon fluxes and the synthesis of
metabolites (Krahn et al., 2021). Supplementary Figure S6 shows an
increase in the expression of ScrA, BglF, CelABC, ManXY, GatABC,
and UlaABC genes, indicating enhanced uptake of sugars such as
sucrose, cellobiose, mannose, and galactitol via the PTS system. The
intensified metabolism of starch and sucrose is influenced by the
enhancement of PTS. The stability of PTS is dependent on the
cultivation conditions, and studies have shown that low
pH conditions negatively impact the phosphotransferase system,
reducing enzyme activity, substrate binding capacity, and catalytic
efficiency (Wilkins et al., 2002). By controlling fermentation
conditions, L. paracasei B1 was able to grow at a suitable pH,
enhancing the ability of PTS to uptake sucrose, the main sugar
source in the medium. This may explain the significant difference in
the specific growth rate during the logarithmic period of the two
fermentation modes.

PTS phosphorylates and transports sugars across membranes by
utilizing the high-energy phosphate group of phosphoenolpyruvate
(PEP). PEP is not only an intermediate metabolite of PTS but also a
precursor for the synthesis of many amino acids. Therefore,
increasing the expression of PEP synthase or redirecting PEP
from the amino acid metabolic pathway is an effective way to
enhance sugar uptake by strains (Ma et al., 2017). Additionally,
microorganisms have a carbon catabolic metabolic mechanism
where preferred carbon sources, particularly PTS carbon sources,

are utilized first. Different types of PTS carbon sources can have
varying effects on strain growth and metabolism. For example, the
presence of acetic acid inhibits the expression of the Glc transporter
protein in Corynebacterium glutamicum, whereas the presence of
maltose increases the expression of Glc, thus enhancing glucose
utilization by the strains. This highlights the effectiveness of
composite carbon sources in medium design for promoting
microbial growth (Engels and Wendisch, 2007; Krause et al.,
2009). Therefore, using a composite PTS carbon source for
medium design could be a potential strategy to optimize strain
growth and reduce costs based on Lactobacillus paracasei’s
translocation sugar preference during the logarithmic phase.

To support rapid growth, L. paracasei B1 could bypass acid
stress and starvation stress by continuously adding ammonia and
nutrient replenishment solution. However, the accumulation of
lactic acid ammonium salts formed during acid-base
neutralization in the later stages of fermentation would create a
high-salt environment, resulting in osmotic pressure stress.
Figure 5A illustrates the upregulation of genes involved in amino
acid metabolic pathways such as lysine synthesis, alanine
metabolism, aspartic acid metabolism, and glutamic acid
metabolism. These amino acids have been shown in previous
studies to be soluble in water without precipitation or
coagulation, and they possess hyperosmotic protective properties
(Qu et al., 2012; Gao et al., 2013). Specifically, six differentially
expressed genes were enriched in the succinyl I-DAP pathway and
acetyl-DAP pathway for lysine synthesis, as shown in
Supplementary Figure S7. In addition, in alanine, aspartate, and
glutamate metabolism, the genes for aspartate-4-decarboxylase
(asdA), glutamate synthase (gltD), and aspartoacylase (ansA)
were upregulated, leading to increased synthesis of L-alanine,
L-glutamate, and the conversion of L-asparagine to L-aspartic
acid. L. paracaseus B1 upregulates these genes to synthesize and
accumulate these amino acids, increasing the intracellular osmotic
potential to resist the stress of a hypertonic environment.

L. paracasei B1 exhibits limited autonomous synthesis of
compatible solutes, relying instead on the ABC transport system
for osmoregulation through the uptake of compatible solutes from
the environment (Smits et al., 2008). Supplementary Figure S8
demonstrates an upregulation of genes associated with lysine
(lysXY), branched-chain amino acids (livFGHM), oligopeptides
(oppABCDF), and aspartate and glutamate (Pev1AB) transporter
systems, which are responsible for encoding receptor proteins,
substrate-binding proteins, ATPases, osmolytes, and channel
proteins (Doeven et al., 2008). Receptor proteins become
activated when the osmotic pressure in the environment
surpasses a certain threshold. This activation initiates the
expression of corresponding transport system proteins, leading to
an enhanced transport of amino acid-compatible solutes to maintain
osmotic homeostasis within the organism (Bouvier et al., 2000).

In Figure 5C, the expression distribution of differentially
expressed genes related to compatible solute synthesis and
transport at the four sampling sites is depicted. The majority of
genes exhibited higher expression levels in T2. These results suggest
that, after optimizing culture conditions, the bacterium can acquire
amino acid-based compatible solutes to alleviate osmotic stress and
promote continued growth at a later phase of fermentation.
Furthermore, it may be valuable to investigate potential
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osmoprotective functions of other amino acids, in addition to lysine,
glutamate, and aspartic acid that are involved in this pathway. No
differentially expressed genes related to DNA repair were enriched
in T1 vs. T2, indicating that the optimization of fermentation culture
conditions protected L. paracasei B1 from acid and oxygen stress
damage. Moreover, it suggests that hyperosmotic stress did not
cause structural damage to the cell, such as damage to genetic
material. The cessation of growth and decrease in density of the
bacterium in the stationary phase may be due to quorum sensing
(QS). QS is a unique self-regulatory mechanism in which cells
communicate through the release of autosensing molecules. This
process induces the expression of relevant metabolic genes,
regulating behaviors such as biofilm formation, bacteriocin
synthesis, and bacterial autolysis (Li et al., 2021). Bacterial
density and autoinduction molecules are interconnected. In this
study, we assessed the enrichment of differentially expressed genes
in quorum sensing during the mid-log phase and stationary phase.
The results are shown in Figure 5D, with blue borders representing
upregulated genes in themid-log phase and red borders representing
upregulated genes in the stationary phase.

The genes encoding transport proteins, ComAB, BlpAB, and
Sec, were upregulated during the logarithmic phase. Conversely, the
expression of Opp, Dpp, and transport genes increased upon
entering the stationary phase, resulting in the increased
translation of sensing proteins and the transmission of signaling
molecules from the SHP2C8, SHP3C8, icF10, cad1, and phr
populations to downstream target proteins. Notably, NprX,
SHP2C8, and SHP3C8 have the ability to induce biofilm
formation, suggesting that QS is involved in regulating biofilm
formation under possible salt stress to improve bacterial
resistance (Wang et al., 2022). Additionally, the signaling
pathways mediated by the majority of sensory proteins mainly
involve aggregation, genetic material exchange, and cellular
decay. These pathways include sensory aggregation, conjugation
mechanisms, late transforming genes, activation of degradative
enzymes, and necrosis, among others. TCS is likely involved in
QS signaling to activate the autolysis response process of the
bacteriophage. The expression of the LytR gene of the LytTR
family was upregulated 2.09-fold in TCS. This gene encodes the
LytT response regulator protein, which contains a structural domain
that binds to enzymes related to cell wall structural breakdown.
Phosphorylation of the upstream LytS receptor protein enhances the
activity of peptidoglycan hydrolases, which sever β-1,4-glycosidic
and peptidic bonds, weaken the cell wall, and ultimately lead to cell
lysis and bacterial death. This autolysis behavior is distinct from the
cellular damage-induced demise observed under unoptimized
fermentation processes for L. paracasei B1. In this case, the
bacterium reduces its density through active autolysis after
reaching a certain threshold, leading to self-destruction (Qian
et al., 2022). The bacterium releases a signaling molecule during
growth, and when its accumulation reaches a certain concentration,
it activates the pathway for autolysis, limiting further bacterial
reproduction. This behavior allows the colony to continue in
complex survival environments at the expense of some
individuals but restricts further biomass increase in industrial
production settings.

To overcome the limitation of bacterial reproduction by
blocking autolysis signaling in population sensing, methods such

as gene modification and knockout of signaling systems and cellular
autolysis mechanisms can be employed. However, this approach
requires balancing the impairment of cellular physiological
functions and biomass accumulation (Liu et al., 2021).
Additionally, the use of QS signaling inhibitors to degrade QS
signaling or block binding to signaling receptors generally does
not affect microbial growth. This may be a strategy for Lactobacillus
paracasei to further enhance biomass at high densities (Pang et al.,
2016).

3.10.1 Enrichment analysis of differentially
expressed genes in CK1 and T1

Figures 6A, B displays the comparison between the CK1 and
T1 groups, which represent the logarithmic mid-phase period in
both fermentation modes. By controlling temperature, pH, and
substrate sugar concentration to create an optimal growth
environment for L. paracasei B1, the sugar uptake capacity of
T1 was increased compared to CK1. Specifically, the expression
of ScrA, BglF, and MtlA encoding genes in the PTS system was
upregulated by 3.14-fold, 4.51-fold, and 2.29-fold, respectively, in
T1 relative to CK1. Proteins are transported to the cells via the PTS
system and play a crucial role in synthesizing molecules that are
compatible with their own energy production mechanism, thereby
providing an ample supply of carbon sources for the fermentation
process (Huang et al., 2020). Furthermore, the optimization of
fermentation led to an enhancement in the uptake capacity of
sucrose, β-glucoside, and mannitol by L. paracasei B1. This
further supports the conclusions and analysis results mentioned
previously. Additionally, the gene encoding SrlABE responsible for
sorbitol transport was upregulated by 2.11-fold, 2.35-fold, and 2.25-
fold in CK1. Given that sorbitol is commonly used as a protective
agent in lactic acid bacteria processing, this study proposes that the
increased uptake of sorbitol is an adaptive response to an adverse
environment (Ambros et al., 2018).

The optimization of culture conditions in T1 not only reduced
environmental stress but also facilitated enhanced nutrient
translocation. As a result, more abundant material and energy
metabolic pathways were expressed in T1. These included
pathways related to carbohydrate metabolism (starch and sucrose
metabolism, fructose and mannose metabolism), amino acid
metabolism (aspartate and glutamate metabolism), nucleotide
metabolism (nicotinate and nicotinamide metabolism), as well as
higher levels of pyruvate metabolism and glycolytic metabolism.
These enhancements in nutrient intake and energy metabolism
promoted faster growth and proliferation in L. paracasei B1,
ultimately leading to high-density levels. Additionally,
CK1 exhibited unique metabolic enrichments. Genes related to
fatty acid synthesis and metabolism, lysine synthesis, cysteine and
methionine metabolism, histidine metabolism, and the
glycerophospholipid pathway were significantly upregulated in CK1.

Of interest, the expression of the LuxS gene, involved in quorum
sensing (QS), was increased 2.01-fold in CK1. The corresponding
LuxS signaling pathway is depicted in Supplementary Figure S9. The
LuxS gene encodes the population-sensing molecule AI-2, which
then activates the transcription of downstream target genes (Dai,
2018). Previous studies have demonstrated that when subjected to
acid stress, Lactobacillus thermophilus can adapt to the acidic
environment by upregulating transcription of the LuxS gene,
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enhancing AI-2 activity and cellular biofilm synthesis.
Consequently, the LuxS/AI-2 response also regulates the growth
and metabolic processes of L. paracasei B1 in response to
environmental stress (Azcarate-Peril et al., 2005). Activation of
the LuxS/AI-2 response is dependent on specific environmental
factors. In several studies investigating salt tolerance in lactic acid
bacteria, it was observed that AI-2 activity varied among different
strains based on salt concentration. This variability was attributed to
differences in stability of AI-2 activity and strain-specific osmotic
pressure tolerance and the existence of osmotic pressure tolerance
differences among strains (Yeo et al., 2015).

In summary, the QS system plays a significant role in how L.
paracasei B1 responds to environmental stress during fermentation,
as well as in regulating bacterial density adaptation. The precise
regulation of the QS system can be beneficial in controlling the
growth process of these strains in industrial production.

3.10.2 Enrichment analysis of differentially
expressed genes in CK2 vs. T2

Comparison of CK2 and T2 groups revealed differences in the
stabilization periods of two distinct fermentation modes. Figures 6C,
D depicts that CK2 exhibits a greater number of upregulated DEGs
in comparison to T2. These DEGs are primarily enriched in
metabolic pathways induced by acid stress and oxidative stress.

It is evident that acid stress disrupts the stable environment
necessary for glycolysis (Desriac et al., 2013). L. paracasei

B1 compensates for this disruption by generating additional
energy through aerobic respiration. This ensures the efficient
operation of the proton pump and helps maintain the stability of
the intracellular environment. As a result, reactive oxygen clusters,
such as H2O2, are generated, which can attack cellular structures.
Furthermore, as illustrated in Figure 5C, L. paracasei B1 not only
participates in purine and pyrimidine metabolism, base excision
repair, and other pathways, but also contributes to defenses against
oxidative damage through the thioredoxin and glutaredoxin
systems. These defense mechanisms involve glutathione
metabolism, phenylalanine, tyrosine, and tryptophan synthesis,
and cysteine and methionine metabolism (Lu and Holmgren,
2014). Specific genes encoding cysteine synthase (cysK) and
glutathione reductase (gor) were found to be upregulated by
4.03-fold and 2.99-fold, respectively. Cysteine and methionine are
thioredoxin-reducing proteins with antioxidant properties. They
serve as targets for reactive oxygen clusters, reducing the
production of other oxygen byproducts in the cell through the
sulfur/disulfide balance. Calderini et al. demonstrated that
Lactobacillus acidophilus NCFM maintains cellular stability by
enhancing cysteine synthesis and increasing the ratio of
intracellular reductase (Calderini et al., 2017). Glutathione
(GSH), an abundant low molecular weight antioxidant in the cell,
also plays a role in protecting cellular stability by trapping free
radicals. Oxidized glutathione (GSSG) can be reduced back to GSH
through the catalysis of glutathione reductase, utilizing NADPH.

FIGURE 6
Enrichment bubble diagram of DEGs between CK1 vs. T1: (A) upregulation, (B) downregulation. Enrichment bubble diagram of DEGs between
CK2 vs. T2: (C) upregulation, (D) downregulation.
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This process scavenges reactive oxygen clusters within the cell
(Kalinina et al., 2008). It has been observed that media culture of
lactic acid bacteria with moderate amounts of GSH significantly
improves indicators such as strain activity and antioxidant
capacity of Lactobacillus, indicating the positive effect of GSH
on bacterial growth and metabolism (Zhang, 2008). Besides, it was
shown that Lactobacillus bulgaricus and Streptococcus
thermophilus obtain the CysE gene and other genes through
the process of transformation. This acquisition results in an
increase in the levels of methionine and cysteamine, while also
providing a carbon source for co-fermentation and promotes the
acidification effect during the fermentation of yogurt (Liu et al.,
2009). In this study, the upregulation of enzymes related to
cysteine synthesis and glutathione conversion reflects the need
for both during the alleviation of oxygen stress by L. paracasei B1.
Therefore, adding sulfur-containing amino acid substrates like
cysteine and glutamate to the medium or fermentation broth can
enhance the thioredoxin system and glutaredoxin system,
increasing cellular adaptability to oxygen stress. This
enhancement can improve the survival and activity of the
strain during fermentation production and subsequent strain
preservation.

3.11 Evolutionary inference of the
differentially expressed genes

The term “mobileome” refers to gene profiles in the microbial
genome that have been acquired through horizontal gene transfer
(HGT) (Choi and Kim, 2007). We aim to determine if the
aforementioned DEGs were affected by the HGT process. To
achieve this, we mapped the sequences of the DEGs onto the
identified “mobileome” of Lactobacillaceae (as described in the
Method section). A total of 57 DEG items were found to match
the mobileome of Lactobacillaceae. These items include the
following categories (Supplementary Table S5).

1) DEGs involved in carbohydrate and energy metabolism, which
were found to be significantly expressed in CK1 and T1.
Examples include 6-phospho-beta-glucosidase, acquired from
Holdemania, acetolactate synthase, acquired from Clostridium,
cytochrome d oxidase subunit CydB, acquired from
Nakamurella, NADPH:quinone reductase, acquired from
Rhodococcus, and phospholipase, acquired from Peptoniphilus.

2) DEGs related to membrane transport, which were found to be
significantly expressed in T1 and T2. Examples include PTS
system IIC component, acquired from Holdemanella, and
polyamine/organocation transporter, acquired from
Staphylococcus.

3) DEGs involved in replication and repair, which were found to be
significantly expressed in CK2. Examples include excinuclease
ABC subunit A, acquired from Clostridium, and recombinational
DNA repair ATPase RecF, acquired from Vallitalea.

4) DEGs related to translation, which were found to be significantly
expressed in CK1. An example is SSU ribosomal protein S18P.

5) DEGs of transcriptional regulators, such as LacI.
6) DEGs involved in signal transduction systems, such as (p)ppGpp

synthase.

These findings suggest that HGT may play a role in the
domestication and adaptive evolution of fermented
microorganisms, such as Lactobacillus. This, in turn, contributes
to improved fermentation processes, which aligns with previous
research (Wang et al., 2023). The occurrence of HGT in a specific
environment is advantageous for the domestication of starter
cultures and plays an important role in the quality of
fermentation (Gibbons and Rinker, 2015; Legras et al., 2018). For
instance, previous studies have shown that Lactobacillus
spp. horizontally acquired genes that enable the development of
specific metabolic functions, including nucleoside scavenging,
catabolism of arginine, the formation of biofilms and the ability
to adapt to alterations in redox and oxygen levels. This acquisition of
specialized genes contributes to the extension of shelf life in
fermented environments (Nawaz et al., 2011; Nyquist et al., 2011).

4 Conclusion

The current study investigates the transcriptome characteristics
of L. paracasei B1 samples. Transcriptome sequencing was
conducted to analyze the samples at different growth stages
within the same fermentation mode and between different
fermentation modes at the same growth stage. Ultimately, this
research can contribute to the further development and
utilization of the production capabilities of L. paracasei B1.

The results unveiled distinct gene expression patterns among the
samples. Specifically, the samples obtained from the experimental
group, characterized by unoptimized fermentation culture
conditions, demonstrated the weakest correlation between the
samples collected at the stationary phase sampling point and
those obtained at the other three sampling points. However,
there was a higher correlation between the samples from the
middle of the logarithmic phase under the two fermentation
modes. Additionally, the correlation between the mid-log phase
samples under the two fermentation modes was higher compared to
the other three samples, whereas the correlation between the mid-
log phase samples and the stationary phase samples under the same
fermentation mode was lower.

Furthermore, the current study identified the DEGs between the
mid-log phase and stationary phase samples. Before the
optimization of the non-fermented culture conditions, 627 DEGs
were found between the mid-log phase and stationary phase samples
(CK1 vs. CK2). After the optimization, 607 DEGs were identified
between the mid-log phase and stationary phase samples (T1 vs. T2).
Moreover, there were 507 DEGs between CK1 vs. T1 and 671 DEGs
between CK2 vs. T2.

This study has found the optimization of fermentation culture
conditions for L. paracasei B1 has been shown to provide a suitable
growth environment, leading to enhanced glycolysis and pyruvate
metabolism. The strain’s ability to generate additional energy
through aerobic respiration and protect against acid and oxygen
stresses has also been highlighted. Fermentation optimization has
facilitated rapid growth and accumulation of amino acid-compatible
solutes, while the QS system has played a role in adaptation to
environmental stress and regulation of bacterial density.

The results of the KEGG pathway-based enrichment analysis
revealed that the optimized fermentation culture conditions created
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an optimal growth environment for L. paracasei B1. Under these
conditions, the strain upregulated the expression of genes encoding
ScrA, BglF, and MtlA in the PTS system. Consequently, there was an
enhanced uptake of sucrose, the main sugar source in the medium, as
well as other sugar sources like mannose. This led to the maintenance
of high levels of glycolysis and pyruvate metabolism, resulting in rapid
growth and reproduction. This intrinsic mechanism is responsible for
driving the culture level of L. paracasei B1 to reach a high density.

Furthermore, acidity stress negatively impacted glycolysis and
pyruvate metabolism. Hence, L. paracasei B1 possesses a range of
genes (cydAB, etc.) that encode electron transport chain-related
genes. These genes enable the strain to generate additional energy
through aerobic respiration, supporting energy metabolism.
However, aerobic respiration also leads to oxygen stress, which
can damage cells. To counteract this, the strain enhances glutathione
metabolism, cysteine and methionine metabolism, base excision
repair, and purine and pyrimidine metabolism to withstand the
oxygen stress caused by mixed respiration.

Fermentation optimization allows L. paracasei B1 to grow
rapidly, free from acid and oxygen stress damage to the
organism. During the growth process, the strain accumulates
amino acid compatible solutes by upregulating lysine synthesis,
alanine, aspartic acid, and glutamic acid metabolism pathways.
Additionally, it relies on the ABC transporter system to resist
osmotic stress resulting from acid-base neutralization.
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