Analisis Gerak SPM Hex-07 dan Tegangan Lokal pada *Mooring Lug*

Farhan Gymnastiar¹, Yoyok Setyo Hadiwidodo¹, Nur Syahroni¹, dan Abdur Rachman² ¹Departemen Teknik Kelautan, Institut Teknologi Sepuluh Nopember (ITS),

² Rttp Banner SPM Terminals Pty. Ltd.

e-mail: yoyoksetyo@oe.its.ac.id

Abstrak—Floating structure seperti kapal tanker vang saat ini banyak digunakan untuk eksplorasi minyak dan gas bumi dipengaruhi oleh beban lingkungan. Perlu untuk meminimalisir gerak dari kapal tanker dengan menggunakan Single Point Mooring (SPM). SPM berguna sebagai sistem tambat untuk meredam gerak dari tanker serta dapat mentransfer minyak dan gas ke tempat pemrosesan selanjutnya. Mooring lug pada Turntable Bearing Unit SPM akan mengikuti arah gerak tanker. Analisis respon yang dilakukan menghasilkan arah heading terbesar untuk tanker dari gerakan roll arah 90° pada kondisi ballast dengan nilai 3.592 deg/m. Sedangkan untuk SPM dengan respon terbesar dari gerakan pitch arah 0° dengan nilai 3.323 deg/m. Analisis tension juga dilakukan dan memperoleh tension terbesar pada Hawser PS dengan nilai 771.199 kN dengan semua tension yang dihasilkan dibawah safety factor dari ABS Guide for Position Mooring Systems. Analisis tegangan lokal pada mooring lug akibat tension menghasilkan nilai maksimum sebesar 226.46 MPa pada variasi ke-3, semua tegangan tergolong aman karena dibawah tegangan izin sebesar 253.65 mengacu pada ABS Rules for Building Classing Single Point Moorings.

Kata Kunci—Floating Structure, Mooring Lug, Single Point Mooring, SPM, Tanker.

I. PENDAHULUAN

INDONESIA merupakan salah satu dari beberapa yang kaya akan sumber daya alam berupa minyak dan gas alam. Eksploitasi terus dilakukan untuk memnuhi kebutuhan akan sumber daya pokok minyak dan gas. Sarana yang sudah berkembang saat ini untuk eksploitasi minyak dan gas di lepas pantai adalah struktur terpancang (*fix structure*) dan struktur terapung (*floating structure*). Dari segi kemampuan dalam menghadapi laut yang dalam, *floating structure* dinilai lebih mampu dibandingkan dengan *fix structure* yang hanya mampu di wilayah laut dengan kedalaman yang tergolong dangkal.

Sarana transportasi pada *floating structure* adalah FSO atau *storage* tanker sebagai distribusi minyak dan gas. *Shuttle tanker* adalah saranan yang umum dipakai untuk mentransportasikan minyak menuju kilang minyak ataupun hasil dari pengilangan minyak untuk didistribusikan lebih lanjut. Cara ini lebih fleksibel dan memungkinkan distribusi minyak ke berbagai daerah [1]. Salah satu kelengkapan yang dapat digunakan untuk mempermudah transfer muatan *shuttle tanker* adalah menggunakan sistem tambat berupa *Single Point Mooring* (SPM).

SPM merupakan suatu struktur terapung di lepas pantai yang berfungsi sebagai penambatan dan interkoneksi untuk muatan tanker atau pembongkaran produk gas atau cairan. SPM sangat efektif dalam proses penambangan Minyak sehingga seringkali digunakan sebagai komponen dalam penambangan minyak bersama dengan FPSO/FSO [2]. SPM

Tabel 1.Principal Dimension Shuttle Tanker				
Parameter	Data	Satuan		
Nama Kapal	Elizabeth I.A	-		
IMO	9257149	-		
LOA	332	m		
LBP	320	m		
Breadth	58	m		
Height	30	m		
Draft	23.5	m		
Tabel 2				

Parameter	Data	Satuan
Outer Skirt Diameter	17.885	m
Hexagonal Diameter	13.9	m
Buoy Hull Height	5.5	m
Design Draft	3.1	m
Displacement	408	m

bertipe Catenary Anchored Leg Mooring (CALM) memiliki 4 komponen item. Buoy body berfungsi sebagai penghubung buoy dengan buoy dengan seabed melalui komponen anchoring. Piping system adalah struktur yang berguna untuk kedudukan atau pondasi piping pada SPM. MRB bearing berfungsi sebagai penghubung turntable dengan buoy body. Turntable Bearing Unit (TBU) sebagai struktur untuk pondasi atau kedudukan MRB bearing. Pada struktur TBU terdapat mooring lug sebagai tempat tambatnya mooring hawser dari tanker yang akan melakukan transfer muatan.

Analisa tegangan lokal pada struktur *mooring lug* dilakukan untuk mengetahui keamanan struktur mengacu pada standar. Analisa mengenai kestabilan berupa *motion respons* akibat beban lingkungan dengan kondisi *free floating* dilakukan terlebih dahulu untuk mengetahui respon gerakan terbesar. Selanjutnya, dilakukan analisa *tension* maksimum pada *mooring hawser* jika tanker telah tertambat di SPM. *Tension* maksimum tersebut selanjutnya menjadi input pada analisa tegangan lokal pada *mooring lug*.

II. URAIAN PENELITIAN

A. Studi Literatur dan Pengumpulan Data

Studi serta pengumpulan literalur sebagai referensi atau bahan kajian serta sumber teori yang dibutuhkan dalam penelitian. Data-data yang digunakan dalam penelitian adalah sebagai berikut:

1. Data geometri dan dimensi single point mooring.

2. Data geometri dan dimensi struktur mooring lug.

Gambar 1. Pemodelan tanker.

Gambar 2. Pemodelan SPM.

- 3. *Principal dimension* dan data hidrostatik dari *shuttle tanker* yang digunakan.
- 4. *Material properties* dari *mooring line, mooring hawser,* dan *mooring lug.*
- 5. Data lingkungan berupa angin, gelombang, dan arus.

B. Pemodelan Shuttle Tanker dan SPM

Pemodelan *shuttle tanker* dan SPM dibantu dengan perangkat lunak berbasis permodelan dan olah gerak bangunan apung dengan data *principal dimension* seperi pada Tabel 1 dan data dimensi SPM pada Tabel 2.

C. Validasi Model

Struktur yang telah dimodelkan akan divalidasi mengacu pada ABS *Mobile Offshore Units* (MOU).

D. Analisi Respon Gerak Tanker dan SPM

Jika hasil validasi memenuhi, dilakukan analisa respon gerak berupa *Response Amplitude Operator* (RAO) untuk diolah grafik dan interpretasinya.

E. Pemodelan Sistem Mooring dan Analisis Tension

Setelah grafik RAO didapat, dilakukan pemodelan sistem mooring dengan bantuan *software* berbasis analisis sistem tambat. Sistem *mooring* tersebut akan menjadi *layout* dari analisa untuk mendapatkan *tension maksimum*. Besar *tension* akan dicek mengacu pada ABS *Guide for Position Mooring Systems*.

F. Pemodelan Mooring Lug

Pemodelan dilakukan dengan dimensi yang telah tersedia menggunakan pemodelan *finite element*. Model yang telah dibuat akan dijadikan objek analisa berikutnya.

Validasi model tanker					
Parameter	Calculation	Software	Error		
Displacement	386416	389765	0.87%		
Volume Displacement	376991	380259	0.87%		
Length Water Line	329.6	329.996	012%		
Longitudinal Centre of Bouyancy	169.035	169.521	0.29%		
Vertical Centre of Bouyancy	12.33	12.39	0.48%		
Draft	23.5	23.5	0%		
Coefficient Block	0.839	0.837	0.43%		
Coefficient Prismatic	0.841	0.845	0.26%		
Coefficient Midship	0.997	0.99	0.73%		

Tabel 4. Validasi model SPM				
Parameter	Data	Software	Error	
Outer Skirt Diameter	17.885	17.886	0.01%	
Hexagonal Diameter	13.9	13.899	0.01%	
Buoy Hull Height	5.5	5.5	0%	
Design Draft	3.1	3.1	0%	
Displacement	408	405.2	0.69%	

G. Analisa Tegangan Lokal pada Mooring Lug

Analisa yang dilakukan dibantu dengan *software* berbasis analisis elemen hingga. *Output* yang didapat adalah tegangan *von mises* dan dicek dengan mengacu pada ABS *Rules for Building and Classing Single Point Moorings*.

III. HASIL DAN DISKUSI

A. Pemodelan Shuttle Tanker dan SPM

Hasil *modelling shuttle tanker* dan SPM dapat dilihat pada Gambar 1 dan Gambar 2.

B. Validasi Model

Validasi digunakan dengan membandingkan hasil model pada perangkat lunak dengan data perhitungan yang telah tersedia. Mengacu pada ABS MOU, validasi dilakukan dengan eror maksimum 2% untuk *displacement* dan 1% untuk parameter lain [3]. Hasil validasi tanker dan SPM dapat dilihat pada Tabel 3 dan Tabel 4.

C. Analisis Gerak Struktur pada Gelombang Reguler

Analisa struktur pada gelombang reguler dilakukan dengan dibantu perangkat lunak dan dilakukan di dua kondisi tanker yaitu *full load* dan *ballast load*. Untuk *heading* pada tanker yang digunakan adalah 0°, 45°, 90°, 135°, dan 180°. Sedangkan pada SPM hanya 0°, 45°, dan 90° karena bentuk SPM yang simetri. Nilai maksimum RAO tiap gerakan tanker kondisi *full load* dan *ballast load* ditunjukkan oleh Tabel 5 dan Tabel 6.

Dari hasil analisa, dapat dikatakan kapal tanker memiliki karakteristik *seakeeping* normal dimana nilai RAO untuk gerakan utama mode vertikal tidak berlebihan sehingga memiliki kemampuan meredam dan faktor kekakuan yang baik [3]. RAO maksimum tiap gerakan SPM dapat dilihat pada Tabel 7.

Moda	Arah Pembebanan			Manimum		
Gerakan	0°	45°	90°	135°	180°	wiaximum
Surge	0.807	0.615	0.047	0.614	0.806	0.807
Sway	0	0.606	0.915	0.605	0	0.915
Heave	0.858	0.934	1.435	0.935	0.859	1.435
Roll	0	1.347	1.847	1.345	0	1.847
Pitch	0.526	0.595	0.333	0.53	0.507	0.595
Yaw	0	0.262	0.023	0.264	0	0.264

Tabel 8. RAO maksimum kondisi *ballast load*

Moda		Arał	n Pembeb	anan		Manimum
Gerakan	0°	45°	90°	135°	180°	Maximum
Surge	0.836	0.633	0.01	0.633	0.836	0.836
Sway	0	0.628	0.948	0.628	0	0.948
Heave	0.87	0.935	1.165	0.936	0.87	1.165
Roll	0	1.721	3.592	1.697	0	3.592
Pitch	0.542	0.565	0.098	0.55	0.538	0.565
Yaw	0	0.27	0.019	0.269	0	0.27

	RAO SPN	Tabel 9. A maksimun	n tiap geraka	n	
 Moda	Ara	Arah Pembebanan			
Gerakan	0°	45°	90°	Maksimum	
 Surge	1.658	1.172	0.054	1.658	
Sway	0	1.172	1.658	1.658	
Heave	0.987	0.987	0.987	0.987	
Roll	0	2.363	3.19	3.19	
Pitch	3.323	2.329	0.127	3.323	
Yaw	0.001	0.185	0.065	0.185	

Nilai respon SPM yang tinggi dikarenakan geometri SPM yang kecil dan dalam kondisi free floating. Hal tersebut sudah teratasi dengan adanya mooring line yang dapat menahan gerakan SPM sehingga dapat memiliki respon yang lebih kecil.

D. Analisis Gerak Struktur pada Gelombang Acak

Analisis dilakukan untuk mengetahui karakteristik respon tanker dan SPM pada kondisi riil. Jenis spektrum yang digunakan adalah tipe JONSWAP karena nilai dari $\frac{Tp}{(Hs)^{1/2}}$ adalah 4.4 yang berarti tipe tersebut dapat digunakan dalam analisis [4]. Grafik spektrum JONSWAP dapat dilihat pada Gambar 3.

Skenario analisis yang digunakan untuk respon struktur gelombang acak adalah tanker kondisi *ballast load* dikarenakan nilai yang relatif lebih kritis dari kondisi *full load. Heading* yang digunakan adalah arah maksimum di tiap gerakan, baik tanker maupun SPM. Hasil analisa respon struktur pada gelombang acak dapat dilihat pada Tabel 8 dan Tabel 9.

Gambar 3. Karakteristik spektrum gelombang JONSWAP.

Tabel 5. Spektrum respon maksimum dan amplitudo ekstrem pada tanker					
Gerakar	Spektrum Respon Maksimum m²/(rad/s)	Amplitudo Ekstrem			
Surge	0.0037	0.147096731			
Sway	0.0014	0.093868381			
Heave	0.0057	0.167846188			
Roll	0.5079	2.110634867			
Pitch	0.0182	0.303571027			
Yaw	0.003	0.150935888			
Tabel 6. Spektrum respon maksimum dan amplitude ekstrem pada SPM					
Gerakan	Spektrum Respon Maksimum m ² /(rad/	s) Amplitudo Ekstrem			
Surge	3.6465	4.69311			
Sway	3.6411	4.68271			

Heave	1.0266	2.47239
Roll	8.0003	7.63988
Pitch	8.2167	7.7788
Yaw	0.0038	0.15419

E. Pemodelan Sistem Tambat dan Analisa Tension

Pemodelan dilakukan dengan bantuan *software* berbasis sistem tambat. *Input* analisa adalah data hasil dari respon gerak struktur serta data lingkungan yang dapat dilihat pada Tabel 10.

Analisis *tension* dilakukan dengan kondisi tanker *full load* dan *ballast load*. Digunakan metode *cut off* dengan mengabil waktu selama 900 detik dari waktu keseluruhan dimana gelombang puncak terjadi pada rentang waktu tersebut. Empat skenario analisis yang digunakan dengan arah pembebanan 0° terhadap *heading* tanker adalah sebagai berikut.

- 1. Tanker kondisi full load konfigurasi in-line dengan SPM.
- 2. Tanker kondisi full load konfigurasi between-line dengan SPM.
- 3. Tanker kondisi ballast load konfigurasi in-line dengan SPM.
- 4. Tanker kondisi ballast load konfigurasi between-line dengan SPM.

	Tabel 10.		
	Data lingkungan		
Parameter		Unit	Omni
	Wind Speed		
1-minute winds		m/s	22.6
10-minute winds		m/s	20.2
1-hour winds		m/s	18.2
3-sec gusts		m/s	26.8
	Wave		
Hmax		m	6.4
Associated Period		S	8
Hs		m	3.3
Crest Height		m	3.4
	Current Speed		
Surface Current		cm/s	44
25% from surface		cm/s	42
50% from surface		cm/s	40
75% from surface		cm/s	36
1m from bottom		cm/s	26
	Storm		
Storm Surge		m	0.1

Gambar 4. Geometri TBU pada software.

Hasil dari analisis *tension* menunjukkan nilai *maximum effective tension* pada *hawser* tanker tiap skenario dapat dilihat pada Tabel 13.

Dari Tabel 13 dapat dilihat bahwa *maximum effective tension* terjadi pada skenario 4 dengan nilai 771.199 kN dan semua *tension* terlampau aman dibanding SF yang ditentukan [5].

F. Pemodelan Mooring Lug dan Meshing Sensitivity

Sebelum dilakukan analisis tegangan lokal, *mooring lug* dan struktur TBU dimodelkan dengan bantuan *software* 3D *modelling* yang selanjutnya di*import* ke geometri *software* elemen hingga mencakup penyederhanaan untuk memudahkan analisis. Hasil model struktur TBU pada perangkat lunak dapat dilihat pada Gambar 4.

Meshing sensitivity dilakukan untuk mengetahui ukuran optimum dari jumlah elemen yang digunakan pada *software*. Hasil dari *mesh sensitivity* dapat dilihat pada Tabel 11.

Ukuran *meshing* optimum sebaiknya memiliki nilai *absolute error* kurang dari 2% [3]. Nilai *stress* menunjukkan konvergensi pada jumlah elemen 1097900. Tampilan *meshing* dapat dilihat pada Gambar 5.

G. Analisis Tegangan Lokal Maksimum

Analisis dilakukan dengan tiga variasi tension, yaitu:

1. *Tension* pada Hawser PS maksimum dengan nilai 771.2 kN.

Tabel 11. <i>Meshing sensitivity</i> struktur TBU				
Kondisi	Elements	Stress (MPa)	Error	
1	319380	112.72		
2	370660	110.27	2.22%	
3	442860	116.62	5.45%	
4	537140	113.32	2.91%	
5	661970	113.99	0.59%	
6	842840	115.83	1.59%	
7	1097900	115.66	0.15%	

Tabel 12. Hasil analisis statis pada <i>mooring lug</i>				
Variasi	Value (MPa)	Allowable (MPa)	Remark	
i	115.42		SAFE	
ii	113.53	253.65	SAFE	
iii	226.46		SAFE	

2. *Tension* rata-rata dari Hawser PS dan Hawser SB maksimum dengan nilai 758.5 kN.

3. *Tension* gabungan Hawser PS dan Hawser SB maksimum dengan nilai 1517.05 kN.

Setelah diberi pembebanan dan *boundary condition*, analisis dilakukan mencari tegangan *von mises*. Hasil analisa dapat dilihat pada Gambar 6 dan Tabel 12. Gambar 6 menunjukkan tegangan terbesar terjadi pada sambungan *mooring lug* dengan pelat lain. Dari Tabel 12 menunjukkan bahwa nilai tegangan masih dibawah nilai *allowable stress* [6].

IV. KESIMPULAN/RINGKASAN

Dari beberapa analisa yang dilakukan, dapat ditarik kesimpulan sebagai berikut. (1) Respon struktur kondisi *free floating*. (a) Pada tanker, respon maksimum terjadi pada kondisi *ballast*. Nilai gerakan translasi maksimum adalah 1.165 m/m pada *heave*, sedangkan gerakan rotasi maksimum bernilai 3.592 deg/m pada *roll*. Amplitudo maksimum adalah pada gerakan *roll* dengan nilai 2.11 m. (b) Pada SPM, nilai

Gambar 5. Meshing pada struktur (a) TBU, (b) mooring lug.

Gambar 6. Von Mises Stress struktur mooring lug, (a) Tampak isometri, (b) Tampak detail.

Tabel 13. <i>Tension</i> pada <i>hawser</i> tiap skenario					
Line	Max Tension (kN)	MBL (kN)	SF	SF Line	Check
	Fu	Ill Load In-Line			
Hawser PS	643.332	7443	2.5	11.569	OK
Hawser SB	684.022	7443	2.5	10.881	OK
	Full I	Load Between-Line			
Hawser PS	666.405	7443	2.5	11.169	OK
Hawser SB	666.405	7443	2.5	11.169	OK
	Bal	last Load In-Line			
Hawser PS	615.498	7443	2.5	12.093	OK
Hawser SB	628.936	7443	2.5	11.834	ОК
	Ballast	Load Between-Line			
Hawser PS	771.199	7443	2.5	9.651	OK
Hawser SB	745.849	7443	2.5	9.979	OK

translasi maksimum adalah 1.658 m/m pada gerakan *surge* dan *sway*. Sedangkan pada gerakan rotasi adalah 3.323 deg/m pada gerakan *pitch*. Amplitudo maksimum bernilai 7.77 m pada gerakan *pitch*.

Berikutnya, (2) *Tension* terbesar pada *hawser* tanker terjadi pada kondisi *ballast* dan konfigurasi *between – line* dengan nilai 771.199 kN. Nilai *tension* dari semua konfigurasi telah memnuhi ketentuan dari ABS *Guide for Position Mooring Systems*.

Kesimpulan selnajutnya, (3) *Von mises stress* maksimum terjadi pada variasi ketiga dengan nilai 226.46 MPa. Nilai tersebut berada di bawah tegangan izin untuk material ASTM EH36 yaitu 253.65.

DAFTAR PUSTAKA

- A. W. Pradhana, "Analisa Kekuatan Struktur Global Single Point Mooring Akibat Beban Gelombang Ekstrim," Departemen Teknik Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya, 2015.
- [2] N. D. P. Barltrop, *Floating Structures: A Guide for Design and Analysis.* London: CMPT, 1998.
- [3] J. H. Bin Mustofa, "Analisis Tegangan Lokal Maksimum Struktur Chain Stopper pada Hexagonal Single Buoy Mooring terhadap FSO saat Sistem Offloading," Departemen Teknik Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya, 2017.
- [4] D. N. Veritas, *Environmental Conditions and Environmental Loads*. Norway: Det Norske Veritas, 2010.
- [5] A. B. of Shipping, *Guide for Position Mooring Systems*. Spring, Texas, USA: American Bureau of Shipping, 2022.

[6] A. B. of Shipping, *Rules for Building and Classing Single Point Moorings*. Spring, USA: American Bureau of Shipping, 2022.