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Abstract. Brain-computer interfaces (BCIs) have demonstrated immense potential
in aiding stroke patients during their physical rehabilitation journey. By reshap-
ing the neural circuits connecting the patient’s brain and limbs, these interfaces
contribute to the restoration of motor functions, ultimately leading to a signif-
icant improvement in the patient’s overall quality of life. However, the current
BCI primarily relies on Electroencephalogram (EEG) motor imagery (MI), which
has relatively coarse recognition granularity and struggles to accurately recognize
specific hand movements. To address this limitation, this paper proposes a hy-
brid BCI framework based on Electroencephalogram and Electromyography (EEG-
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EMG). The framework utilizes a combination of techniques: decoding EEG by
using Graph Convolutional LSTM Networks (GCN-LSTM) to recognize the sub-
ject’s motion intention, and decoding EMG by using a convolutional neural network
(CNN) to accurately identify hand movements. In EEG decoding, the correlation
between channels is calculated using Standardized Permutation Mutual Information
(SPMI), and the decoding process is further explained by analyzing the correlation
matrix. In EMG decoding, experiments are conducted on two task paradigms,
both achieving promising results. The proposed framework is validated using the
publicly available WAL-EEG-GAL (Wearable interfaces for hand function recovery
Electroencephalography Grasp-And-Lift) dataset, where the average classification
accuracies of EEG and EMG are 0.892 and 0.954, respectively. This research aims to
establish an efficient and user-friendly EEG-EMG hybrid BCI, thereby facilitating
the hand rehabilitation training of stroke patients.

Keywords: Hybrid BCI, EEG, EMG, GCN, neural networks

1 INTRODUCTION

Stroke is a debilitating condition caused by the blockage or rupture of blood vessels,
resulting in damage to brain cells. It often leads to various neurological deficits, in-
cluding unilateral paralysis, cognitive impairment, and language difficulties. Among
the challenges faced by stroke survivors, upper limb impairment significantly im-
pacts their ability to perform essential activities of daily living (ADLs) such as
eating, dressing, and personal hygiene. Given the intricate and precise movements
required for these tasks, effective hand rehabilitation is crucial to restore patients’
independence in performing these fundamental activities [1, 2].

1.1 Rehabilitation Training Based on EEG MI

Motor imagery (MI) refers to the mental process of envisioning movement without
actually physically executing it [3, 4, 5, 6, 7]. It has been widely utilized by both
healthy individuals for learning new movement skills during exercise [8] and stroke
patients during rehabilitation training [9]. The underlying principle behind MI lies
in the activation of brain regions within the sensorimotor network [10]. Thus, for
patients facing difficulties in performing physical movements during rehabilitation,
MI can be employed to activate partially damaged motor networks, aiding them in
the gradual restoration of movement [11]. Numerous studies have demonstrated the
effectiveness of EEG-based MI in rehabilitation.

EEG recordings are obtained by measuring the potential between a signal elec-
trode and a reference electrode placed on the scalp, which is easily contaminated
by eye and muscle movement. Furthermore, EEG exhibits limitations in spatial
resolution, typically ranging from 5 to 9 centimeters [12], and it can only capture
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neuronal population potentials in broad brain regions. As a result, EEG is primarily
capable of detecting coarse-grained changes in brain signals, often unable to discern
the finer and more intricate movements associated with the affected limb. Thus,
relying solely on EEG poses challenges in perceiving and capturing the complexities
of movement.

1.2 Dynamic Graph Convolutional Networks for BCIs

Traditionally, EEG decoding has involved processing data from each channel inde-
pendently, without considering the inter-channel correlations. However, by treat-
ing EEG as graph-structured data, it becomes possible to leverage the relation-
ships between channels and achieve more comprehensive EEG decoding. One ap-
proach to handling graph-structured data is to use the graph convolutional networks
(GCN) [13]. Notably, Song et al. successfully applied GCN to EEG emotion recog-
nition in 2018, yielding promising outcomes [14].

To address the challenge of limited EEG data volume, Zhang et al. proposed
GCB-net [15]. GCB-net utilizes graph convolution layers to explore the correlations
between EEG channels and employs the broad learning system (BLS) mechanism
to map the extracted features into a wider feature space, resulting in enhanced
robustness. Moreover, to further uncover the relationships between EEG channels,
dynamic graph convolution has gained significant traction [16]. Dynamic graph neu-
ral networks employ a learnable adjacency matrix as a parameter, which is updated
during the training process [17, 18, 19].

In this study, a similar approach is adopted, where graph convolution is employed
to capture the correlations between EEG channels. Additionally, LSTM is utilized
to address the temporal dynamics inherent in EEG signals.

1.3 EEG-EMG-Based Hybrid BCIs

EMG, obtained by recording the electrical activity of skeletal muscles through sur-
face sensors, possesses notable advantages over EEG. It exhibits good stability, high
signal strength, and the ability to discern finer body movements in healthy individu-
als. Many studies [20, 21, 22, 13, 23] have demonstrated that EMG-based techniques
can achieve high accuracy in multi-gesture recognition with fewer leads and shorter
calibration times.

Research on the EEG-EMG-based Hybrid BCIs has already been initiated. Leeb
et al. [24] conducted a fusion study using EEG and EMG signals to enhance the
classification accuracy of MI. Lin et al. [25] combined visually evoked potentials
(SSVEP) with EMG to increase the number of targets and improve information
transmission rates. Sarasola-Sanz et al. [26] employed EEG and EMG to con-
trol a mechanical exoskeleton, enabling control of a seven-degree-of-freedom robotic
arm. Some studies have explored the coupling of EEG and EMG signals. Tun
et al. [27, 28] investigated the functional coupling between EEG and EMG during
four distinct movements. Soundirarajan et al. [29] evaluated the coupled responses
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of facial muscles and the brain to various motor visual stimuli by analyzing the
information embedded in EEG and EMG signals.

In this study, the participants’ active intentions are captured through EEG, uti-
lizing EEG decoding to monitor their motor intentions. Additionally, leveraging the
fine-grained classification capability of EMG, action recognition is achieved through
EMG decoding.

2 MODEL FRAMEWORK

This section introduces the comprehensive framework employed in this study, de-
picted in Figure 1. The framework utilizes both EEG and EMG signals for hand
rehabilitation training. Firstly, the EEG signals are decoded to detect the user’s
intended movements. Subsequently, the decoded intention is used to guide the de-
coding of the EMG signals, facilitating the classification of specific hand actions.
External devices are employed to provide additional support for the rehabilitation
training process.

Figure 1. Overall framework: After the EEG signal is obtained through the device, it
is processed into serialized graph structure data, and then processed by GCN-LSTM to
detect motion intention. Then, for the obtained EMG, we use CNN to decode and realize
action recognition, so as to help the subjects to carry out hand rehabilitation training.

We commence by acquiring 32-channel EEG data through the utilization of an
EEG cap. Subsequently, the EEG data are segmented into four segments. For each
segment, the pairwise SPMI between each channel is calculated, resulting in the
construction of a relational adjacency matrix. This matrix facilitates the creation
of a serialized graph structure representation of the EEG data.

Next, the decoding process begins by employing a graph convolutional (GC)
layer for each segment. Additionally, for each vertex, all its corresponding segments
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form a sequence, which is then processed using a Long Short-Term Memory (LSTM)
network. To enable deeper decoding, a convolutional block is applied, followed by
a classification layer that generates predictions regarding the user’s motion inten-
tions.

Simultaneously, the EMG data is processed using a CNN composed of three
convolutional blocks. The EMG decoding primarily focuses on extracting relevant
information from the temporal dimension.

3 MATERIALS AND METHODS

3.1 Data Description

We utilize the publicly available WAL-EEG-GAL dataset [30] for our study. This
dataset captures simultaneous EEG and EMG recordings from 12 subjects while
they perform repetitive grasping and lifting trials. Each subject participates in
several series, and each series consists of 34 repeated trials.

During each trial, the participants are instructed to reach out and grasp a small
object using their thumb and forefinger, lift it into the air, hold it for a few seconds,
and then lower it back to its initial position. The entire process lasts approximately
8 seconds, with LED indicators used to signal the lifting and lowering phases, while
other aspects of the rhythm are controlled by the participants themselves. A total
of 32 electrodes are used to record the EEG signals, while 5 electrodes are employed
for EMG recordings. The EEG signals are sampled at a frequency of 500Hz, and
the EMG signals are sampled at 4 000Hz.

Across different series, the weight of the grasped object (150 g, 300 g, 600 g)
and the surface material (sandpaper, suede, silk) varied. However, for our study,
we focus solely on the series with object weight variations, while ensuring that the
surface material remained consistent (sandpaper).

As shown in Figure 2, the upper two figures respectively represent the schematic
diagram of the EEG channel and the schematic diagram of the EMG channel.
Among them, for EEG, we adopt the international standard 10-20 system, and use
1–32 channels as shown in the figure. For EMG, we use 5 positions on the arm: the
anterior deltoid (AD), brachioradial (BR), flexor digitorum (FD), common extensor
digitorum (CED), and the first dorsal interosseus muscles (FDI). The scale below
indicates the key time points in a trial process, and a trial lasts 8 s. Based on the
actions performed at each time point and whether the object is touched, the trial
can be divided into two distinct stages. The first stage, lasting from 0 to 4 seconds,
represents the initial stage of movement. The subsequent stage, spanning from 4
to 8 seconds, corresponds to the specific execution stage of the movement. More
specifically, the period from 0 to 2 seconds represents the resting stage, while the
interval from 2 to 4 seconds corresponds to the action stage. The EEG signals
recorded during these two stages can be analyzed to enable the model to recognize
the intended movement.
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Figure 2. An introduction to each time point of a trial, 2 s: the LED light is on, indicating
that the subject starts to move; 2–4 s: the subject reaches for the object; 4–5 s: the object
leaves the table; 8 s: the object is put back on the table. We use 0–4 s EEG data to detect
motion intention, and 4–8 s EMG data to classify motion execution.

3.2 Data Processing

3.2.1 EEG Processing

The original EEG data is represented as X ∈ Rc×t, where c denotes the number of
channels (c = 32), and t represents the number of sampling points (t = 4000 =
8 × 500). In this study, the EEG data of the first 4 s is used for the detection of
motion intention. Specifically, the data from 0 to 2 seconds is assigned as class 0,
while the data from 2 to 4 seconds is assigned as class 1. Consequently, the value of t
is reduced to 1 000 (2×500). To streamline the computational load, we downsample
the EEG data by reducing its frequency to half of the original. Additionally, to
eliminate noise and extract signals relevant to motion classification, a band-pass
filter with a range of 4 to 35Hz is applied to the EEG data.

EEG data represents a time-series signal. To fully leverage its temporal charac-
teristics, the EEG signal of a trial is partitioned into T segments (in this study, T is
set to 4), resulting in a data representation of (Xi)i∈ZT

, where ZT := {1, 2, . . . , T}.
Additionally, EEG comprises multiple channels of data, and there exists a certain
interrelation between these channels. By treating EEG as graph-structured data,
we can explore the relationships between channels and comprehensively analyze the
EEG signal.

For each step i, each channel of EEG is treated as a vertex vi. By calculating
SPMI, we derive the connections ei between channels, leading to the generation of
an adjacency matrix Ai. Consequently, undirected graphs Gi = (Vi, Ei) are formed.
The data corresponding to each channel serves as the feature vector for the respective
vertex Xi.
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3.2.2 EMG Processing

The original EMG data is represented as Y ∈ Rc×t, where c denotes the number
of channels (c = 5), and t represents the number of sampling points (t = 32 000 =
8 × 4 000). In this study, the EMG data from the last 4 seconds is utilized for
classification, resulting in t being equal to 16 000 (4× 4 000).

To begin with, the EMG signal is downsampled from 4 000Hz to 250Hz in order
to reduce the sampling frequency. Subsequently, a filtering process is applied to the
signal within the frequency range of 0Hz to 100Hz to remove unwanted frequencies
and retain the relevant information for further analysis.

3.3 Classification Methods

In this section, two primary models are introduced for processing EEG and EMG
signals, respectively. The GCN-LSTM is utilized to handle the EEG data, while the
CNN is employed to process the EMG data.

3.3.1 EEG Classification Based on GCN-LSTM

We use a GCN-LSTM to process EEG, which consists of the following two compo-
nents:

• GCN: Graph convolution is capable of handling graph-structured data, allowing
for the processing of feature information for each vertex while considering the
connections between vertices. However, it does not possess the ability to handle
time series information.

• LSTM: LSTM facilitates the backward propagation of time series information
through its memory unit, making it advantageous for handling time series data.
However, it may not effectively utilize the connection relationships between ver-
tices in graph-structured data.

We leverage the strengths of both GCN and LSTM to construct a GCN-LSTM for
EEG processing, as shown in Figure 3.

For EEG, we preprocess it into serialized graph structured data. Here, each
channel of the EEG is represented as a vertex on the graph, and the relationship
between the vectors and among the channels constitutes the adjacency matrix of
the graph. Let (Gi)i∈ZT

with ZT := {1, 2, . . . , T} represent a finite sequence of
undirected graphs Gi = (Vi, Ei), where Vi ∈ V ∀i ∈ ZT . All graphs in the sequence
share the same set of vertices, but the vertex feature vectors and adjacency matrices
may differ among the graphs.

In this study, SPMI [31] is used to calculate the connection between vertices, so
as to obtain the adjacency matrix Ai. For two channel vectors X and Y of a signal,
their correlation can be calculated as follows.
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Figure 3. GCN-LSTM: A model for classifying serialized graph-structured EEG, consist-
ing of GC layers, LSTM layers, and convolutional blocks

First, calculate the permutation entropy of the vector X, as follows:

PEX = −
n!∑
i=1

PX(i) log(PX(i)), (1)

where PX(i) is the empirical probability of the ith ordered pattern of X, and n is
the dimension of X. Then the joint PE of signals X and Y is defined as follows:

PEX,Y = −
n!∑
i=1

n!∑
j=1

PX,Y (i, j) log(PX,Y (i, j)), (2)

where PX,Y (i, j) is the joint probability of permutation of X and Y . Finally the
SMPI of X and Y can be calculated as follows:

SPMIX,Y =
PEX + PEY − PEX,Y

PEX,Y

. (3)

As depicted in the figure, the serialized graph-structured EEG data can be seg-
mented into T steps. To decode each step, we utilize a GC layer, and a total of
T parallel GC layers are employed to process all T steps. Specifically, at step i, the
vertex feature vector set X0

i ∈ R|V |×d serves as the input to the GCN layer. The
adjacency matrix Ai of the graph is employed to aggregate the neighborhood infor-
mation. Subsequently, a weight matrix Wi ∈ Rd×d̂ is applied to update the vertex
embedding vector set. The mathematical form of this process can be expressed as
follows:

X1
i = GCLi(Ai, X

0
i ,Wi),

:= σ(AiX
0
i Wi),

(4)

where X1
i ∈ Rc×d, σ is an activation function.

For vertex j, its T steps form a sequence, expressed as (xi,j)i∈{1,2,...,T}. These
sequences are then processed by an LSTM layer, with a total of c such layers used to
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process all c vertices. For a given vertex j, the output of the LSTM layer is obtained
through the following calculation steps.

The first step involves determining which information should be retained or
forgotten from the cell state. This decision is governed by the “forget gate” layer,
which uses a sigmoid function to determine whether to completely forget or partially
retain information from the previous time step. At step i, the calculation can be
expressed as follows:

fi,j = σ(Wf · [hi−1,j, xi,j] + bf ). (5)

The second step involves generating new information that we need to incorporate
for updating. This step comprises two parts. The first part is an “input gate” layer
that utilizes the sigmoid function to determine the values that should be updated.
The second part involves a tanh layer that generates new candidate values and
combines them together to yield the candidate values. The process can be described
as follows:

Ci,j = fi,j ∗ Ci−1,j +mi ∗ ˜Ci−1,j. (6)

The final step is to determine the output of the model. Initially, an initial output
is obtained through the sigmoid layer. This output is then scaled to a range of −1
to 1 using the tanh function. The scaled output is multiplied element-wise with the
output obtained from the sigmoid layer to obtain the final output of the model.

oi,j = σ(Wo[hi−1,j, xi,j] + bo), (7)

hi,j = oi,j ∗ tanh(Ci,j). (8)

We obtain the hidden state of the last step as the output of the LSTM, so we
have

x2
j = LSTM

(
x1
j

)
. (9)

Here, the symbol σ represents the sigmoid function, as illustrated in Equation (9),
and tanh denotes the hyperbolic tangent function, as depicted in Equation (10):

σ(x) =
1

1 + e−x
, (10)

tanh(x) =
ex − e−x

ex + e−x
. (11)

The corresponding sequence (xi,j)i∈{1,2,...,T} is transformed into a sequence x1
j ∈

Rd1 representing the embedded feature vector for vertex j. In turn, all c embedded
feature vectors are concatenated into a vertex vector set X2 ∈ Rc×d2 . A convolution
block is then applied to further decode these features, followed by a fully connected
layer and a softmax function for obtaining the final classification probabilities.

y = softmax (linear(σ(Covn(X2)). (12)

By analyzing the classification results, we can get the results of motion intention
detection.
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3.3.2 CNN-Based EMG Classification

We propose a novel approach for efficiently decoding EMG signals using a CNN, as
illustrated in Figure 4. After collecting EMG on the arm using 5 EMG electrodes,
some preprocessing operations are performed on the raw data. We reduce the data
dimension by downsampling, remove noise and impurities by filtering, and obtain
useful signals. The processed data is then decoded using a CNN. Considering the
limited number of EMG channels (c = 5), we mainly apply convolutions over the
time dimension. The architecture comprises three convolutional blocks, where the
first two are composed of a single convolutional layer followed by a max-pooling
layer, while the third block utilizes only convolutional layers. The ReLU activation
function is utilized throughout the network, and dropout is employed after each
convolutional layer to alleviate overfitting. For each convolutional block i, the input
is Y i, which is then processed as follows.

Y i+1 = MaxPooling(Conv2D(Y i)). (13)

Figure 4. CNN: A convolutional network for EMG classification, consisting of three con-
volutional blocks, which mainly decodes from the temporal dimension of EMG

Following convolutional blocks, we employ a fully connected layer to further
process the extracted features, and subsequently apply a linear layer and softmax
function to obtain the classification probability. Specifically, the linear layer com-
putes the weighted sum of the features, and then the softmax function maps the
resulting vector to a probability distribution over the classes. This allows for accu-
rate classification of EMG signals with a high degree of confidence.

y = Softmax (Linear(Flatten(Y ))). (14)

After obtaining the classification results of EMG, control signals are sent to the
peripheral devices (such as mechanical gloves) connected to the computer to assist
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the subject’s movement, thereby helping the subject to perform hand rehabilitation
training.

4 RESULTS AND DISCUSSION

4.1 Intention Detection

4.1.1 Experiments Settings

We employ the GCN-LSTM model to process the serialized graph structure of EEG
signals and detect movement intention. The training of the model consists of 200
epochs with a batch size of 10. To optimize the model, we use the Adam optimizer
with a learning rate of 1e−3 and a weight decay parameter of 1e−3. The loss
function is implemented as the sum of cross-entropy between the predicted label
and the true label. L2 regularization is also applied during the training phase to
reduce overfitting. During the evaluation phase, the average accuracy of test data
serves as the key metric to assess performance of the model. Our evaluation results
demonstrate the effectiveness of the proposed GCN-LSTM approach in accurately
decoding EEG signals for estimating movement intention.

The model is evaluated in two ways. On the one hand, the correlation between
channels is calculated, and the interpretability is illustrated by analyzing the con-
nection of channels. On the other hand, the validity of the model is verified by the
average accuracy rate.

4.1.2 Experiments Results

Our proposed model is evaluated for its accuracy in detecting EEG motion inten-
tions. We conduct experiments with 12 subjects and compared the results with the
CSP + SVM model [32] as the baseline. As shown in Figure 5, the experimental
results demonstrate that our model outperforms the baseline model across all sub-
jects. Specifically, the accuracy rate for subjects 1, 2, 4, 7, 9, 10, and 11 exceeded
90%, while the performance for test 5 is suboptimal, achieving only slightly above
70%. This lower accuracy for test 5 may be attributable to poorer signal quality in
that particular experiment.

To further validate the interpretability of our model, we will conduct experiments
to analyze its performance. In each trial (0–8 s), we will divide the data into four
segments, each consisting of 2 seconds. For each segment, we will calculate the
inter-channel correlation using SPMI. Interpretability of our model will be validated
through experiments.

Figure 6 shows the channel correlation matrix of the four stages and the cor-
responding connection visualization. The matrix is represented by 6 a), 6 b), 6 e),
and 6 f) corresponding to each stage. The figure is structured horizontally from
left to right and vertically from top to bottom. The channel order follows the
same sequence as that of channels (1–32) shown on the 10-20 system in Figure 2.
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Figure 5. EEG classification accuracy

The number bar on the right side of each figure shows the strength of the rela-
tionship between channels. The relationship becomes stronger from bottom to top.
Figures 6 c), 6 d), 6 g), and 6 h) are the corresponding connection visualization dia-
grams. During the creation process, the 20 connections with the highest connection
strength are selected, and the connections between the channels with a distance
of less than 5 cm are removed to reduce the interference caused by the close dis-
tance.

Figure 6 reveals two notable patterns. First, although the overall data corre-
sponds to 32 channels, only about 15 channels exhibit significant connectivity during
the motion process. Second, the areas with strong connectivity are motor and vi-
sual areas, which are consistent with the form of the task action. Although the
connection between the leads changes in the four stages, the channels with strong
connectivity remain the same. This indicates that the subject’s motor and visual
areas remained active throughout this period. To enhance the universality of the
channel selection process, we employ a method to refine it further. Initially, we
select a representative sample consisting of 12 subjects to undergo the channel se-
lection process. Each subject goes through four distinct stages, thereby generating
a total of 48 data pieces. Subsequently, we compute the channel correlation matrix
using these data samples. From each correlation matrix, we identify the 15 con-
nections with the highest correlation values. We take out the channels associated
with these connections and proceed by tallying the frequency of occurrence for each
channel across the 48 sets of data. This frequency count enables us to determine the
popularity of each channel within the dataset. Ultimately, to facilitate our exper-
imentation, we select the top 15 channels (‘P3’, ‘P4’, ‘Pz’, ‘Oz’, ‘O2’, ‘CP1’, ‘O1’,
‘CP2’, ‘CP5’, ‘CP6’, ‘P8’, ‘PO9’, ‘P7’, ‘PO10’, ‘C3’) with the highest frequency of
occurrence. These channels will be utilized for further analysis and investigation.
This suggests that these channels are the most informative.
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a) 0–2 s b) 2–4 s

c) 0–2 s d) 2–4 s

To demonstrate that the well-connected channels provide more effective infor-
mation, we conduct a series of controlled experiments. Specifically, we limit the data
used for motion intent recognition to the 15 channels exhibiting strong connectivity.
The results are shown in the Figure 7.

As displayed in Figure 7, despite using data from less than half of the original
channels, the accuracy rate did not decrease significantly. Notably, Tests 4 and 11
even achieved results that are equal to or greater than the original 32-channel setup.
In terms of average accuracy, the 15-channel configuration is only 0.07 lower than
the 32-channel configuration. These findings demonstrate that effective channels
can be identified through analyzing channel connectivity. This not only provides
an explanation for EEG decoding, but also facilitates the development of portable
EEG devices.

4.2 Action Classification

4.2.1 Experiments Settings

In this study, an action classification model based on CNN is trained and evaluated
using EMG data. The model is trained using 500 epochs and a batch size of 10, with
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e) 4–6 s f) 6–8 s

g) 4–6 s h) 6–8 s

Figure 6. The 4-stage channel connectivity matrix and its corresponding connection dia-
gram (a and c, b and d, e and g, f and h)

Figure 7. The accuracy rate: 15 channels vs 32 channels
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the Adam optimizer and a learning rate of 1e−3. The loss function is defined as the
sum of cross entropy between the predicted and actual labels. During evaluation,
average accuracy of the test data is used as a metric to assess performance of the
model.

4.2.2 Experiments Results

The present study aimed to decode EMG signals for the purpose of identifying differ-
ent weights of lifted objects (i.e., 150 g, 300 g, 600 g). Effectiveness of the proposed
model is evaluated using classification accuracy for these three types of data. Ad-
ditionally, the proposed model is compared to a benchmark model, lightgbm [33],
with the results shown in Figure 8.

Figure 8. EMG: Classification accuracy for lifting different weights

Figure 8 illustrates the classification accuracy results for the proposed model,
which are found to be excellent, with the exception of subject 5, for whom the
accuracy is lower than 0.9. This may be attributable to poor signal quality from
that subject. Furthermore, compared to the baseline model lightgbm, the proposed
model demonstrated better performance across all tests. Specifically, the average
accuracy of the proposed model (0.954) is about 0.15 higher than that of the baseline
model (0.806), indicating its effectiveness.

To examine the generality of our model, we conduct additional experiments on
different task formats. In a given trial (0–8 s), subjects performed a series of ac-
tions, including reaching out (2–4 s), lifting the object (4–6 s), and putting it down
(6–8 s). By identifying these three actions, our model not only demonstrates its
versatility but also provides opportunities for rehabilitation training. As shown in
Figure 9, we compare the accuracy of the proposed model to that of the benchmark
model, lightgbm. Overall, the classification accuracy of the proposed model is ex-
cellent, achieving an average accuracy of 0.937, which is 0.04 higher than that of the
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benchmark model (0.897). These results further underscore the effectiveness and
generality of our proposed model.

Figure 9. EMG: Classification accuracy of different actions

5 CONCLUSION AND FUTURE WORK

This study proposes a novel framework for hand rehabilitation training using EEG
and EMG signals. EEG is used to detect movement intention, while EMG is utilized
to recognize specific hand gestures. To decode EEG signals, we employ GCN-LSTM,
which achieved an average classification accuracy of 0.892 surpassing the benchmark
classifier (0.742) and demonstrating the effectiveness of our model. Additionally, we
analyze channel connectivity to explain the interpretability of the model, finding
that using a subset of highly connected channels (15 channels) resulted in only
a 0.07 decrease in accuracy when the amount of data is halved, which indicates the
potential for simplifying the number of EEG channels needed. Using a CNN, EMG
signals are decoded to recognize different hand movements in two different tasks,
with the proposed model achieving an average accuracy of 0.954 and 0.937, respec-
tively, which outperformed the benchmark model lightgbm. These results highlight
the effectiveness and generalizability of our proposed model for hand rehabilitation
training. We can apply the framework proposed in this study to the hybrid BCI
system, combined with the hardware equipment of the BCI, so as to realize the
patient’s hand rehabilitation training. Specifically, the user’s movement intention
is identified through EEG decoding, and EMG decoding is used to realize specific
hand movements or fine power control, and then external devices such as mechanical
gloves are used to assist the subject’s movement, and the system gives the subject
certain feedback. Through this series of processes, the patient’s neural circuit is re-
built to achieve rehabilitation training. In addition, future work in this area should
focus on the following aspects:



EEG-EMG Analysis Method in HBCI for Hand Rehabilitation Training 757

• In the aspect of motion intention recognition based on EEG, by improving the
model, effective monitoring can be carried out while reducing the number of
data sampling points, thereby reducing the response time of the BCI system
and improving usability.

• Further analyzing channel connectivity in EEG to improve interpretability and
identify channels that are closely related to different actions. This can help
select appropriate channels for specific tasks, thereby aiding in the development
of portable BCI devices.

• Furthermore, the connectivity between EEG and EMG can be explored to dis-
cuss the mechanisms behind the operation of hybrid BCI systems.
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