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Abstract

Extensions of the Autoregressive Moving Average, ARMA(p, q), class for modeling
non-Gaussian time series have been proposed in the literature in recent years, being ap-
plied in phenomena such as counts and rates. One of them is the Generalized Autoregres-
sive Moving Average, GARMA(p, q), that is supported by the Generalized Linear Models
theory and has been studied under the Bayesian perspective. This paper aimed to study
models for time series of counts using the Poisson, Negative binomial and Poisson inverse
Gaussian distributions, and adopting the Bayesian framework. To do so, we carried out
a simulation study and, in addition, we showed a practical application and evaluation of
these models by using a set of real data, corresponding to the number of vehicle thefts in
Brazil.

Keywords: autoregressive moving average models, count data, generalized linear models,
mcmc, time series.

1. Introduction
The literature on time series was pointed out by Cox, Gudmundsson, Lindgren, Bondesson,
Harsaae, Laake, Juselius, and Lauritzen (1981) and Khandelwal, Adhikari, and Verm (2015)
as one of the most active topics in statistics, being employed in economics, physics, and
engineering, for example. In the time domain, the ARMA(p, q) class, proposed by Box and
Jenkins (1976), is widely used in applied studies, being an efficient option to create forecasts
(Silva 2020).
Despite the usefulness and efficiency of the ARMA(p, q) models, this class is considered more
appropriate for fitting Gaussian data, assuming a linear structure of the correlation (Silva
2020). In financial or count time series, these assumptions can be strong, as they can have
an asymmetric behavior and heavier tails than the Gaussian distribution.
According to Dunsmuir and Scott (2015); Davis, Fokianos, Holan, Joe, Livsey, Lund, Pipiras,
and Ravishanker (2021); Kong and Lund (2022), there has been a recent interest in proposing
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and building models for non-Gaussian time series. This theme was discussed in Cox et al.
(1981), who specified observation-driven models, in which the dependence structure is related
to the past of the series, and parameter-driven models, in which the dependence follows a
latent process. For further details about observation-driven and parameter-driven models,
see Davis et al. (2021).
Concerning observation-driven models, Benjamin, Rigby, and Stasinopoulos (2003) intro-
duced the GARMA(p, q) class considering that the conditional distribution, given the past
information, belongs to the exponential family, with the conditional mean related to a linear
predictor that contains explanatory variables and the dependence structure in the ARMA(p,
q) form.
A Bayesian analysis of the GARMA(p, q) class was presented and discussed in the study of
Andrade, Andrade, and Ehlers (2015), who used conditional distributions such as Poisson,
Binomial, and Negative binomial. The authors indicated contributions using this approach
in terms of point estimation and the range of the credible intervals of the parameters when
modeling count data.
When dealing with count time series, overdispersion is commonly observed (Barreto-Souza
2017; Gonçalves and Barreto-Souza 2020), a peculiarity that makes the Poisson not suitable,
since it is equidispersed. A solution for solving this problem is to consider mixed Poisson
distributions like the Negative binomial (NB) and Poisson inverse Gaussian (PIG) (Dean,
Lawless, and Willmot 1989). In addition to these, alternative approaches to model correlated
counts using different conditional distributions, such as the Conway-Maxwell-Poisson and
Bernoulli-Geometric, have arisen in literature (Davis et al. 2021; Sales, Alencar, and Ho
2022).
The PIG distribution was introduced into the time series context by Barreto-Souza (2017)
using the INteger-valued AutoRegressive (INAR) structure. However, the use of the PIG
in regression models was proposed in Dean et al. (1989) for modeling insurance data, being
considered an attractive distribution in the presence of heavy tails. For further information
on modeling insurance data using the PIG regression, see Willmot (1987).
Our main goal in this paper is to study models for time series of counts using the Poisson,
Negative binomial, and Poisson inverse Gaussian distributions, adopting the Bayesian frame-
work used by Andrade et al. (2015) and extending it to the Poisson inverse Gaussian. As an
application example, we analyze the performance of these models by forecasting the number
of vehicle thefts in the region of Campinas, Brazil.
This paper is organized as follows: In Section 2 we described the models and Section 3
describes the Bayesian analysis. Section 4 focuses on computational and simulation results.
In 5, we presented the real data application. Some remarks and topics for future research are
discussed in Section 6.

2. Models

Let Y be a time series equally spaced and indexed in the time t, for t = {1, . . . , n}. The
set of previous information until the instant t − 1 is denoted by Ft−1, and it is given by
Ft−1 = {y1, y2, . . . , yt−1, µ1, µ2, . . . , µt−1, x1, x2, . . . , xt−1}, being xt a vector containing r
explanatory variables xt = (xt1, . . . , xtr)⊤, under the restriction that r < n.
The Autoregressive and Moving Average components that compose the dependence structure
(τt) are represented by the vectors Φ = (ϕ1, . . . , ϕp)⊤ and Θ = (θ1, . . . , θq)⊤, respectively,
where p and q are the Autoregressive and Moving Average orders of an ARMA(p, q) process.
The vector of coefficients, which is related to the r explanatory variables of xt, is expressed
by β = (β1, β2, . . . , βr)⊤.
Also consider that the likelihood function, denoted as L(θ | Y ), is given by the product of
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the conditional distributions, and it can be approximated as shown in Equation 1:

L(θ | Y ) ≈
n∏

t=m+1
p(yt | Ft−1), (1)

where m are the m = max(p, q) first observations of Y and θ represents the set of parameters
of each model.

2.1. Poisson

In this model, we assume that the conditional distribution of each observation, given the past
information, follows a Poisson distribution. So, p(yt | Ft−1) is given by Equation 2:

p(yt | Ft−1) = exp {yt log(µt) − µt − log(yt!)}, (2)

being Ω = {µt | µt > 0} with yt ∈ N. As known, the Poisson belongs to the exponential
family with logarithm as the canonical link function, being it a submodel of the GARMA(p,
q) class, where E(yt | Ft−1) = V(yt | Ft−1) = µt.
Considering the link function, the linear predictor of this model is given by:

log(µt) = x⊤
t β +

p∑
j=1

ϕj [log(yt−j) − x⊤
t−jβ] +

q∑
j=1

θj [log(yt−j) − log(µt−j)].

This can be written as the back-shift operator (B) (Briet, Amerasinghe, and Vounatsou 2013).
In some cases, it is necessary to insert a threshold, c, to guarantee the existence of the link
function. A possibility is to replace yt−j by y∗

t−j = max(yt−j , c), c ∈ (0, 1).
Given the conditioning of L(β, Φ, Θ | Y ) to the first m observations of the series, we can
suppose that the m first errors are zero. Moreover, the residuals associated with the moving
average term can be constructed by using the Pearson residuals, residuals on the original scale,
or residuals on the predictor scale (Benjamin et al. 2003; Rocha and Cribari-Neto 2008).

2.2. Negative binomial

We supposed that yt | Ft−1 follows a Negative binomial distribution, i.e. NB(µt, σ). The
conditional density is given by Equation 3:

p(yt | Ft−1) =
Γ(yt + 1

σ )
Γ( 1

σ )Γ(yt + 1)

(
σµt

1 + σµt

)yt
( 1

1 + σµt

) 1
σ

, (3)

defined in Ω = {µt, σ | µt, σ > 0} for yt ∈ N. There are several forms of the Negative binomial
in the literature. Andrade et al. (2015), for example, considered the form where ν = 1/σ is
supposed to be known, belonging to the exponential family and resulting in a GARMA(p, q)
submodel.
We relaxed the assumption of the GARMA(p, q), in which p(yt | Ft−1) belongs to the
exponential family, assuming that the dispersion parameter (σ) is unknown. Therefore, the
conditional mean is given by E(yt | Ft−1) = µt and the conditional variance is equal to
V(yt | Ft−1) = µt(1 + σµt).
Considering the logarithmic link function to ensure that µt ⊆ Ω, the linear predictor can be
written as follows:

log(µt) = x⊤
t β +

p∑
j=1

ϕj [log(yt−j) − x⊤
t−jβ] +

q∑
j=1

θj [log(yt−j) − log(µt−j)],

which is equal to the predictor of the Poisson, with the same restriction replacing yt−j by
y∗

t−j = max(yt−j , c), c ∈ (0, 1). Given the conditioning of L(β, Φ, Θ, σ | Y ), the assumption
that the m first errors are zero following the conditions established by the Poisson model.
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2.3. Poisson inverse Gaussian

Supposing that yt | Ft−1 follows a Poisson inverse Gaussian, PIG(µt, σ), the conditional
density is:

p(yt | Ft−1) =
(2α

π

) 1
2

µyt
t e

1
σ

(
Kyt− 1

2
(α)
) 1

(ασ)ytyt!
, (4)

where Ω = {µt, σ | µt, σ > 0} for yt ∈ N. In equation 4, α2 = 1
σ2 + 2µt

σ and Kλ(T ) =
1
2
∫∞

0 x(λ−1) exp
{

−T
2 (x + x−1)

}
dx, where K(·) is the modified Bessel function of the third

kind. The conditional mean and variance are similar to the Negative binomial, that is,
E(yt | Ft−1) = µt and V(yt | Ft−1) = µt(1 + µtσ). We consider the same linear predictor
as shown in Poisson and the approximated likelihood is analogous to the Negative binomial
model.
Due to the complexity of the likelihood functions of the Poisson, Negative binomial, and
Poisson inverse Gaussian models, iterative methods can be used to estimate the parameters.
In this paper, we consider a Bayesian analysis, justified by the inferential gain obtained in
Andrade et al. (2015) and by the possibility of inserting prior knowledge.

3. Bayesian analysis
The Bayesian inference is based on the Bayes Theorem, where the posterior distribution is
proportional to L(θ | Y )p(θ), being p(θ) the joint prior distribution of θ. For convenience,
consider θ as θ = (β, Φ, Θ)⊤ in Poisson and θ = (β, Φ, Θ, σ)⊤ in Negative binomial and
Poisson inverse Gaussian models.
For the parameters that correspond to the effects of explanatory variables, we suppose that
each component of β is normally distributed, i.e.:

p(βj) ∝ exp

−1
2

(
βj − µj

τj

)2
 , βj ∈ (−∞, ∞),

for j = {1, . . . , r}, being µj and τj the hyperparameters associated to βj . A similar structure
was adopted for Φ and Θ. It is:

p(ϕk) ∝ exp
[
−1

2

(
ϕk − µ0k

τ0k

)2]
, ϕk ∈ (−∞, ∞),

p(θl) ∝ exp
[
−1

2

(
θl − µ1l

τ1l

)2]
, θl ∈ (−∞, ∞),

where k = {1, . . . , p} and l = {1, . . . , q}. The hyperparameters were fixed at µj = µ0k
= µ1l

= 0 and τj = τ0k
= τ1l

= 100, resulting in flat densities.
For the dispersion parameter of the Negative binomial and Poisson inverse Gaussian models,
we considered a non-informative Gamma(s, a) prior with hyperparameters a = 1 e s = 100−1,
that is given by:

p(σ) = σa−1

saΓ(a) exp
[
−σ

s

]
, σ ∈ (0, ∞).

In Figure 1, we present the behavior of the prior densities of βj (a) and σ (b). Analogously,
the behavior of the densities of ϕk and θl is similar to that shown in Figure 1(a).
Considering the algebraic complexity of the joint posterior distributions, namely π(θ | Y ), the
inference procedure can be performed by using Markov chain Monte Carlo (MCMC) methods,
such as the Metropolis Hastings (MH) to sample from the joint posterior distribution, or using
iterative algorithms for numerical optimization.
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Figure 1: Prior densities of βj and σ, respectively, that were used in the Bayesian analysis

According to Korn, Korn, and Kroisandt (2010), the basic idea of the MCMC methods is
to draw samples from a target distribution by simulating a Markov chain, in which the
stationary distribution follows the target. The MH is a popular MCMC algorithm, proposed
in Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) and generalized by Hastings
(1970). It builds a chain started in an arbitrary state and has a transitional probability
pi,j , representing the movement probability of the state i to j, and satisfying the reversible
equation. Defining q(i, j) as the transition kernel, the MH generates candidates from the
transition and evaluates their acceptance probability (Korn et al. 2010). Because this process
is dynamic, the chain will reach the stationary distribution over time. For properties and
extensions of the MH algorithm, see Hastings (1970) and Korn et al. (2010).

3.1. Predictive density

In this Subsection, we derived the density of Yt+h conditioned on all parameters and past
observations, which is also called predictive density. Combining the joint posterior π(θ | Y )
with the density of the future observation, yt+h, p(yt+h | θ, Ft+h−1), the predictive density
is:

p(yt+h | Ft+h−1) =
∫

θ∈Ω
p(yt+h | θ, Ft+h−1)π(θ | Y )dθ,

which does not have a closed form. In this case, one strategy is to produce a Monte Carlo
approximation of the predictive, drawing N samples from θi, i = {1, . . . , N }, as follows:

p(yt+h | Ft+h−1) ≈ 1
N

N∑
i=1

p(yt+h | θi, Ft+h−1).

This procedure was also performed by Andrade et al. (2015) and discussed in Gamerman
and Lopes (2006); Krüger, Lerch, Thorarinsdottir, and Gneiting (2020). On this wise, the
expected value of yt+h is:

E(yt+h) =
∫

yt+h∈Ω
yt+hp(yt+h | Ft+h−1)dyt+h,

which can be approximated from µt+h, drawing N samples of θi, i = {1, . . . , N }, i.e.:

ŷt+h ≈ 1
N

N∑
i=1

µt+h(θi, Ft+h−1).
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4. A simulation study
In this Section, we implement a simulation study to analyze the performance of the Bayesian
approach to POI-AR(1), NB-AR(1), and PIG-AR(1) models. Some parameter settings are
taken into account, three sample sizes n = {75; 125; 225} and each model will be replicated
w = 1,000 times.
To simulate the w series, we used the gamlss.dist package (Stasinopoulos and Rigby 2020)
with the inverse transform method, available in the R software (R Core Team 2021). Data
was generated following its respective distributions and for the NB-AR(1) and PIG-AR(1)
models, we fixed the dispersion parameter at σ = 0.25. We used the MH to estimate the
parameters by using the package MHadaptive of Chivers (2015). The code was executed in
Python, with the library rpy2 (Gautier 2021). Configurations such as burn-in, thin, and total
samples were determined by a pilot study.
The convergence was assessed in each replicated model via HW (Heidelberger and Welch
1983), G (Geweke 1992), and the Dependence Factor (I) (Raftery and Lewis 1992) criteria.
To evaluate the convergence, we adopted an α level of 0.05 in the HW diagnosis and a
threshold equal to 0.10 (eps) in the half-width; we compared the |G| statistic with the Z1− α

2
quantile and verified if the value of I tended to one.
In the simulation step, only the processes in which the convergence was obtained, according
to the three criteria shown above, were considered. We evaluated the performance of the
inference by using the Corrected Bias (CB) and Corrected Error (CE) in a similar way as
Andrade et al. (2015). Those metrics were estimated by CE2 = 1

wτ2
∑w

i=1(θ̂i − θ)2 e CB =
1
w

∑w
i=1

∣∣∣∣ θ−θ̂i

θ

∣∣∣∣, being τ the standard deviation of θ among the w replicates.

In Algorithm 1, we described our simulation procedure and some simulation results are avail-
able in Subsection 4.1. In the Appendix we presented the settings of the MH, including
the burn-in period and convergence criteria. For convenience, we presented the mean of the
convergence criteria and the acceptance probability.

Algorithm 1 Steps of the simulation process
1: Start
2: Set the model, the number of samples, burn-in and thin period.
3: Set the parameters and n for generating the data.
4: for w in 1 until w = 1,000 do
5: Draw the series Y of length n.
6: Start the MH according to step (2).
7: Evaluate the convergence using the HW, G, and I criteria.
8: if the criteria indicate convergence then
9: Estimate the mean, mode, and standard deviation of the posterior distributions.

10: Store (9) and the convergence results.
11: Store the acceptance probability and the Monte Carlo error.
12: w = w + 1.
13: else
14: w = w.
15: Return to step 5.
16: end if
17: end for
18: Save the average of the w results of the posterior mean, mode, and standard deviation.

Name these quantities as mean, mode, and SD, respectively.
19: End
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4.1. Parameter settings and results

We simulated the series according to the following equation:

yt | Ft−1 ∼POI
{
log(µt) = β1 + ϕ1[log(y∗

t−1) − β1]
}

. (5)
yt | Ft−1 ∼NB

{
log(µt) = β1 + ϕ1[log(y∗

t−1) − β1], σ
}

.

yt | Ft−1 ∼PIG
{
log(µt) = β1 + ϕ1[log(y∗

t−1) − β1], σ
}

.

where β = (β1)⊤ is the vector associated with the level and xt = (x1), being x1 = (1, 1, . . . , 1)⊤.
Table 1, shows the values used for the simulation of the artificial series.

Table 1: Parameter values used to generate the artificial time series
Scenario n β1 ϕ1 σ

I {75, 125, 225} 1.00 0.10 0.25
II {75, 125, 225} 1.00 0.40 0.25
III {75, 125, 225} 1.00 0.70 0.25

In Table 2, the results of the first scenario are presented, where the parameter ϕ1 = 0.10. In
general, there were reductions in the CB values when the sample size increased, suggesting
good properties in the estimating process. This was also seen in the CE values, which tended
to one.
The estimates of the dispersion parameter, σ, in NB-AR(1) and PIG-AR(1) models were im-
proved as n increased. Our findings suggest a better performance of the modes estimates when
compared to the averages to infer about the parameter σ, producing a good approximation
when n = 225.
The other scenarios are included in the Appendix. When increasing ϕ1 to 0.40, available in
Table 7, the results of CB and CE metrics were similar to the first one, indicating improvement
of the estimates with the increase in sample size. The estimates of the mode of the marginal
distribution of σ were closer to the real value when compared to the average estimates.
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Table 2: Main results of the first scenario for POI-AR(1), NB-AR(1), and PIG-AR(1) models
based on the w replications, where β1 = 1.00, ϕ1 = 0.10, and σ = 0.25

Model n Parameter Mean Mode SD CB CE

POI-AR(1)

75 β1 0.996 0.993 0.083 0.067 1.001
ϕ1 0.113 0.109 0.076 0.601 1.015

125 β1 0.996 0.993 0.067 0.054 1.003
ϕ1 0.105 0.103 0.059 0.471 1.004

225 β1 0.998 0.997 0.047 0.038 1.001
ϕ1 0.102 0.101 0.043 0.346 1.001

NB-AR(1)

75
β1 1.005 0.995 0.113 0.089 1.001
ϕ1 0.118 0.116 0.077 0.626 1.027
σ 0.309 0.271 0.121 0.403 1.113

125
β1 0.997 0.992 0.084 0.067 1.000
ϕ1 0.109 0.108 0.059 0.467 1.011
σ 0.289 0.261 0.088 0.293 1.064

225
β1 0.997 0.995 0.062 0.049 1.000
ϕ1 0.104 0.103 0.045 0.362 1.003
σ 0.266 0.255 0.066 0.216 1.029

PIG-AR(1)

75
β1 1.018 1.004 0.112 0.090 1.012
ϕ1 0.114 0.111 0.081 0.639 1.014
σ 0.348 0.278 0.158 0.541 1.176

125
β1 1.005 0.998 0.087 0.070 1.001
ϕ1 0.107 0.107 0.060 0.473 1.006
σ 0.307 0.270 0.109 0.373 1.127

225
β1 1.006 1.002 0.064 0.051 1.003
ϕ1 0.103 0.102 0.046 0.366 1.001
σ 0.275 0.256 0.074 0.245 1.053

Similar results were found in the second and third scenarios, where the estimates of ϕ1 im-
proved as the sample size increased, indicating the necessity of large samples sizes, mainly
in models with dispersion parameters. The results of these scenarios can be seen in Tables 7
and 8, respectively.
The importance of time series with large sample sizes was noted by Barreto-Souza (2017)
when studying the PIG model with INAR(1) structure, reducing the bias and the standard
errors as n increased. Regarding the scenarios studied in this paper, series in which n ≪ 75,
with the same linear predictor, are not considered interesting for modeling.
We verified a high computational cost with the MH algorithm in settings where ϕ1 was greater
than 0.80. In the situation where ϕ1 = 0.90 and n = 225 in the PIG-AR(1), the pilot model
with thin = 20 and 80,000 total samples resulted in a low acceptance rate and a high values
of I, suggesting the need to reparametrize or adopt another sampling technique.

5. Real data analysis
We considered the number of vehicle thefts in the region of Campinas, São Paulo, Brazil, from
January 2010 to May 2022. It is a monthly time series, made available by the Secretaria de
Segurança Pública do Estado de São Paulo (2021). For additional details about the database,
visit the following website: http://www.ssp.sp.gov.br/estatistica/pesquisa.aspx. The
series contains data from 38 localities near the city of Campinas, state of São Paulo, showed
graphically in Figure 2:

http://www.ssp.sp.gov.br/estatistica/pesquisa.aspx
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Figure 2: Geographic location of the cities included in the Campinas region. State of São
Paulo, Brazil

The samples from April and May 2022 were removed from the training stage, being used to
perform an out-of-sample forecasting analysis. A brief summary of the data is available in
Table 3. Note that the skewness and kurtosis measures indicate an asymmetric and leptokurtic
behavior of the data.

Table 3: Descriptive statistics of the number of thefts reported between January 2010 and
May 2022 in Campinas, Brazil

Period Mean Median SD Skewness Kurtosis
Jan/2010 - May/2022 691.380 700.000 147.949 -0.211 -0.516

We used a trend test, proposed by Cox and Stuart (1955), to evaluate the trend component.
Graphically, this component can be verified by analyzing the behavior of the series over time,
presented in Figure 3 (a). The Autocorrelation Function (ACF) and the Partial Autocor-
relation Function (PACF) of ∆Y (series adjusted for trend) is shown in Figure 3 (b) and 3
(c).
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Figure 3: (a): Number of thefts reported in the region of Campinas; (b): Autocorrelation
function of ∆Y ; (c): Partial autocorrelation function of ∆Y

To model this series, it was considered a linear predictor with level and trend control and
an AR(1) dependence structure, which is similar to Equation 5. However, in this case β =
(β1, β2)⊤ and xt = (x1, x2)⊤, x1 = (1, 1, . . . , 1)⊤ and x2 = (1, 2, . . . , n)⊤. The MH algorithm
was used for sampling from the joint posterior, setting the burn-in period equal to 2,000,
10,000 total samples and keeping the twentieth sample value as the thinning period. The
estimation results are in Table 4 and the graph of the posterior marginal density of each
parameter is available in Figures 4, 5, and 6. In relation to the convergence to the stationary
distribution, all the processes met the established criteria.
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We compared the Bayesian estimates with the maximum likelihood (ML) ones. The likelihood
functions were numerically optimized using the L-BFGS-B algorithm (Byrd, Lu, Nocedal, and
Zhu 1995) and the standard errors were computed based on the inverse of the Hessian matrix.
When analyzing the ML results, available in Table 12, we can verify the proximity of the
estimates between these approaches, especially for the parameter β2 of the POI-AR(1) and
NB-AR(1) models. The greatest distances between the Bayesian and maximum likelihood
estimates were observed in β1 and ϕ1 of the PIG-AR(1) model.

Table 4: Estimation results for POI-AR(1), NB-AR(1), and PIG-AR(1) models for the number
of thefts in Campinas, São Paulo, Brazil

Model Parameter Mean Mode SD HPD (95%)
Ll Lu

POI-AR(1)
β1 6.8346 6.8342 0.0128 6.8107 6.8604
β2 -0.0042 -0.0041 0.0002 -0.0045 -0.0038
ϕ1 0.5246 0.5227 0.0241 0.4776 0.5716

NB-AR(1)

β1 6.8534 6.8546 0.0465 6.7604 6.9437
β2 -0.0044 -0.0044 0.0006 -0.0055 -0.0033
ϕ1 0.5663 0.5560 0.0706 0.4238 0.7010
σ 0.0116 0.0114 0.0016 0.0087 0.0149

PIG-AR(1)

β1 6.8517 6.8503 0.0486 6.7525 6.9456
β2 -0.0044 -0.0044 0.0006 -0.0055 -0.0033
ϕ1 0.5816 0.5817 0.0723 0.4380 0.7192
σ 0.0119 0.0115 0.0016 0.0089 0.0151

Considering the results shown in Table 4, we can observe the significant trend effect in the
three models, indicating a reduction in the number of thefts during the analyzed period.
Furthermore, the credible intervals of β1 and ϕ1 were wider in NB-AR(1) and PIG-AR(1)
models.
In PIG-AR(1), the dispersion parameter was estimated in 0.012, CIσ = {0.089; 0.015}, and a
similar result occurred with NB-AR(1). It indicates that the variability of the series is greater
than the mean and the phenomenon has slightly heavier tails. According to these models, the
conditional variance is given by V(yt | Ft−1) ≈ µt(1 + 0.012µt), for all t.
The deviance information criterion (DIC) and the conditional predictive ordinate (CPO)
results are available in Table 5, suggesting a preference for mixed distributions when compared
to Poisson, since they presented lower DIC and higher CPO values.

Table 5: Deviance information criterion and the conditional predictive ordinate for POI-
AR(1), NB-AR(1), and PIG-AR(1) models.

Model POI-AR(1) NB-AR(1) PIG-AR(1)
DIC 6232.812 4328.217 4332.140
CPO -1245.136 -842.182 -843.139

We proceeded with the analysis estimating the randomized quantile residuals proposed by
Dunn and Smyth (1996), defined as rt = Φ−1(Fyt(yt | Ft−1)), where Φ−1 is the inverse cumu-
lative distribution function of a standard normal and Fyt is the fitted conditional distribution
that was used for modeling. According to the Box and Pierce (1970) test, based on 20 lags,
there is no evidence of any correlation within the residuals (p-values equal to 0.419, 0.127, and
0.128 for POI-AR(1), NB-AR(1), and PIG-AR(1), respectively). The Kolmogorov-Smirnov
test did not reject the null hypothesis of normality of the residuals, returning p-values equal
to 0.123, 0.414, and 0.421.
Predictions for April and May 2022 are shown in Table 6. We estimated the Mean Absolute
Percentage Error (MAPE) and Mean Absolute Error (MAE) for these predictions. The values
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of MAPE and MAE were MAPE = {14.55; 14.70; 14.68} and MAE = {60.60; 61.67; 61.32}
for POI-AR(1), NB-AR(1), and PIG-AR(1), respectively. Overall, mixed models obtained
good results according to the information criteria, but the MAPE and MAE metrics were
similar to Poisson’s. In addition to this result, the predictions made with PIG-AR(1) showed
a lower error when compared with the predictions of NB-AR(1).

Table 6: Predictions with POI-AR(1), NB-AR(1), and PIG-AR(1) models for the number of
thefts in Campinas, São Paulo, Brazil

Model Month Real value Predicted SD HPD (95%)
Ll Lu

POI-AR(1) April 412 526.916 3.880 519.545 534.660
May 519 512.711 3.692 505.345 519.731

NB-AR(1) April 412 524.738 11.201 502.088 545.575
May 519 508.397 10.452 488.904 529.391

PIG-AR(1) April 412 526.728 11.106 505.626 549.406
May 519 511.083 10.364 491.457 532.176

The predictions for April were overestimated, with values consistently above the real counts,
and the credible intervals did not include those values. The prediction for May, based on
the PIG-AR(1) model, was relatively close to the real value and the April prediction was
overestimated. The same happened with the NB-AR(1) model.

6. Final remarks
In this paper we investigated models of count time series using Poisson, Negative binomial, and
Poisson inverse Gaussian distributions, the last two being alternatives for overdispersed count
data. We extended the Bayesian analysis presented in the literature to the Poisson inverse
Gaussian and relaxed the assumption of known dispersion parameter in the GARMA(p, q)
class for the Negative binomial distribution.
Through a simulation study, we verified the advantages of the Bayesian inference in terms of
implementation, estimation, and flexibility of the models, as well as the possibility of modeling
the dispersion parameter in the mixed distributions. The Bayesian perspective works well for
the given scenarios. The analysis with real data showed that the Poisson inverse Gaussian
distribution is an alternative for modeling count data, providing good predictions.
Our possible points for future research include constructing the Probability Integral Transform
(PIT) of Czado, Gneiting, and Held (2009) and studying higher AR(p) orders in the Poisson
inverse Gaussian model using the Bayesian inference, and considering the Hamiltonian Monte
Carlo (HMC) algorithm to draw samples from the posterior distribution.
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A. Appendix

A.1. Additional simulation results

Table 7: Main results of the second scenario for POI-AR(1), NB-AR(1), and PIG-AR(1)
models based on the w replications, where β1 = 1.00, ϕ1 = 0.40, and σ = 0.25

Model n Parameter Mean Mode SD CB CE

POI-AR(1)

75 β1 0.978 0.974 0.137 0.108 1.012
ϕ1 0.376 0.370 0.080 0.166 1.044

125 β1 0.987 0.984 0.101 0.078 1.008
ϕ1 0.395 0.392 0.065 0.131 1.002

225 β1 0.993 0.992 0.076 0.061 1.004
ϕ1 0.400 0.399 0.051 0.102 1.000

NB-AR(1)

75
β1 0.990 0.959 0.185 0.149 1.001
ϕ1 0.389 0.385 0.084 0.171 1.007
σ 0.343 0.292 0.140 0.503 1.202

125
β1 0.997 0.982 0.141 0.110 1.000
ϕ1 0.402 0.399 0.066 0.132 1.000
σ 0.293 0.265 0.103 0.339 1.083

225
β1 0.996 0.988 0.102 0.082 1.000
ϕ1 0.401 0.400 0.050 0.101 1.000
σ 0.264 0.250 0.077 0.245 1.016

PIG-AR(1)

75
β1 1.042 1.000 0.172 0.141 1.029
ϕ1 0.390 0.384 0.086 0.174 1.007
σ 0.400 0.307 0.170 0.680 1.336

125
β1 1.005 0.985 0.140 0.112 1.000
ϕ1 0.400 0.397 0.068 0.135 1.000
σ 0.319 0.271 0.128 0.435 1.136

225
β1 1.006 0.997 0.105 0.083 1.001
ϕ1 0.401 0.400 0.049 0.098 1.000
σ 0.284 0.260 0.087 0.292 1.072
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Table 8: Main results of the third scenario for POI-AR(1), NB-AR(1), and PIG-AR(1) models
based on the w replications, where β1 = 1.00, ϕ1 = 0.70, and σ = 0.25

Model n Parameter Mean Mode SD CB CE

POI-AR(1)

75 β1 0.970 0.965 0.272 0.208 1.006
ϕ1 0.610 0.602 0.067 0.133 1.682

125 β1 0.967 0.968 0.218 0.171 1.011
ϕ1 0.671 0.666 0.057 0.070 1.124

225 β1 0.963 0.965 0.173 0.140 1.022
ϕ1 0.697 0.695 0.050 0.058 1.001

NB-AR(1)

75
β1 1.088 0.979 0.381 0.312 1.026
ϕ1 0.627 0.617 0.074 0.118 1.402
σ 0.330 0.259 0.162 0.500 1.114

125
β1 1.040 0.960 0.321 0.256 1.007
ϕ1 0.675 0.669 0.064 0.077 1.073
σ 0.308 0.265 0.123 0.404 1.105

225
β1 0.986 0.940 0.264 0.207 1.001
ϕ1 0.697 0.694 0.055 0.063 1.001
σ 0.289 0.265 0.099 0.319 1.075

PIG-AR(1)

75
β1 1.163 1.016 0.366 0.322 1.094
ϕ1 0.618 0.607 0.072 0.125 1.508
σ 0.394 0.269 0.210 0.700 1.212

125
β1 1.073 0.976 0.316 0.260 1.026
ϕ1 0.660 0.653 0.061 0.081 1.197
σ 0.363 0.286 0.167 0.576 1.207

225
β1 1.027 0.972 0.256 0.208 1.005
ϕ1 0.700 0.696 0.053 0.061 1.000
σ 0.306 0.267 0.114 0.387 1.115
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A.2. Settings of the simulation procedure

Table 9: MH settings and convergence analysis in the first scenario based on the w replications.
Where AC is the mean of the acceptance rate, G is the mean of the G statistic, I is the mean
of I, and HW is the mean of the p-values of the HW test.

Model n Samples Burn-in Thin AC θ I G HW

POI-AR(1)

75 5,000 1,000 7 0.54 β1 1.16 0.02 0.53
ϕ1 1.28 0.01 0.51

125 5,000 1,000 7 0.54 β1 1.06 0.03 0.52
ϕ1 1.12 0.01 0.53

225 5,000 1,000 7 0.51 β1 1.26 0.02 0.52
ϕ1 1.25 0.01 0.53

NB-AR(1)

75 5,000 1,000 7 0.43
β1 1.29 0.01 0.52
ϕ1 1.32 0.01 0.52
σ 1.17 0.02 0.52

125 5,000 1,000 8 0.44
β1 1.24 0.01 0.53
ϕ1 1.26 0.01 0.52
σ 1.14 0.06 0.51

225 5,000 1,000 7 0.45
β1 1.29 0.02 0.53
ϕ1 1.30 0.00 0.51
σ 1.22 0.01 0.51

PIG-AR(1)

75 5,000 1,000 8 0.42
β1 1.24 0.01 0.52
ϕ1 1.27 0.00 0.52
σ 1.10 0.07 0.53

125 5,000 1,000 8 0.43
β1 1.24 0.03 0.51
ϕ1 1.26 0.04 0.51
σ 1.11 0.09 0.50

225 5,000 1,000 8 0.44
β1 1.23 0.01 0.50
ϕ1 1.25 0.01 0.51
σ 1.13 0.05 0.49
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Table 10: MH settings and convergence analysis in the second scenario based on the w
replications. Where AC is the mean of the acceptance rate, G is the mean of the G statistic,
I is the mean of I, and HW is the mean of the p-values of the HW test.

Model n Samples Burn-in Thin AC θ I G HW

POI-AR(1)

75 5,000 1,000 7 0.55 β1 1.29 0.01 0.52
ϕ1 1.23 0.01 0.52

125 5,000 1,000 7 0.55 β1 1.28 0.01 0.51
ϕ1 1.23 0.05 0.51

225 5,000 1,000 8 0.55 β1 1.20 0.03 0.52
ϕ1 1.18 0.03 0.51

NB-AR(1)

75 5,000 1,000 8 0.42
β1 1.25 0.01 0.52
ϕ1 1.26 0.00 0.53
σ 1.12 0.01 0.52

125 5,000 1,000 8 0.44
β1 1.24 0.01 0.52
ϕ1 1.25 0.02 0.52
σ 1.13 0.06 0.51

225 5,000 1,000 8 0.44
β1 1.21 0.04 0.49
ϕ1 1.22 0.00 0.51
σ 1.13 0.12 0.50

PIG-AR(1)

75 5,000 1,000 7 0.40
β1 1.29 0.07 0.51
ϕ1 1.32 0.05 0.53
σ 1.15 0.06 0.52

125 5,000 1,000 8 0.43
β1 1.24 0.00 0.52
ϕ1 1.26 0.03 0.52
σ 1.11 0.08 0.51

225 5,000 1,000 7 0.44
β1 1.28 0.01 0.50
ϕ1 1.30 0.03 0.51
σ 1.18 0.04 0.51
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Table 11: MH settings and convergence analysis in the third scenario based on the w repli-
cations. Where AC is the mean of the acceptance rate, G is the mean of the G statistic, I is
the mean of I, and HW is the mean of the p-values of the HW test.

Model n Samples Burn-in Thin AC θ I G HW

POI-AR(1)

75 7,000 1,000 12 0.51 β1 1.29 0.04 0.51
ϕ1 1.30 0.01 0.52

125 5,000 1,000 10 0.51 β1 1.24 0.03 0.51
ϕ1 1.30 0.00 0.50

225 5,000 1,000 10 0.52 β1 1.25 0.01 0.52
ϕ1 1.20 0.02 0.51

NB-AR(1)

75 7,000 1,000 7 0.37
β1 1.30 0.15 0.52
ϕ1 1.34 0.04 0.51
σ 1.55 0.03 0.49

125 7,000 1,000 8 0.39
β1 1.01 0.06 0.51
ϕ1 1.22 0.01 0.49
σ 1.23 0.01 0.49

225 10,000 1,000 8 0.41
β1 1.10 0.02 0.48
ϕ1 1.22 0.02 0.50
σ 1.23 0.01 0.49

PIG-AR(1)

75 11,000 1,000 11 0.35
β1 1.32 0.17 0.53
ϕ1 1.25 0.08 0.50
σ 1.23 0.13 0.52

125 5,000 1,000 12 0.39
β1 1.22 0.15 0.52
ϕ1 1.23 0.02 0.52
σ 1.14 0.13 0.51

225 5,000 1,000 12 0.40
β1 1.26 0.04 0.49
ϕ1 1.21 0.02 0.49
σ 1.29 0.01 0.49
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A.3. Behavior of the marginal densities
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Figure 4: Posterior marginal densities of the POI-AR(1) parameters
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Figure 5: Posterior marginal densities of the NB-AR(1) parameters
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Figure 6: Posterior marginal densities of the PIG-AR(1) parameters



Austrian Journal of Statistics 151

A.4. Comparison with the maximum likelihood estimates

Table 12: Maximum likelihood estimates of POI-AR(1), NB-AR(1), and PIG-AR(1) models

Model Parameter Estimated Standard error

POI-AR(1)
β1 6.8413 0.0128
β2 -0.0042 0.0002
ϕ1 0.5235 0.0238

NB-AR(1)

β1 6.8578 0.0420
β2 -0.0044 0.0005
ϕ1 0.5443 0.0673
σ 0.0110 0.0014

PIG-AR(1)

β1 6.9841 0.1455
β2 -0.0058 0.0015
ϕ1 0.6621 0.1460
σ 0.0123 0.0021
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