
Computing and Informatics, Vol. 42, 2023, 615–650, doi: 10.31577/cai 2023 3 615

ATTRIBUTE-BASED ACCESS CONTROL POLICY
GENERATION APPROACH FROM ACCESS LOGS
BASED ON THE CATBOOST

Shan Quan, Yongdan Zhao, Nurmamat Helil∗

College of Mathematics and System Science
Xinjiang University
China
e-mail: shanquan owen@163.com, zydky2021@126.com, nur924@sina.com

Abstract. Attribute-based access control (ABAC) has higher flexibility and better
scalability than traditional access control and can be used for fine-grained access
control of large-scale information systems. Although ABAC can depict a dynamic,
complex access control policy, it is costly, tedious, and error-prone to manually
define. Therefore, it is worth studying how to construct an ABAC policy efficiently
and accurately. This paper proposes an ABAC policy generation approach based
on the CatBoost algorithm to automatically learn policies from historical access
logs. First, we perform a weighted reconstruction of the attributes for the policy
to be mined. Second, we provide an ABAC rule extraction algorithm, rule pruning
algorithm, and rule optimization algorithm, among which the rule pruning and rule
optimization algorithms are used to improve the accuracy of the generated policies.
In addition, we present a new policy quality indicator to measure the accuracy and
simplicity of the generated policies. Finally, the results of an experiment conducted
to validate the approach verify its feasibility and effectiveness.

Keywords: ABAC policy, access logs, policy mining, ensemble learning, CatBoost

1 INTRODUCTION

In the big data era, big data platforms can help the information systems of orga-
nizations and enterprises overcome data isolation; support the integration of multi-

∗ Corresponding author

https://doi.org/10.31577/cai_2023_3_615

616 S. Quan, Y.D. Zhao, N. Helil

source heterogeneous data; and support cross-industry, cross-department, and cross-
platform data sharing and exchange. As a result, data are now among the most
strategic assets of any government, organization, or enterprise. Dengguo et al. [1]
defined big data as the process of obtaining useful knowledge and predicting future
trends, analyzing and grasping data’s essential characteristics, and using the results
of the analysis to distinguish the true from the false. Undoubtedly, big data has
enduring value. However, it comes with the problem of data security. Ensuring that
unauthorized entities do not access data is a security problem that must be solved
in the process of data use. Access control is an essential solution to this problem.

In the big data environment, the access control system has many subjects, ob-
jects, and dynamic changes. Data structures and sources are complex and diverse.
User types, demands for information sharing, and privacy needs are great. Moreover,
access permissions are constantly changing [2]. Early access control models such as
discretionary access control (DAC) [3, 4] and mandatory access control (MAC) [5]
are not very suitable for addressing access control policies in the big data environ-
ment. The role-based access control (RBAC) model [6] maps users to roles through
which they possess permissions. As the basis of the modern access control model,
RBAC has been one of the popular research areas in access control, but RBAC re-
lies heavily on user identity. The attribute-based access control (ABAC) model [7]
later emerged as a fine-grained access control mechanism that relies on attributes.
ABAC solves the problems of expressing and enforcing fine-grained access control
and large-scale user dynamic expansion in a complex information system. More-
over, ABAC embeds entity attributes into the access control policy (ACP). As the
subject, object, environment, and operation attributes have the ability to describe
the access control and constraints in ABAC, the model has sufficient flexibility and
extensibility.

With the rapid development of cloud computing, big data, artificial intelligence,
and other technologies, the number of entities in information systems has exploded.
ABAC uses subject and object attributes as essential criteria for permission access.
The introduction of the environment attributes enables ABAC to support dynamic
access control [8, 9, 10]. Unlike RBAC, ABAC does not need to design complex
roles in advance, thus effectively avoiding the role explosion in RBAC [7]. However,
when the number of subjects and objects and the number of subject and object
attributes become large, it is challenging to specify ABAC policy manually. This
is time-consuming and expensive, which makes ABAC’s deployment in practical
applications difficult [10]. Therefore, the research on ABAC policy mining is of
great significance and can promote the development and popularization of the ABAC
model.

As it is challenging to define ABAC policy manually, this paper proposes an ap-
proach to ABAC policy generation from access logs based on the CatBoost algo-
rithm. This is an integrated learning method that can automatically learn ABAC
policy from historical access logs. First, we reconstruct the attributes of the policies
that need to be mined by weighting. Subsequently, we propose the rule extraction
algorithm, rule pruning algorithm, and rule optimization algorithm to improve the

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 617

accuracy of the generated policy. In addition, we propose a new policy quality
indicator, namely the policy quality comprehensive indicator, which measures the
accuracy and conciseness of the generated policy.

The rest of this article is organized as follows. In Section 2, we review the
research background and related work. In Section 3, we summarize the prior know-
ledge of ABAC and the CatBoost machine learning (ML) algorithm and detail the
preparatory work of ABAC policy generation. In Section 4, we introduce the gen-
eration process of the ABAC policy and give the related implementation algorithm
in detail. In Section 5, we provide the experimental results and evaluation. Finally,
in Section 6, we present the conclusion and research prospects.

2 RELATED WORK

The ABAC model is widely used in large distributed environments, web service
systems, grid computing, and information sharing and management [1]. In ABAC
deployment, one of the critical challenges is how to infer ACP from the logs of past
decisions (permit or deny) on the access requests made by users. In the ABAC access
control system, two primary sources of information describe the relations between
subjects and objects: the original access control system and the access logs [11].
The basic idea of policy mining is to combine subject, object, environment, and
operation attribute data to mine ABAC policies from the relations between the
subject and object. Therefore, mining ABAC policies from access logs has attracted
the attention of researchers.

The initial research field of policy mining was RBAC role mining. Vaidya
et al. [12] introduced an approach of role mining that finds the best role from the
user-permission assignment relations by decomposing the user-permission Boolean
matrix. Molloy et al. [13] proposed an RBAC role mining algorithm based on for-
mal concepts. Molloy et al. [14] proposed a role mining approach that allows noisy
data. Most role mining approaches assume that the data used are correct and noise-
free, which is often not the case. Thus, this approach improves the quality of role
mining. Currey et al. [15] proposed a multi-objective role mining approach that min-
imizes unnecessary permissions as the formal goal of role mining. Jafarian et al. [16]
transformed the role mining problem into a constraint satisfaction problem. This
approach effectively combines top-down and bottom-up patterns. The top-down
pattern starts from the security requirements and then gradually refines the busi-
ness and then dissolves into independent functional units to generate policies. The
bottom-up pattern starts with access requests and uses the common ground among
access requests to generate policies. Combining the two patterns makes the gener-
ated policies easier to understand and maintain and of higher quality.

Some scholars have proposed RBAC policy mining approaches based on ML.
Molloy and Chari [17] proposed an RBAC role mining approach with permissions,
which is based on ML algorithms. Their approach has advantages in generality,
coverage, and stability. Narouei and Takabi [18, 19] proposed an approach of uti-

618 S. Quan, Y.D. Zhao, N. Helil

lizing natural language processing (NLP) technology called semantic role labeling
(SRL), which extracts ACPs from unrestricted natural language documents, defines
roles, and constructs an RBAC model. It is a top-down pattern for role mining. As
this approach considers all predicates in the ACPs sentence, it leads to some false
positives, which makes their approach’s precision relatively low (precision of 75%).
Anderer et al. [20] created a library of role mining benchmark instances, which in-
cludes some new, synthetically generated benchmark instances of different sizes for
evaluating and comparing role mining algorithms. The benchmark instances leave
more space between the number of roles derived from the two common decomposi-
tions of the role mining problem (RMP) and the actual minimum number of roles,
thus making them better, multifaceted, and able to thoroughly evaluate the role
mining algorithm.

As ABAC is widely used in access control, researchers have also proposed ABAC
policy mining approaches. Chari and Molloy [21] proposed mining ABAC rules auto-
matically from access logs instead of manually making and maintaining the ABAC
rule set. They used cross entropy to exclude user attributes to mine a rule set.
Xu and Stoller proposed ABAC policy mining algorithms from access logs [11],
RBAC [22], and the access control list (ACL) and attribute data [23]. Their algo-
rithms iterate over access control tuples and build candidate rules, and then general-
ize them by replacing the conjunctions in the attribute expressions with constraints.
Iyer and Masoumzadeh [24] proposed an approach to mine positive and negative
ABAC policies. It can extract (permit or deny) the ACP at the same time. The
mining policy is also relatively concise, thus making it superior to a previous ap-
proach [23]. Chakraborty et al. [25] defined the existence problem of the ABAC rule
set and provided an algorithm to solve it. They further introduced the concept of the
infeasible rule set modification in ABAC and the modification algorithm. Talukdar
et al. [26] proposed an algorithm that finds the most general rule from a set of can-
didate rules, which can automatically build a reasonable ABAC policy. The main
advantage of this approach is that the running time is stable and is not affected by
the number of attributes. Narouei et al. [27] proposed an approach of ABAC policy
mining based on the particle swarm optimization algorithm and ABAC policy min-
ing under the minimal perturbation problem, and proposed a global optimization
function to obtain the optimal ABAC state while making it as similar as possi-
ble to the existing state. Medvet et al. [28] proposed an evolutionary approach of
multi-objective strategy mining based on genetic operators. It generates strategies
through iterative, evolutionary search. Each iteration learns new rules and makes
the set of access control tuples smaller to improve the quality of mining rules. Das
et al. [29] proposed an ABAC policy mining algorithm based on the Gini coefficient
impurity. The algorithm considers the environment attributes and their associated
values and uses the approach based on the decision tree (DT) to build the policy.
Although the generated rules are few and compact, access control decisions can be
made faster.

Owing to the rapid development of big data, artificial intelligence and other
related technologies (e.g., ML) have been widely used. As a result, some researchers

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 619

have proposed ABAC policy mining algorithms based on ML. Cotrini et al. [30]
proposed an algorithm named Rhapsody to mine ABAC rules from sparse logs. They
also defined the concept of reliability to measure the reliability of the extracted rules.
The algorithm also considers whether the generated policies are overly permissive.
Karimi and Joshi [31] proposed an approach that uses unsupervised learning to
detect specific patterns in a set of access records and then extract ABAC policies
from these patterns. In addition, they provided two algorithms, rule pruning and
policy refinement, which are used to improve policy quality. Das et al. [32] provided
a visual ABAC policy mining approach. It represents the existing access requests
in the form of a binary matrix and then transforms the problem of finding the best
representation of the binary matrix into a minimization problem by extracting rules
from the visual access control matrix.

Some scholars have proposed ABAC policy mining approaches based on neu-
ral network (NN) and reinforcement learning (RL). Narouei et al. [33, 34] provided
an information extraction approach from natural language documents via a recurrent
neural network (RNN) and SRL. It can identify access control policy statements, and
its performance was 5.58% higher than that of the support vector machine model.
Alohaly et al. [35, 36] proposed a convolutional neural network attribute extrac-
tion approach. Their approach F1-score performs well; it can generate a practical
framework for analyzing natural language access control policies; and it can identify
the attributes of the subjects and object elements. Karimi et al. [37] proposed an
adaptive ABAC policy learning approach that can realize the automation of deci-
sions. It is a kind of RL. This approach shows good performance in policy transfer
using the learning feedback mechanism, and it is superior to the approach based on
supervised learning.

Here, we focus on reviewing the approaches of [38] and [39]. The [38] and [39] use
restricted Boltzmann machine (RBM) and multi-layer perceptron (MLP) to mine
ABAC policies, respectively. Mocanu et al. [38] presented an ABAC policy mining
approach based on deep learning that uses the RBM algorithm to train logs and
extract rules. They first summarize knowledge from logs and generate a set of can-
didate rules in binary vector format and then convert the candidate rule set from the
binary vector format to an acceptable format. Finally, the reconstruction error of
all log entries in the obtained model is calculated, and the maximum value is taken
as the threshold. Then, they generate all possible rule combinations, calculate the
reconstruction error in the obtained model, and add the rules whose reconstruction
error is less than the threshold to the candidate rules. The implicit distribution of
data can be found through this approach. This approach has strong anti-noise abil-
ity, but it does not further optimize and analyze the rule set. Cappelletti et al. [39]
deduced ABAC policy by comparing different symbolic and non-symbolic ML tech-
niques. They used MLP to infer ABAC policies from access logs and turn them
into a classification problem. MLP is a neural network model, which maps multiple
input datasets to a single output dataset. It provides a deep feed-forward artificial
network and generates a set of outputs from one set of inputs and the other end.
Its feature is that several layers of input nodes are connected as a directed graph

620 S. Quan, Y.D. Zhao, N. Helil

between the input and output layers. MLP had a relatively good policy decision
result in the experiment compared with other approaches.

ABAC is the most prominent access control model. Therefore, to improve the
efficiency and accuracy of access request decisions, ABAC policy mining is a topic
worth studying. As logs reflect the ACPs and user behaviors implemented in an or-
ganization, mining ACPs or rules from logs can help us reconstruct and simplify
complex and dynamic policies. Researchers have successively proposed policy min-
ing algorithms based on Rhapsody, unsupervised learning, neural networks, and
RL. Rhapsody, unsupervised learning, NNs, RL, and other ML-based policy min-
ing algorithms are more practical and effective, but they have some deficiencies.
For example, in these algorithms, the decision is overly permissive, and only policy
attributes are extracted. Although these algorithms improve decision efficiency in
various ways, in practice, there are still some problems that require further study,
such as no optimized rules and poor accuracy.

3 PRELIMINARIES FOR ABAC POLICY MINING

This paper uses the ML algorithm based on CatBoost to study how to mine more
accurate and reasonable policies. The CatBoost algorithm is primarily used for
classification, prediction, and regression. CatBoost has a wide range of application
scenarios and can deal with gradient bias and prediction shift, which improves the
accuracy and generalization ability of the algorithm. For the ABAC policy mining
problem, we choose the CatBoost algorithm mainly because of its practicality, ro-
bustness, accuracy, and extensibility. This paper makes the following contributions:

1. We propose an ABAC policy generation method based on CatBoost, in which
we learn ABAC policy from historical access logs.

2. We perform a weighted reconstruction of the attributes for the ABAC policy
to be mined, which helps improve the accuracy and rationality of ABAC rule
extraction.

3. We propose a rule extraction algorithm, rule pruning algorithm, and rule opti-
mization algorithm to improve the accuracy of the generated policies.

4. We propose a new policy quality indicator, namely the policy quality comprehen-
sive indicator, to measure the accuracy and simplicity of the generated policies.

In this section, we give a brief overview of ABAC, data mining (DM), the Cat-
Boost ML algorithm, and some preparations for ABAC policy mining.

In this article, we try to follow the National Institute of Standards and Tech-
nology ABAC standard [7]. We use user attributes, object attributes, and session
attributes to refer to access requester attributes, object attributes, and environment
attributes (or conditions), respectively.

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 621

3.1 Learning CatBoost

The full name of CatBoost is Categorical Boosting. This algorithm is a machine
learning algorithm proposed by the Russian search giant Yandex in 2017. It belongs
to the boosting family of algorithms in integrated learning. It is an integrated algo-
rithm combining gradient boosting and Oblivious Trees [40, 41, 42]. It is suitable for
heterogeneous (different types) data and can handle gradient deviation and predic-
tion deviation problems. Therefore, this algorithm can not only improve the quality
and prediction speed of the classification model but also significantly improve the
accuracy and generalization ability of the algorithm. The main advantages of the
CatBoost algorithm are as follows [40, 41, 42]:

1. Practicability: It can process categorical and numerical data and it supports
categorical variables without requiring preprocessing of the non-numerical fea-
tures;

2. Robustness: High-quality models can be obtained without parameter adjust-
ment, and very good results can be obtained by using the default parameters,
thus reducing the time spent on parameter adjustment and the need for super-
parameter tuning;

3. Accuracy: It uses a new gradient lifting algorithm to build the model, thus
reducing overfitting and improving the accuracy of the model;

4. Extensibility: It supports user-customized loss functions.

3.2 Preliminaries

Generally, when processing attributes in data, it is necessary to determine the at-
tribute types beforehand, as the chosen processing methods differ against different
types of attributes. Attributes are used to describe the properties or characteristics
of an entity that vary from entity to entity and change over time (e.g., teachers’ job
titles, students’ ages, and courses). In general, attributes can be divided into five
categories: ordinal, nominal, interval, ratio [43], and binary. A binary attribute has
only two states, denoted by true and false or 0 and 1, respectively.

Nominal, binary, and ordinal attributes are called categorical attributes, which
are qualitative and discrete. Interval and ratio attributes are also called numeric
attributes. A numeric attribute is quantitative, and its value can be discrete or
continuous. The attributes’ specific descriptions are shown in Table 1.

Let En = U ∪ O ∪ E be the set of all entities and A = Au ∪ Ao ∪ Ae be
the set of all attributes in the ABAC system. Here, U , O, and E are the ABAC
system’s sets of users (subjects), objects, and environments, respectively. Each
element (entity) in U , O, and E is expressed by the Boolean combination of related
attributes. In addition, OP is a set of operations in the system. Au, Ao, and Ae are
the set of user (subject) attributes, object attributes, and environment attributes,
respectively.

622 S. Quan, Y.D. Zhao, N. Helil

Attribute Types Attribute
Description

Attribute Example Attribute Ana-
lysis

Categorical
attribute

Ordinal
attribute

Attribute
values have
an order or
size

Education, grade etc. Median, per-
centile etc.

Nominal
attribute

Represents
the cate-
gory, code,
or status

Native place, name, oc-
cupation, etc.

Mode, entropy,
etc.

Binary
attribute

With only
two cate-
gories or
states

Flip a coin for positive
or negative, nucleic acid
test results for positive
or negative, etc.

Contingency
correlation etc.

Numerical
attribute

Interval
attribute

Comparing
the dif-
ference is
significant

Temperature, time,
date, etc.

Mean, standard
deviation, etc.

Ratio at-
tribute

Calculating
the ratio or
difference is
necessary

Age, length, percentage
of project completed,
etc.

Geometric
mean, harmonic
mean, etc.

Table 1. Classification of attributes

Definition 1 (Attribute Domain). Let the attribute a ∈ A. The set of all valid
values of a is called the attribute domain of a, denoted as V (a).

Definition 2 (Attribute Relation). Define the binary relation F = {⟨a, v⟩ | a ∈
a, v ∈ V (a)} as an attribute relation.

Definition 3 (Access Request). The access request (ar) is a four-tuple ar = (u, o,
e, op), which is explained as follows: User u ∈ U sends an access request to the
system, requesting that it perform the operation op ∈ OP on the object o ∈ O
under the environmental condition e ∈ E. u, e, o are determined by specific attribute
relations.

Definition 4 (Access Control Decision). An access control decision is a five-tuple
acd = (ar, d) = (u, o, e, op, d), composed of a user, an object, the environment,
an operation, and the decision. Here, d ∈ {permit, deny}.

An access control decision result is either permit or deny . When the deci-
sion is permit , the user (requester) can perform the given operation on the given
object under the given environment. When the decision is deny , the user can-
not perform the given operation on the given object under the given environ-
ment.

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 623

Definition 5 (Access Logs). The access logs (L) are a set of access control deci-
sions.

As the decision result is permit or deny , we can divide the access logs (L) into
positive access logs (L+) and negative access logs (L−). That is,

• L+ = {(ar, d) | d = permit},
• L− = {(ar, d) | d = deny}.

Definition 6 (Access Rule). An access rule refers to a multi-tuple r = (F, op, d),
where F is an attribute relation that includes relations regarding users, objects, and
environments. It can be written as F = Fu ∪ Fo ∪ Fe. op is an operation, and d is
a decision.

Example 1. A rule r = ({⟨Position, Student⟩, ⟨Location,Campus⟩, ⟨Type,Book⟩,
⟨Idlibrary, Idstudent⟩}, borrow , permit) can be explained as “if a student is on campus
and his/her student number matches the library code, he/she is permitted to borrow
a book from the library.”

Definition 7. Given the four-tuple t = (u, o, e, op) from an access request ar =
(u, o, e, op) or an access control decision acd = (u, o, e, op, d), and the rule r =
(Fr, opr, dr), if Fu ∪ Fo ∪ Fe ⊆ Fr, where Fu, Fo and Fe is the attribute relation
of user u, object o, and environment e in the access request or the access control
decision, op = opr; then, we say the four-tuple satisfies rule r, denoted as t |= r. For
simplicity, we say the access request ar (access control decision acd) satisfies rule r,
denoted as ar |= r (acd |= r).

In Definition 7, we mainly consider the satisfiability between the four-tuple
(u, o, e, op), from an access request ar (an access control decision acd) and a rule.

Thus, regarding the rule set R in an ABAC system,

R ⊆ FU × FO × FE ×OP ×D,

where FU , FO, and FE are the set of attribute relations of all users in U , objects
in O, and environments in E, respectively; D = {permit, deny}.

Definition 8. Permission pe = (o, e, op) is defined as the operation of a user (sub-
ject) on an object under an environment, which is expressed by an object, the
environment-related attribute relations, and an operation.

Definition 9 (ABAC Instance). An ABAC instance is a subset of the multivariate
relation AR × d, denoted as IAR, where AR represents the set of access requests
(ar), and d is the set of decision results (permit or deny). I+AR and I−AR are defined
as subsets of IAR, where the decision in this instance is permit or deny , respec-
tively.

624 S. Quan, Y.D. Zhao, N. Helil

Position
Location

Campus Home

Professor

√ √ √
• •

√
√ √ √

•
√

•

Associate Professor

√ √
× • • •√ √
• • • ×

Lecturer

√ √
• • × •√

• • × • •

Student
• • • • × ×
• • × • • •

Table 2. An instance of the access log. Each tick
√
, cross ×, and circle • denotes an access

request (i.e., a user). The ticks
√

and crosses × denote logged requests that have been
permitted and denied, respectively. The circles • denote users who have not requested
permission yet.

Definition 10 (Rule Confidence). Let AR × d be an instance of ABAC; then, the
confidence of rule r is defined as follows:

Conf (r) =
|I+AR|
|IAR|

, (1)

where IAR represents the set of all requests in the instance that satisfy rule r, and
I+AR denotes the set of all permitted requests in the instance that satisfy rule r. If
|IAR| = 0; then, we define Conf (r) = 0.

Example 2. In Table 2, the confidence of rules r1 = ({⟨Location,Campus⟩},
borrow , permit) is 11

16
≈ 0.69, and the confidence of rules r2 = ({⟨Position,

Professor⟩}, borrow, permit) is 8
12
≈ 0.67.

Definition 11 (Rule Refinement). Given two rules r = (F, op, d) and r′ = (F ′, op′,
d′), if F ⊂ F ′ (Fu ⊂ F ′

u ∧ Fo ⊂ F ′
o ∧ Fe ⊂ F ′

e), op = op′, d = d′, then r′ adds new
constraints on r. r′ is called refinement of r, the refinement relation is denoted as
r ∝ r′.

Definition 12. For the given refinement relation r ∝ r′, we say rule r′ is overly
permissive if Conf (r′) < Conf (r).

Example 3. As shown in Table 2, consider two refinements of the rule
r1 = ({⟨Location,Campus⟩}, borrow , permit):

• r11 = ({⟨Location,Campus⟩, ⟨Position,Professor⟩}, borrow , permit);

• r14 = ({⟨Location,Campus⟩, ⟨Position, Student⟩}, borrow , permit).

These refinements have confidence 1.0 and 0, respectively.

As shown in Example 3, we can see that the rule r14 = ({⟨Location,Campus⟩,
⟨Position, Student⟩}, borrow , permit), and its confidence is decreased to 0; so, this
rule is overly permissive.

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 625

Definition 13 (Rule Credibility). Let AR× d be an instance of ABAC; the credi-
bility of rule r is defined as

CreT (r) = min
r′∈FT (r)

{Conf (r),Conf (r′)}, (2)

where FT (r) = {r′ | |[r′]| ⩾ T}, [r′] is the set of refinements of r, and T is
a parameter specified by a policy administrator. Generally, the optimal value of T
is the minimum number of times the refinement r′ satisfies an access request. If
FT (r) = 0, we define CreT (r) = Conf (r).

Example 4. We compute the rule credibility for the rules r1 = ({⟨Location,
Campus⟩}, borrow , permit) and r2 = ({⟨Position,Professor⟩}, borrow , permit) for
the instance of Table 2.

Consider the below refinements of rule r1 = ({⟨Location,Campus⟩}, borrow ,
permit):

• r11 = ({⟨Location,Campus⟩, ⟨Position,Professor⟩}, borrow , permit);

• r12 = ({⟨Location,Campus⟩, ⟨Position,AssociateProfessor⟩}, borrow , permit);

• r13 = ({⟨Location,Campus⟩, ⟨Position,Lecturer⟩}, borrow , permit);

• r14 = ({⟨Location,Campus⟩, ⟨Position, Student⟩}, borrow , permit).

Cre4(Conf (r1)) = min{Conf (r1),Conf (r11),Conf (r12),Conf (r13),Conf (r14)} =
min{0.69, 1.0, 1.0, 0.75, 0.0} = 0.

Consider the below refinements of rule r2 = ({⟨Position,Professor⟩}, borrow ,
permit):

• r21 = ({⟨Position,Professor⟩, ⟨Location,Campus⟩}, borrow , permit);

• r22 = ({⟨Position,Professor⟩, ⟨Location,Home⟩}, borrow , permit).

Cre2(Conf (r2)) = min{Conf (r2),Conf (r21),Conf (r22)} = min{0.67, 1.0, 0.5} =
0.5.

Theorem 1. Let T ⩾ 1, K ∈ [0, 1]; r is a rule, K is a specified value, and in general,

K ≈ |AR+|
|AR| , AR

+ is the set of permitted access requests. If there is a refinement

relation r ∝ r′ that satisfies Conf (r′) < K and |[r′]| ⩾ T , then r′ is overly permissive.

Proof. From the Definitions 10, 12, and 13, we can see that if a rule r′ (r ∝ r′)
is overly permissive, then its confidence must be less than the confidence of the
original rule (that is, equal to K), so Conf (r′) < K and |[r′]| ⩾ T . If the refinement
r′ satisfies Conf (r′) < K and |[r′]| ⩾ T , then the refinement r′ is overly permissive.

□

Corollary 1. If Conf (r′) ≥ K, |[r′]| ⩾ T , and r′ is not overly permissive, we have
credibility CreT (r

′) ≥ K.

Proof. From the Definitions 10, 12, and 13, similarly, Corollary 1 is also true. □

626 S. Quan, Y.D. Zhao, N. Helil

Definition 14 (Log Credibility). The log credibility is defined as

CreT (r) = min
r′∈FT (r)

{Conf (r),Conf (r′)}. (3)

However, in the logs, the confidence cannot be directly computed in the instance;
so, we denote the set of records in the access log set that meets rule r as {r}IL (I ⊆ L).
In the logs, we have

FT (r) = {r′ | |[r′]| ⩾ T}, (4)

Conf (r) =
|{r}L+

L |
|{r}LL|

, (5)

where L+ indicates the positive (permit) access logs.

3.3 Policy Generation-Related Methods and Evaluation Metrics

In practice, it is difficult to see the correlation between the features and targets and
the correlation between the features. Therefore, using mathematical or engineering
methods is necessary to help improve feature selection. This paper uses an embedded
method to select the features. For details, see Figure 1.

Figure 1. Embedded method for feature selection

The mutual information between the random variables X and Y is the mathe-
matical expectation of mutual information between individual events, which is also
used to evaluate the correlation between variables. The mutual information calcu-
lation formula is as follows:

I(X;Y) = E[I(xi; yi)] =
∑
xi∈X

∑
yi∈Y

p(xi, yi) log
p(xi, yi)

p(xi)p(yi)
, (6)

I(X;Y) = H(X)−H(X | Y) = −
∑
xi∈X

p(xi) log p(xi)

−

(
−

∑
xi∈X,yi∈Y

p(xi, yi) log p(xi | yi)

)
. (7)

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 627

We can evaluate the CatBoost ML algorithm by k-fold cross-validation accord-
ing to accuracy and other indicators. The evaluation is carried out on the cross-
validation dataset. Based on this, the following definitions are given.

• True Positive (TP): If the access request is permitted based on the actual policy,
it is also permitted based on the generated policy;

• True Negative (TN): If the access request is denied based on the actual policy,
it is also denied based on the generated policy;

• False Positive (FP): If the access request is denied based on the actual policy,
it is permitted based on the generated policy;

• False Negative (FN): If the access request is permitted based on the actual
policy, it is denied based on the generated policy.

We can obtain True Positive Rate (TPR), True Negative Rate (TNR), False Pos-
itive Rate (FPR), False Negative Rate (FNR), Accuracy (Acc), Sensitivity/Recall,
Precision, F1-score and Matthews correlation coefficient (Mcc), through the above
definition. The calculation formulas are as follows:

TPR = Sensitivity = Recall =
TP

TP + FN
, (8)

TNR = Specificity =
TN

TN + FP
, (9)

FPR =
FP

FP + TN
, (10)

FNR =
FN

FN + TP
, (11)

Precision =
TP

TP + FP
, (12)

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
, (13)

F1-score =
2

1
Precision

+ 1
Recall

=
2× Precision × Recall

Precision + Recall
, (14)

Mcc =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (15)

The increase in ACPs makes maintenance more difficult and increases the com-
putational overhead. So, complexity and accuracy are essential evaluation indicators
of policy quality. Therefore, weighted structural complexity (WSC) and accuracy
are considered in this paper. In addition, the influence of other evaluation indicators
on policy quality is considered.

628 S. Quan, Y.D. Zhao, N. Helil

WSC is used to summarize the size of the policy. Molloy et al. introduced
WSC [13] into the artificial mining of RBAC policy. Later, Xu and Stoller extended
it to mining ABAC policy [23]. The simpler the policy, the easier it is to manage
in the system. WSC is the weighted sum of the number of elements of the ABAC
policy with regard to π. Its calculation formula is as follows:

WSC π =
∑
r∈π

WSC (r), (16)

WSC (r) = w1 ·WSC (Fu) + w2 ·WSC (Fo) + w3 ·WSC (Fe) + w4 ·WSC (OP). (17)

For ∀ Fu, Fo, Fe, OP , WSC(Fu) = |Fu|, WSC(Fo) = |Fo|, WSC(Fe) = |Fe|,
WSC(OP) = |OP |, where wi∈{1,2,3,4} is the specified weight.

3.4 ABAC Policy Mining

In this section, we discuss ABAC policy mining (ABAC-PM) based on the char-
acteristics of ABAC and the factors and challenges that need to be considered in
mining ABAC policies.

Definition 15 (ABAC Policy).1 An ABAC policy (π) is a set of rules with the same
permission. That is,

π =

{
n∨
i

ri | ri ∈ R ∧ Fori
= Forj

, Feri
= Ferj

, opri = oprj ,

dri = drj ,∀i, j ∈ N∗, i ̸= j

}
,

where Fori
, Forj

, Feri
, Ferj

, opri , oprj , dri , drj represent the subject, object, and
environmental attributes relation, operation and decision of two different rules, re-
spectively.

ABAC Policy Mining. If given a set of subjects (S), a set of objects (O), a set of
environments (E), a set of operations (OP), and attribute domains and access logs
or an ACL, we need to construct an ABAC policy set (Π). We have the following
requirements for policy mining:

1. Every access request in the access logs or ACL satisfies at least one rule in policy
π ∈ Π;

2. For any rule r ∈ π, it is as concise as possible;

3. The number of rules in π is as small as possible, and the accuracy is as high as
possible.

1 The basic unit of a policy in ABAC is a rule. We do not strictly differentiate between
rule and policy in this article.

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 629

Suppose a given original access control system has the access control decisions
of permit and deny against requests; it is related to numerous attributes; and the
collected data is complex. In that case, it is ideal to use the CatBoost algorithm
to mine the ACP and write it as a form of the ABAC policy. The ABAC policy
extraction can be regarded as establishing a mapping between the access control
decision data, including the user, object, environment attributes, and the set of
ABAC policies. This mapping can be represented by the function LF : L → Y ,
where

1. L represents a set of access control decisions (access logs): The components of
each tuple in this work are restricted to categorical or nominal variables (e.g.,
the category value of an attribute);

2. Y represents a set of numbered labels (set labels), each corresponding to a rule
in the ABAC policy π.

We aim to make the loss function (LF) (i.e., the function of classification error
in machine learning) smaller and to mine the desired policy with high precision and
efficiency.

4 ABAC POLICY GENERATION

Manually defining ABAC policies is expensive and time-consuming; so, an auto-
mated approach to mining ABAC policies helps simplify the adoption or migration
of ABAC policies. Therefore, this section discusses the ABAC policy generation
method based on CatBoost.

4.1 ABAC Policy Extraction

The ABAC policy extraction problem essentially involves finding rule r from a log
dataset (L), making the ABAC policy (π) concise and more accurate when making
decisions. We use CatBoost to extract the ABAC policy. The specific process of
policy extraction is shown in Figure 2, including implementation steps and a sum-
mary.

4.2 Access Logs Preprocessing

After collecting the access logs, we first preprocess them to map the attribute values
of the subject, object, and environment attributes to a type value. Some attribute
values may be missing in the access logs; so, missing attribute values are also han-
dled in this step. In the classification process, missing attribute values are usually
replaced by the most common ones. However, the policy extraction approach in
this paper is sensitive to the occurrence frequency of each attribute value. Thus, if
an attribute is a valid attribute, its missing value is replaced by UNK (unknown) in
the corresponding data.

630 S. Quan, Y.D. Zhao, N. Helil

Figure 2. Rule generation process

4.3 Attribute Selection

Owing to the diversity and differences of attributes, the categorical attributes of
some entities need to be encoded before attribute selection, primarily by using or-
dinal encoding and one-hot encoding. We use the recursive feature elimination
approach based on CatBoost to select the attributes.

The access log records the attribute information of the subject, object, and en-
vironment and the result of the decision operation. First, the attribute combination
is transformed into feature vectors. Then, we treat these feature vectors as training
data. The decision result of permit and deny becomes the label of the training
data. The model is trained by the CatBoost algorithm, and the trained classifica-
tion accuracy is regarded as a critical evaluation indicator for attribute deletion.
If an attribute is more important, the deletion of the attribute has a more signifi-
cant impact on the accuracy of the classification algorithm, and its deletion reduces
the accuracy of the classification. On the contrary, if an attribute is less impor-
tant, deleting the attribute has less influence on the accuracy of the classification
algorithm.

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 631

Then, the scale of the attributes is reduced according to the backward sort
method, and the attributes with lower importance are deleted by the iterative
method. The Algorithm 1 is a policy attribute selection algorithm based on the
greedy elimination algorithm. The final attribute importance sequence is the in-
verse sequence of the attribute deletion sequence.

Algorithm 1 Attributes selection algorithm

Input: L, A, m // m is a threshold, which is determined by the training model
and the access logs
Output: A∗

1: procedure SelectAttribute(L, A, m)
2: A∗ ← ∅
3: Na ← CopyAttributeSet(L,A)
4: while |Na| ≥ m do
5: Tm ← TrainAccessLogs(L,Na)
6: S ← SortAttribute(Tm)
7: c← GetLowerImportanceAttribute(S)
8: Na ← Na − {c}
9: end while

10: A∗ ← Na

11: return A∗

12: end procedure

The detailed analysis of the Algorithm 1 is as follows. Line 3, it clones the
attribute set. Next, lines 4–9 use the CatBoost algorithm to train the logs and at-
tribute set and sort the attributes; the attributes with lower importance are deleted.
Finally, line 10 gets the attributes with higher importance.

4.4 Rule Extraction

Before rule extraction, we propose a method for determining the attribute and op-
eration weight, which is described as follows:

AOW =
∑

w · A =
∑

(wu · Au + wo · Ao + we · Ae + wop ·OP). (18)

Attribute and operation weight (AOW) refers to the weights of the attributes and
operations. wu, wo, we, and wop represent the weight of the user (subject) attributes,
object attributes, and environment attributes and operations, respectively. The
weights are determined by the training data results of the CatBoost model and are
different for different data and models.

Afterward, we need to determine the attribute relation (F), operation set (OP),
and the minimum number of times the rule satisfies the access request (T) (Theo-
rem 1) and calculate the confidence degree (Conf (r)) and threshold (K) of the rule.

632 S. Quan, Y.D. Zhao, N. Helil

The rule extraction algorithm uses CatBoost to mine frequent sets until no frequent
sets can be found.

The Algorithm 2 gives the process of rule extraction in detail.

Algorithm 2 Rule extraction algorithm
Input: A∗, L, D, T , K
Output: R

1: procedure ExtractRule(A∗, L, D, T , K)
2: R← ∅
3: F ← GetAttributeRelation(L,A∗)
4: OP ← GetOperation(L,D)
5: ar ← GetAccessRequest(F,OP)
6: X ← SaveMatrix (L, F, ar)
7: FreAttrSet ← GetFrequentAttributeSet(X,T)
8: Rc ← GetCandidateRule(FreAttrSet , ar)
9: Rs ← RuleSort(Rc)

10: for all ri ∈ Rs do
11: if length(ri) = 0 then
12: Rs ← Rs − {ri}
13: end if
14: end for
15: for all ri ∈ Rs do
16: if Conf (ri) < K then
17: Rs ← Rs − {ri}
18: end if
19: end for
20: R← Rs

21: return R
22: end procedure

The Algorithm 2 is described as follows. Line 3 gets the attribute relation F .
Line 4 gets the corresponding operation set OP . Line 5 gets the corresponding access
request ar according to the operation and F . Line 6 finds the F of all access control
records in L whose attributes satisfy ar and then saves it as a boolean matrix X.
Line 7 finds the frequent attribute set FreAttrSet in X. Lines 8–9 get the candidate
rules and the length and then sort them by number of attributes. Lines 10–21 screen
candidate rules according to the confidence degree and threshold K and then obtain
the rule set R.

4.5 Rule Pruning and Rule Optimization

The rule pruning and rule optimization algorithms are used to improve the quality
of the ABAC policies. During the training, two or more sets may map to the same

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 633

rule. If there are two similar rules, the difficulty and complexity of policy mining
are higher and may also affect the accuracy of the policy, which can reduce the
quality of the policy. To solve this problem, we find similar rules, calculate their
similarity, and then delete rules that do not affect the quality of the policy. If
removing either of these rules does not improve the quality of the policy, we keep
both rules. This may happen when there are two similar ABAC rules in the actual
rule.

We use Jaccard similarity to measure the similarity between two rules, as follows:

Definition 16. Given two sets, A and B, the Jaccard coefficient is defined as the
ratio of the size of the intersection of A and B and the size of the union of A and B.
The calculation formula is as follows:

J(A,B) =
|A
⋂
B|

|A
⋃
B|

=
|A
⋂
B|

|A|+ |B| − |A
⋂

B|
. (19)

When sets A and B are empty, J(A,B) is defined as 1.

According to the Theorem 16, we can calculate the similarity between rules r1
and r2. The formula is as follows:

J(r1, r2) =

∑
v∈{V (F),V (op)} |vr1

⋂
vr2|∑

v∈{V (F),V (op)} |vr1
⋃
vr2|

, (20)

where v represents their attribute domain, and the calculated results can determine
their similarity. We consider that if the Jaccard similarity score is greater than 0.5,
there is a significant overlap between them, and the two rules can be considered
similar. This means that the size of their common elements is more than half the
size of their union of elements. The Algorithm 3 gives the detailed procedure of rule
pruning.

The details of the Algorithm 3 are as follows. The input is the set of rules R
obtained by the Algorithm 2 and a similarity threshold δ, and the output is the
trimmed rule R∗. Lines 3–21 calculate the similarity and select rules: If similarity
of two rules is greater than or equal to a given threshold δ, put the two rules in
set Rt1, and then, calculate the quality of R−{ri} to determine which can improve
the quality of the policy, and save them to set Rt2. If there are multiple similar rules
and their quality is greater than q, delete the one with the worst quality. Finally,
we obtain a new rule set R∗.

Definition 17 (Rule Conflict Relation). Given a rule set (R) and two rules
(r1, r2) ∈ R, if r1 = r2, and one of them has the decision result of permit and
the other has deny , then r1 and r2 have a conflicting relation.

Definition 18 (Rule Hierarchy Relation). Given a rule set (R) and two rules (r1,
r2 ∈ R), r1 is called the senior rule of r2, denoted as r1 ≤ r2, and r1 and r2 have a rule
hierarchical relation if (Fur1

⊆ Fur2
) ∧ (For1

⊆ For2
) ∧ (Fer1

⊆ Fer2
), opr1 = opr2 ,

634 S. Quan, Y.D. Zhao, N. Helil

Algorithm 3 Rule pruning algorithm

Input: R, δ // δ is a threshold, tentatively set at 0.5
Output: R∗

1: procedure PruneRule(R, δ)
2: R∗ ← ∅;Rt1 ← ∅;Rt2 ← ∅
3: q(R)← CalculateRuleQuality(R) // q(R) refers to the accuracy
4: for all ri ∈ R do
5: for all rj ∈ R and ri ̸= rj do
6: if Similarity(ri, rj) ≥ δ then
7: Rt1 ← Rt1 ∪ {ri, rj}
8: end if
9: end for

10: end for
11: for all ri ∈ Rt1 do
12: q(ri)← CalculateRuleQuality(R− {ri})
13: if q(ri) ≥ q(R) then
14: Rt2 ← Rt2 ∪ {ri}
15: end if
16: end for
17: for all ri ∈ Rt2 do
18: if q(ri) == min{q(ri), ri ∈ Rt2} then
19: R∗ ← R− {ri}
20: end if
21: end for
22: return R∗

23: end procedure

dr1 = dr2 . It includes rule-inclusion relation ((Fur1
⊂ Fur2

)∧ (For1
⊂ For2

)∧ (Fer1
⊂

Fer2
), opr1 = opr2 , dr1 = dr2) and rule-equality relation ((Fur1

= Fur2
) ∧ (For1

=
For2

) ∧ (Fer1
= Fer2

), opr1 = opr2 , dr1 = dr2).

If r1 is senior to r2, then r2 is a more restrictive rule than r1. If there are
hierarchical rules r1 and r2 (r1 ≤ r2) in the ABAC system, redundancy occurs,
which leads to more FP in the decision. To reduce FP , we prune the extracted rule
set by removing the overly permissive rule (r1).

For example, here are two rules:

r1 = ({⟨Position, Student⟩, ⟨Location,Campus⟩, ⟨Type,Book⟩}, borrow , permit),

r2 = ({⟨Position, Student⟩, ⟨Location,Campus⟩, ⟨Time, 10:00–22:00 ⟩,
⟨Type,Book⟩}, borrow , permit).

Rule r1 permits students to borrow books on campus, whereas rule r2 permits
students to borrow books on campus only during the specified time period. Here,

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 635

r1 is the senior rule of r2; so, r2 is more restrictive. Therefore, access requests that
would otherwise be denied are permitted owing to the overly permissive rule r1,
resulting in higher FP . To reduce the potential of more FP , we remove r1 from the
extracted rule set.

In the training process, owing to the lack of some samples in the training data
or other reasons, some rules may be missing in the generated ABAC rules. Thus,
some rules are ignored in the rule pruning process. This problem inevitably leads
to FN because according to the missing rule, the access request that was originally
permitted is denied owing to the generated rule. However, if some attribute rela-
tions are omitted in the process of extracting rules, for example, some attributes
or attribute values of a rule are lost, the extracted rules are more relaxed than the
actual rules, and the decisions that should be denied according to the actual rules
are permitted instead. As mentioned in the above example, r1 is more permissive
than r2, resulting in the FP phenomenon.

We provide rule optimization algorithms to solve the above problem, as shown
in Algorithm 4. This process is similar to the training process in ML, where the
training data includes the access control decisions that produce FP or FN . For
example, in the FP scenario, a request should be denied according to the actual
policy. Despite this, it is permitted according to the generated policy owing to the
extraction of overly permissive rules in the policy generation process. In the FN
scenario, a request should be permitted according to the actual policy. Moreover, it
is denied according to the generated policy, which is closely related to the missing
samples in the data.

The Algorithm 4 is described as follows. Through k-fold cross-validation, we
obtain classification evaluation indicators (such as FNR, FPR, and Acc) to de-
termine the generated rule results. In addition, we check if there are hierarchical
(inclusive or equal) relations and conflicting relations among the rules using the
accuracy. Lines 7–25 handle rules with hierarchy and conflict by preserving one of
the equal rules and deleting the senior rule and the conflict rules. We finally achieve
an optimized rule set RQp .

For policies generated on the access logs, to improve the quality of mining the
ABAC policy, we combined WSC and Accuracy (Acc) to define the comprehensive
indicator of policy quality. The formula is as follows:

Qp =
1

α
Acc

+ 1−α
∆WSC

, (21)

where ∆WSC is calculated as follows:

∆WSC =
WSCmax −WSC π

WSCmax −WSCmin

. (22)

When WSC π = WSCmax, ∆WSC = 0, define Qp = 0. When WSC π =
WSCmin, ∆WSC = 1, it indicates no policy generated; so, also define Qp = 0.
Let α = 1

1+β2 , β ∈ R in (21), then β determines the importance degree of Acc to

636 S. Quan, Y.D. Zhao, N. Helil

Algorithm 4 Rule optimization algorithm
Input: D, L, R∗

Output: RQp

1: procedure OptimizeRule(D,L,R∗)
2: Acc ← GetIndicatorC(D,L,R∗)
3: WSC ← GetWSC (R∗)
4: ∆WSC ← GetIndicatorW (R∗,WSC)
5: Qp ← FindParameter(Acc,∆WSC)
6: RQp ← FilterRule(R∗, Qp)
7: for all ro ∈ RQp do
8: Ro ← FindRule(RQp , ro)
9: if Ro ̸= ∅ then

10: for all ri, rj ∈ Ro do
11: if ri == rj then
12: RQp ← RQp − ({ri} or {rj})
13: end if
14: if rj ≤ ri then
15: RQp ← RQp − {rj}
16: else
17: RQp ← RQp − {ri}
18: end if
19: if ri Conflicts with rj then
20: RQp ← RQp − {ri} − {rj}
21: end if
22: end for
23: end if
24: end for
25: return RQp

26: end procedure

the policy complexity. When β = 1, the two indicators Acc and ∆WSC have the
same weight, indicating the same importance. When β < 1, the weight of Acc is
significant, indicating that Acc is more important. When β > 1, ∆WSC has a sig-
nificant weight, meaning that ∆WSC is more important. ∆WSC is the normalized
value of the WSC , putting the ∆WSC value in the interval [0, 1]. WSCmax and
WSCmin represent the complexity of the weighted structure of the most complex
and simplest policies, respectively. The most complex policy can be understood as
the policy corresponding to each access control decision that contains all attributes
of the subject, object, and environment. The simplest policy can be understood as
the null policy, namely WSCmin = 0.

In addition, the Algorithm 5 shows the policy generation step in detail. The
Algorithm 5 is described as follows. Line 2 is for preprocessing the access logs.
Line 3 is for selecting attributes. Lines 4–5 are for extracting and pruning rules.

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 637

Line 6 calculates the policy/rule quality indicator Q(WSC ,Acc). Finally, lines 7–10
are used to refine the mined rules until the best rule set is obtained.

Algorithm 5 CatBoost-based ABAC policy generation algorithm

Input: L, m, D, T , δ, K, Q // Q refers to the policy/rule quality indicator
(WSC ,Acc)
Output: Re

1: procedure GenerateABACRule(L,m,D, T, δ,K,Q)
2: A← Preprocess(L)
3: A∗ ← SelectAttribute(L,A,m)
4: R← ExtractRule(A∗, L,D, T,K)
5: R∗ ← PruneRule(R, δ)
6: q ← CalculateRuleQuality(R∗)
7: while q < Q or Acc ≥ 0.95 do
8: RQp ← OptimizeRule(D,L,R∗)
9: q ← CalculateRuleQuality(RQp)

10: end while
11: return RQp

12: end procedure

Some parameters are additionally used to adjust the model to improve the accu-
racy. We use p(0) and p(1) to denote the probability estimations of the permit and
deny decision against the access requests, respectively. If p(1) > p(0), the decision
is permit ; if p(1) < p(0), the decision is deny ; and if p(1) = p(0), the decision cannot
be determined.

Next, we use the cross entropy to calculate the loss of this model because the
training goal is to minimize the cross entropy of the two categories (permit and
deny). The calculation formula is as follows:

LF = −
n∑

i=1

{w(0) · yi(0) · log[pi(0)] + w(1) · yi(1) · log[pi(1)]}, (23)

where n is the number of access requests in the training process; and yi(0), yi(1)
represent the decision to deny and permit , respectively.

If the decision results are wrong, ⌈yi(0), yi(1)⌋ =⌈1, 0⌋. If decision results are
correct, ⌈yi(0), yi(1)⌋=⌈0, 1⌋. When the probability estimations of yi(0) and yi(1)
are pi(0) and pi(1), respectively, and any decision result is correct, for all access
requests, each decision completely matches the actual decision. This indicates that
the loss function has reached its minimum absolute value and is equal to 0. In the
loss function, to balance the permit and deny decision results in the data training
process, we define the weights w(1) = (N−N1)

N
and w(0) = 1−w(1), where w(1) and

w(0) are the weights of permit and deny , respectively. N is the input quantity of
the dataset, and N1 is the number of permit decisions.

638 S. Quan, Y.D. Zhao, N. Helil

5 EVALUATION

5.1 Simple Evaluation

We compared the ABAC policy generation approach from access logs based on the
CatBoost with five related approaches in the following nine aspects. The comparison
results are shown in Table 3.

Xu Medvet Iyer Cotrini Mocanu Ours
et al. et al. et al. et al. et al.
[23] [28] [24] [30] [38]

Attribute relation no no no no no yes

Negative decision rule no no yes no no yes

Sparse logs no yes no yes yes yes

Noise logs yes no no no yes yes

WSC yes yes yes no yes yes

Policy accuracy yes yes yes yes no yes

Policy complexity yes yes yes yes yes yes

Attribute and operation weight no no no no no yes

Policy quality comprehensive indicator no no no no no yes

Table 3. Comparison of ABAC policy mining approaches

5.2 Experimental Evaluation

5.2.1 Dataset Introduction and Experimental Settings

The experimental environment was set as follows. The processor was based on X64,
and the parameters were Intel(R) Core(TM) I7-8565U CPU@1.80GHz 1.99GHz.
The random access memory (RAM) was 8GB. The operating system was Win-
dows 10 Home version (64-bit). The version number was 21H1. The experimental
platform was Anaconda 3-2022.05 version, and the interpreter was Python version
3.9.12. The ABAC policy generation approach was implemented based on CatBoost.

The experimental dataset was from the “Amazon.com-Employee Access Chal-
lenge” competition on the Kaggle platform, divided into the training set and test
set. For short, this is called the Amazon-employee dataset.2 This consists of real
historical data from 2010 and 2011. Each access tuple in this dataset comprises
the tuple corresponding to an employee’s access request to a resource and displays
the corresponding decision (permit or deny) result. Its access log is composed of
employee attribute values and resource identifiers. It has many subject attributes
but a relatively small number of log entries and a sparse log set. Moreover, there is

2 https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/

5283/winning-solution-code-and-methodology

https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/5283/winning-solution-code-and-methodology
https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/5283/winning-solution-code-and-methodology

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 639

only one object attribute, which may lead to biased experimental results. Table 4
shows the basic information of the training set in this dataset; there are a total of
32 769 access control records.

Attribute Name Attribute
Type

Attribute Information Attribute
Number

ACTION Operation
attribute

ACTION is 1 if the resource was
approved and 0 if not.

2

RESOURCE Object at-
tribute

An ID for each resource 7 518

MGR ID Subject
attribute

The EMPLOYEE ID of the man-
ager of the current EMPLOYEE
ID record; an employee may have
only one manager at a time

4 243

ROLE ROLLUP 1 Subject
attribute

Company role grouping category
id1 (e.g. US Engineering)

128

ROLE ROLLUP 2 Subject
attribute

Company role grouping category
id2 (e.g. US Retail)

177

ROLE DEPTNAME Subject
attribute

Company role department de-
scription (e.g. Retail)

449

ROLE TITLE Subject
attribute

Company role business title de-
scription (e.g. e.g. Senior Engi-
neering, Retail Manager)

343

ROLE FAMILY DESC Subject
attribute

Company role family extended de-
scription (e.g. Retail Man-
ager, Software Engineering)

2 358

ROLE FAMILY Subject
attribute

Company role family descrip-
tion (e.g. Retail Manager)

67

ROLE CODE Subject
attribute

Company role code: this code is
unique to each role (e.g. Manager)

343

Table 4. Dataset information

5.2.2 Experiments and Comparison

Through experiments, we compared our approach with [38], which used the RBM
algorithm to infer ABAC policies from logs, and [39], which used the MLP algorithm
to infer the ABAC policies and made a detailed comparison in the following aspects.
Finally, our approach is superior to theirs in most cases, but it needs to be revised
in some cases, and it will be analyzed in detail.

Figure 3 compares the attribute importance of the two approaches. It can be
seen that after using different approaches, there are apparent differences in the
importance of different attributes. For example, it can be seen that the importance
of RESOURCE attribute in the [38], which used RBM is almost 0. In our approach,

640 S. Quan, Y.D. Zhao, N. Helil

Figure 3. Attribute importance comparison graph

it is 0.77. The attribute ROLE DEPTNAME has the highest importance, close to 1.
The attribute ROLE ROLLUP 1 has the lowest importance, which is almost 0. The
attribute RESOURCE belongs to the object attribute, which is single and extremely
important. The attribute ROLE ROLLUP 1 belongs to the subject attributes and
has the lowest importance. Because the MLP algorithm used in [39] is a nonlinear
classifier, it cannot analyze the importance of attributes, so it cannot weigh them.
But, of course, it can be understood that the weights are the same, and all are equal
(specified as 1).

Through the k-fold cross-validation method, we divided the training set in the
Amazon Employee dataset into five parts on average, using 1 part as the training set
each time and the remaining four parts as the test set. After five times averaging,
we obtained our final experimental results. Figure 4 shows the receiver operating
characteristic (ROC) curves of the three approaches, which show the accuracy of
each approach’s access control decision results. According to the area enclosed by
the ROC curve and the coordinate axis, that is, the area under curve (AUC) value,
we can see that the AUC value obtained by our approach is 0.978. It is slightly
higher than the AUC value 0.972, obtained by the RBM algorithm in [38], and the
AUC value 0.97, obtained by the MLP algorithm in [39], respectively. It indicates
that the accuracy of the decision results obtained by our approach is higher than
that obtained by the [38] and [39] approaches.

Figure 5 shows the relations between the access control decision precision and
the recall rate. It indicates that the decision precision decreases with the increase
of recall rate. It can be seen that there is a turning point when the recall rate is

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 641

Figure 4. ROC curve

about 0.95. When the recall rate is less than 0.95, the decision precision of our
approach is higher than that obtained by using the RBM algorithm and the MLP
algorithm in [39]. When the recall rate is greater than 0.95, the decision precision of
our approach is slightly lower than that of the approaches in [38] and [39]. On the
whole, the decision precision of our approach is better than theirs. By comparing the
precision and the value of AUC, we can see that the decision result of our approach
is superior to that of [38] and [39].

Our approach is compared with the decision results obtained using the RBM
algorithm in [38] and the MLP algorithm in [39] through k-fold cross-validation. In
Table 5, it was evident that our approach is superior to the approach used in [38]
and [39] in terms of TPR and FNR in both the test set and training set and inferior
to the approach used in [38] and [39] in terms of TNR, FPR, and Mcc. In terms
of precision, our approach is slightly inferior to that in [38] and [39]. Only in the
test set, our approach is slightly superior to that in [38]. In the training set, the

642 S. Quan, Y.D. Zhao, N. Helil

Figure 5. P-R curve

values of Acc, F1-score, and the AUC of our approach are slightly inferior to those
used in [38] and [39]. However, in the test set, our approach is superior to theirs.
The decision accuracy of our approach in the test set is 95.74%. It is higher than
94.54% in [38] and 93.13% in [39]; the AUC value in the test set is 90.37%, which
is much higher than 84.87% in [38] and 84.02% in [39].

Approach TPR TNR FPR FNR
RBM-training 0.996312 0.903896 0.096104 0.003688
RBM-test 0.978699 0.366947 0.633053 0.021301
MLP-training 0.992705 0.945455 0.054545 0.007295
MLP-test 0.959819 0.436975 0.563025 0.040181
CatBoost-training 0.997933 0.672078 0.327922 0.002067
CatBoost-test 0.991770 0.361345 0.638655 0.008230

Approach Precision Accuracy F1-score Mcc AUC

RBM-training 0.994016 0.990883 0.995163 0.916287 0.998517

RBM-test 0.964076 0.945377 0.971332 0.399686 0.848675

MLP-training 0.996582 0.989929 0.994640 0.911994 0.998199

MLP-test 0.967312 0.931340 0.963551 0.373990 0.840196

CatBoost-training 0.979904 0.978791 0.988836 0.790621 0.994601

CatBoost-test 0.964230 0.957431 0.977806 0.490341 0.903660

Table 5. Comparison of the predicted results for access control decisions

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 643

Figure 6. Comparison of time consumption

Figure 6 shows the comparison of the time consumed by our approach and the
two approaches used in [38] and [39] in making decisions on test sets. Through cross-
validation, we made access control decision predictions on the training set containing
80%, with 26 215 access control records. Our approach consumes less time than the
approaches used in the [38] and the [39].

5.2.3 Result Analysis

By comparing various aspects of the three approaches, it is reasonable to choose
the ABAC policy generation approach based on the CatBoost. Figure 7 shows
the loss function obtained by our approach in the training set. It can be seen
that with the increase in the number of iterations, the value of the loss function
gradually decreases and tends to be stable when the number of iterations is about
3 000. Therefore, we decide to use the number of iterations to conduct the final
experiment 3 000 times.

Figures 8 and 9 represent the confusion matrix of the access logs before and after
rule pruning and rule optimization, respectively. As shown in Figures 8 and 9, the
access control decision prediction was made on the training set containing 80%, and
there were a total of 26 215 access control records. After pruning and optimization,
the number of TP records increased from 24 597 to 24 624; the number of TN records
increased from 900 to 1 035; and the accuracy improved considerably. The number
of wrong decisions decreased by 162; FP records decreased from 640 to 505; and
FN records decreased from 78 to 51. The accuracy rate of the decision results was
improved from 97.46% to 98.00%.

644 S. Quan, Y.D. Zhao, N. Helil

Figure 7. Loss iteration graph

Figure 8. Before rule pruning and optimization

To sum up, the ABAC policy generation approach based on the CatBoost al-
gorithm is a decision approach to predict access decisions according to historical
access logs (or access control records). Through experiments, we compared it with
the two approaches used in [38] and [39]. The precision and Mcc are inferior to these
approaches, but our approach is superior to them in other aspects, especially the
accuracy of the decision results and the time consumption. However, our approach
assumes that the decision result is only permit or deny. In the actual access control
scenario, there will be more complex decision results, such as decision conflict (that
is, both permit and deny), which is the disadvantage of this approach.

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 645

Figure 9. After rule pruning and optimization

6 CONCLUSION

This paper provided an approach to automate ABAC policy (rule) generation via
the CatBoost ML algorithm. This approach can discover both positive and negative
ACPs. We presented an attribute selection algorithm by weighted reconstruction
of the attributes in the quasi-generation policy, thus improving the validity of rule
extraction. The rule extraction algorithm, rule pruning algorithm, and rule opti-
mization algorithm were also proposed to improve the precision of the generated
policy and significantly improve the accuracy of the generated policy. Most im-
portantly, we proposed a new policy quality indicator, namely the policy quality
comprehensive indicator, to measure the accuracy and simplicity of the policy. It is
essential to compare the generated policy with the actual policy for further refine-
ment. We evaluated the presented approach on the Amazon-employee dataset and
verified its feasibility, effectiveness, and practicability. Finally, through experiments,
we demonstrated that although FPR, precision, and other aspects are slightly infe-
rior to approaches [38] and [39], our approach is superior to theirs in terms of the
accuracy and time consume of the generated policy.

In future work, we will continue to improve our approach’s accuracy and sim-
plicity, further study how to resolve conflicts and undecidability in access control
decisions and research other factors that influence the quality of generated policies.

Acknowledgements

This research was supported by the National Natural Science Foundation of China
(Grant No. 61862059).

646 S. Quan, Y.D. Zhao, N. Helil

Conflicts of interest

We declare that we have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

REFERENCES

[1] Feng, D.—Zhang, M.—Li, H.: Big Data Security and Privacy Protec-
tion. Chinese Journal of Computers, Vol. 37, 2014, No. 1, pp. 246–258, doi:
10.3724/SP.J.1016.2014.00246 (In Chinese).

[2] Li, H.—Zhang, M.—Feng, D.—Hui, Z.: Research on Big Data Access Con-
trol. Chinese Journal of Computers, Vol. 40, 2017, No. 1, pp. 72–91, doi:
10.11897/SP.J.1016.2017.00072 (In Chinese).

[3] Graham, G. S.—Denning, P. J.: Protection: Principles and Practice. Proceedings
of the May 16-18, 1972, Spring Joint Computer Conference (AFIPS ’72 (Spring)),
ACM, 1971, pp. 417–429, doi: 10.1145/1478873.1478928.

[4] Sandhu, R. S.—Samarati, P.: Access Control: Principles and Practice. IEEE
Communications Magazine, Vol. 32, 1994, No. 9, pp. 40–48, doi: 10.1109/35.312842.

[5] Sandhu, R. S.: Lattice-Based Access Control Models. Computer, Vol. 26, 1993,
No. 11, pp. 9–19, doi: 10.1109/2.241422.

[6] Sandhu, R. S.—Coyne, E. J.—Feinstein, H. L.—Youman, C. E.: Role-Based
Access Control Models. Computer, Vol. 29, 1996, No. 2, pp. 38–47, doi:
10.1109/2.485845.

[7] Hu, V.C.—Ferraiolo, D.—Kuhn, R.—Schnitzer, A.—Sandlin, K.—
Miller, R.—Scarfone, K.: Guide to Attribute Based Access Control (ABAC)
Definition and Considerations. NIST Special Publication 800-162. National Institute
of Standards and Technology, Gaithersburg, MD, 2014, doi: 10.6028/NIST.SP.800-
162.

[8] Wang, X.—Fu, H.—Zhang, L.: Research Progress on Attribute-Based Access
Control. Acta Electronica Sinica, Vol. 38, 2010, No. 7, pp. 1660–1667 (In Chinese).

[9] Fang, L.—Yin, L.—Guo, Y.—Fang, B.: A Survey of Key Technologies in
Attribute-Based Access Control Scheme. Chinese Journal of Computers, Vol. 40, 2017,
No. 7, pp. 1680–1698, doi: 10.11897/SP.J.1016.2017.01680 (In Chinese).

[10] Das, S.—Mitra, B.—Atluri, V.—Vaidya, J.—Sural, S.: Policy Engineering in
RBAC and ABAC. In: Samarati, P., Ray, I., Ray, I. (Eds.): From Database to Cyber
Security: Essays Dedicated to Sushil Jajodia on the Occasion of His 70th Birthday.
Springer, Cham, Lecture Notes in Computer Science, Vol. 11170, 2018, pp. 24–54,
doi: 10.1007/978-3-030-04834-1 2.

[11] Xu, Z.—Stoller, S.D.: Mining Attribute-Based Access Control Policies from
Logs. In: Atluri, V., Pernul, G. (Eds.): Data and Applications Security and Pri-
vacy XXVIII (DBSec 2014). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 8566, 2014, pp. 276–291, doi: 10.1007/978-3-662-43936-4 18.

https://doi.org/10.3724/SP.J.1016.2014.00246
https://doi.org/10.11897/SP.J.1016.2017.00072
https://doi.org/10.1145/1478873.1478928
https://doi.org/10.1109/35.312842
https://doi.org/10.1109/2.241422
https://doi.org/10.1109/2.485845
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.11897/SP.J.1016.2017.01680
https://doi.org/10.1007/978-3-030-04834-1_2
https://doi.org/10.1007/978-3-662-43936-4_18

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 647

[12] Vaidya, J.—Atluri, V.—Guo, Q.: The Role Mining Problem: Finding a Min-
imal Descriptive Set of Roles. Proceedings of the 12th ACM Symposium on Ac-
cess Control Models and Technologies (SACMAT ’07), 2007, pp. 175–184, doi:
10.1145/1266840.1266870.

[13] Molloy, I.—Chen, H.—Li, T.—Wang, Q.—Li, N.—Bertino, E.—
Calo, S.—Lobo, J.: Mining Roles with Multiple Objectives. ACM Transac-
tions on Information and System Security, Vol. 13, 2010, No. 4, Art. No. 36, doi:
10.1145/1880022.1880030.

[14] Molloy, I.—Li, N.—Qi, Y.—Lobo, J.—Dickens, L.: Mining Roles with Noisy
Data. Proceedings of the 15th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT ’10), 2010, pp. 45–54, doi: 10.1145/1809842.1809852.

[15] Currey, J.—McKinstry, R.—Dadgar, A.—Gritter, M.: Informed Privilege-
Complexity Trade-Offs in RBAC Configuration. Proceedings of the 25th ACM Sympo-
sium on Access Control Models and Technologies (SACMAT ’20), 2020, pp. 119–130,
doi: 10.1145/3381991.3395597.

[16] Jafarian, J. H.—Takabi, H.—Touati, H.—Hesamifard, E.—Shehab, M.:
Towards a General Framework for Optimal Role Mining: A Constraint Satisfaction
Approach. Proceedings of the 20th ACM Symposium on Access Control Models and
Technologies (SACMAT ’15), 2015, pp. 211–220, doi: 10.1145/2752952.2752975.

[17] Molloy, I.—Park, Y.—Chari, S.: Generative Models for Access Control Policies:
Applications to Role Mining over Logs with Attribution. Proceedings of the 17th

ACM Symposium on Access Control Models and Technologies (SACMAT ’12), 2012,
pp. 45–56, doi: 10.1145/2295136.2295145.

[18] Narouei, M.—Takabi, H.: Towards an Automatic Top-Down Role Engineering
Approach Using Natural Language Processing Techniques. Proceedings of the 20th

ACM Symposium on Access Control Models and Technologies (SACMAT ’15), 2015,
pp. 157–160, doi: 10.1145/2752952.2752958.

[19] Narouei, M.—Takabi, H.: Automatic Top-Down Role Engineering Framework
Using Natural Language Processing Techniques. In: Akram, R.N., Jajodia, S. (Eds.):
Information Security Theory and Practice (WISTP 2015). Springer, Cham, Lecture
Notes in Computer Science, Vol. 9311, 2015, pp. 137–152, doi: 10.1007/978-3-319-
24018-3 9.

[20] Anderer, S.—Scheuermann, B.—Mostaghim, S.—Bauerle, P.—Beil, M.:
RMPlib: A Library of Benchmarks for the Role Mining Problem. Proceedings
of the 26th ACM Symposium on Access Control Models and Technologies (SAC-
MAT ’21), 2021, pp. 3–13, doi: 10.1145/3450569.3463566.

[21] Chari, S. N.—Molloy, I.M.: Generation of Attribute Based Access Control
Policy from Existing Authorization System. Google Patents, 2016 (US Patent
US9264451B2).

[22] Xu, Z.—Stoller, S.D.: Mining Attribute-Based Access Control Policies from
RBAC Policies. 2013 10th International Conference and Expo on Emerging Tech-
nologies for a Smarter World (CEWIT), IEEE, 2013, pp. 1–6, doi: 10.1109/CE-
WIT.2013.6713753.

[23] Xu, Z.—Stoller, S.D.: Mining Attribute-Based Access Control Policies. IEEE

https://doi.org/10.1145/1266840.1266870
https://doi.org/10.1145/1880022.1880030
https://doi.org/10.1145/1809842.1809852
https://doi.org/10.1145/3381991.3395597
https://doi.org/10.1145/2752952.2752975
https://doi.org/10.1145/2295136.2295145
https://doi.org/10.1145/2752952.2752958
https://doi.org/10.1007/978-3-319-24018-3_9
https://doi.org/10.1007/978-3-319-24018-3_9
https://doi.org/10.1145/3450569.3463566
https://doi.org/10.1109/CEWIT.2013.6713753
https://doi.org/10.1109/CEWIT.2013.6713753

648 S. Quan, Y.D. Zhao, N. Helil

Transactions on Dependable and Secure Computing, Vol. 12, 2015, No. 5, pp. 533–545,
doi: 10.1109/TDSC.2014.2369048.

[24] Iyer, P.—Masoumzadeh, A.: Mining Positive and Negative Attribute-Based
Access Control Policy Rules. Proceedings of the 23rd ACM Symposium on Ac-
cess Control Models and Technologies (SACMAT ’18), 2018, pp. 161–172, doi:
10.1145/3205977.3205988.

[25] Chakraborty, S.—Sandhu, R.—Krishnan, R.: On the Feasibility of Attribute-
Based Access Control Policy Mining. 2019 20th IEEE International Conference on
Information Reuse and Integration for Data Science (IRI), 2019, pp. 245–252, doi:
10.1109/IRI.2019.00047.

[26] Talukdar, T.—Batra, G.—Vaidya, J.—Atluri, V.—Sural, S.: Efficient
Bottom-Up Mining of Attribute Based Access Control Policies. 2017 IEEE 3rd

International Conference on Collaboration and Internet Computing (CIC), 2017,
pp. 339–348, doi: 10.1109/CIC.2017.00051.

[27] Narouei, M.—Takabi, H.: A Nature-Inspired Framework for Optimal Mining
of Attribute-Based Access Control Policies. Security and Privacy in Communica-
tion Networks (SecureComm 2019), Springer, Cham, Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunications Engineering,
Vol. 305, 2019, pp. 489–506, doi: 10.1007/978-3-030-37231-6 29.

[28] Medvet, E.—Bartoli, A.—Carminati, B.—Ferrari, E.: Evolutionary In-
ference of Attribute-Based Access Control Policies. In: Gaspar-Cunha, A.,
Henggeler Antunes, C., Coello, C.C. (Eds.): Evolutionary Multi-Criterion Optimiza-
tion (EMO 2015). Springer, Cham, Lecture Notes in Computer Science, Vol. 9018,
2015, pp. 351–365, doi: 10.1007/978-3-319-15934-8 24.

[29] Das, S.—Sural, S.—Vaidya, J.—Atluri, V.: Using Gini Impurity to Mine
Attribute-Based Access Control Policie with Environment Attributes. Proceedings
of the 23rd ACM Symposium on Access Control Models and Technologies (SAC-
MAT ’18), 2018, pp. 213–215, doi: 10.1145/3205977.3208949.

[30] Cotrini, C.—Weghorn, T.—Basin, D.: Mining ABAC Rules from Sparse Logs.
2018 IEEE European Symposium on Security and Privacy, 2018, pp. 31–46, doi:
10.1109/EuroSP.2018.00011.

[31] Karimi, L.—Joshi, J.: An Unsupervised Learning Based Approach for Mining
Attribute Based Access Control Policies. 2018 IEEE International Conference on Big
Data (Big Data), 2018, pp. 1427–1436, doi: 10.1109/BigData.2018.8622037.

[32] Das, S.—Sural, S.—Vaidya, J.—Atluri, V.—Rigoll, G.: VisMAP: Visual
Mining of Attribute-Based Access Control Policies. In: Garg, D., Kumar, N.V.N.,
Shyamasundar, R.K. (Eds.): Information Systems Security (ICISS 2019). Springer,
Cham, Lecture Notes in Computer Science, Vol. 11952, 2019, pp. 79–98, doi:
10.1007/978-3-030-36945-3 5.

[33] Narouei, M.—Khanpour, H.—Takabi, H.—Parde, N.—Nielsen, R.: To-
wards a Top-Down Policy Engineering Framework for Attribute-Based Access Con-
trol. Proceedings of the 22nd ACM Symposium on Access Control Models and Tech-
nologies (SACMAT ’17), 2017, pp. 103–114, doi: 10.1145/3078861.3078874.

[34] Narouei, M.—Takabi, H.—Nielsen, R.: Automatic Extraction of Access

https://doi.org/10.1109/TDSC.2014.2369048
https://doi.org/10.1145/3205977.3205988
https://doi.org/10.1109/IRI.2019.00047
https://doi.org/10.1109/CIC.2017.00051
https://doi.org/10.1007/978-3-030-37231-6_29
https://doi.org/10.1007/978-3-319-15934-8_24
https://doi.org/10.1145/3205977.3208949
https://doi.org/10.1109/EuroSP.2018.00011
https://doi.org/10.1109/BigData.2018.8622037
https://doi.org/10.1007/978-3-030-36945-3_5
https://doi.org/10.1145/3078861.3078874

ABAC Policy Generation Approach from Access Logs Based on the CatBoost 649

Control Policies from Natural Language Documents. IEEE Transactions on De-
pendable and Secure Computing, Vol. 17, 2020, No. 3, pp. 506–517, doi:
10.1109/TDSC.2018.2818708.

[35] Alohaly, M.—Takabi, H.—Blanco, E.: A Deep Learning Approach for Ex-
tracting Attributes of ABAC Policies. Proceedings of the 23rd ACM Symposium on
Access Control Models and Technologies (SACMAT ’18), 2018, pp. 137–148, doi:
10.1145/3205977.3205984.

[36] Alohaly, M.—Takabi, H.—Blanco, E.: Automated Extraction of Attributes
from Natural Language Attribute-Based Access Control (ABAC) Policies. Cyberse-
curity, Vol. 2, 2019, Art. No. 2, doi: 10.1186/s42400-018-0019-2.

[37] Karimi, L.—Abdelhakim, M.—Joshi, J.: Adaptive ABAC Policy Learning:
A Reinforcement Learning Approach. CoRR, 2021, doi: 10.48550/arXiv.2105.08587.

[38] Mocanu, D.C.—Turkmen, F.—Liotta, A.: Towards ABAC Policy Mining from
Logs with Deep Learning. Proceedings of the 18th International Multiconference -
Intelligent Systems (IS 2015), 2015.

[39] Cappelletti, L.—Valtolina, S.—Valentini, G.—Mesiti, M.—Bertino, E.:
On the Quality of Classification Models for Inferring ABAC Policies from Access Logs.
2019 IEEE International Conference on Big Data (Big Data), 2019, pp. 4000–4007,
doi: 10.1109/BigData47090.2019.9005959.

[40] Prokhorenkova, L.—Gusev, G.—Vorobev, A.—Dorogush, A.V.—
Gulin, A.: CatBoost: Unbiased Boosting with Categorical Features. In: Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (Eds.):
Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Curran
Associates, Inc., 2018, pp. 6639–6649.

[41] Dorogush, A.V.—Ershov, V.—Gulin, A.: CatBoost: Gradient Boosting with
Categorical Features Support. Corr, 2018, doi: 10.48550/arXiv.1810.11363.

[42] Hancock, J. T.—Khoshgoftaar, T.M.: CatBoost for Big Data: An Interdisci-
plinary Review. Journal of Big Data, Vol. 7, 2020, Art. No. 94, doi: 10.1186/s40537-
020-00369-8.

[43] Tan, P.—Steinbach, M. S.—Karpatne, A.—Kumar, V.: Introduction to
Data Mining (second Edition). Pearson, 2019, https://www-users.cse.umn.edu/
%7Ekumar001/dmbook/index.php.

https://doi.org/10.1109/TDSC.2018.2818708
https://doi.org/10.1145/3205977.3205984
https://doi.org/10.1186/s42400-018-0019-2
https://doi.org/10.48550/arXiv.2105.08587
https://doi.org/10.1109/BigData47090.2019.9005959
https://doi.org/10.48550/arXiv.1810.11363
https://doi.org/10.1186/s40537-020-00369-8
https://doi.org/10.1186/s40537-020-00369-8
https://www-users.cse.umn.edu/%7Ekumar001/dmbook/index.php
https://www-users.cse.umn.edu/%7Ekumar001/dmbook/index.php

650 S. Quan, Y.D. Zhao, N. Helil

Shan Quan is currently a graduate student in the College of
Mathematics and System Science, Xinjiang University, China.
His research mainly focuses on statistics and information secu-
rity.

Yongdan Zhao is currently a graduate student in the College
of Mathematics and System Science, Xinjiang University, China.
Her research mainly focuses on statistics and information secu-
rity.

Nurmamat Helil received his B.Sc., M.Sc. and Ph.D. de-
grees in the School of Mathematical Sciences, Peking University
in 2000, 2003 and 2008, respectively. He is Full Professor of
the College of Mathematics and System Science, Xinjiang Uni-
versity, China. From April 2010 to April 2011, he worked as
a post-doctor in the School of Computer Science and Engineer-
ing, Chung-Ang University, Korea. From April 2016 to April
2017, he worked as Visiting Research Scholar in the Department
of Computer Science and Engineering, University of Minnesota
Twin Cities, USA. His research interests include information sys-

tem security, access control, and cloud storage security.

