

International Journal of Electronics and Communications System

Volume, Issue, 11-20.
ISSN: 2798-2610

http://ejournal.radenintan.ac.id/index.php/IJECS/index
DOI:10.24042/ijecs.v3i1.16524

 Corresponding author:
Khairan Marzuki, Universitas Bumigora Mataram, INDONESIA. khairan.marzuki@universitasbumigora.ac.id
© 2023 The Author(s). Open Access. This article is under the CC BY SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Automation of Open VSwitch-Based Virtual Network Configuration

Using Ansible on Proxmox Virtual Environment

Khairan Marzuki *
Universitas Bumigora Mataram, INDONESIA

 Muhammad Idham Kholid
Universitas Bumigora Mataram, INDONESIA

I Putu Hariyadi
Universitas Bumigora Mataram, INDONESIA

 Lalu Zazuli Azhar Mardedi
Universitas Bumigora Mataram, INDONESIA

Article Info Abstract

Article history:

Received: April 18, 2023
Revised: June 7, 2023
Accepted: June 28, 2023

Proxmox has a feature that can build a private network in it. Each host on a private

network on Proxmox generally shares physical resources, including network

connections using a virtual network, one of which is a VLAN. The Proxmox server

supports Open VSwitch as a virtual switch. Open virtual switch, an alternative

virtual switch quite popular among cloud developers, can be a solution for

managing traffic between Virtual Machins and external communications. The

method used in this study is the Network Development Life Cycle (NDLC). After

applying the automation engine using Ansible, it overcame the problem, namely

speeding up configuration and reducing human error or errors in configuring

virtual networks. The automation system can speed up the virtual network

management process compared to the manual method based on 5 (five)

experiments, namely when the manufacturing operation has an average time of 08

minutes and 42 seconds faster. Whereas when the addition operation has an

average faster time of 08 minutes 17 seconds. On the other hand, when the deletion

operation has an average time of 42 seconds faster.

Keywords:

Ansible;

Automation;

Open Vswitch;

Proxmox;

Virtualization;

VLAN;

Vxlan.

To cite this article: K. Marzuki, M. I. Kholid, I. P. Hariyadi, I. P. Hariyadi, and L. Z. A. Mardedi, “Automation of Open VSwitch-

Based Virtual Network Configuration Using Ansible on Proxmox Virtual Environment,” Int. J. Electron. Commun. Syst., vol.
3, no. 1, pp. 11-20, 2023.

INTRODUCTION

Nowadays, virtualization technology is

trending and is a necessity. Today many

companies are already using virtualization

technology on servers. Because this

virtualization technology aims to avoid wasting

expensive processing power or, in other words

increasing efficiency and optimizing the use of

more than one core processor, another saving

is electricity costs because it only uses one or a

few servers [1], [2]. Various kinds of software

used to manage virtualization are known as

hypervisors. The most widely used hypervisor

is Proxmox VE. The Proxmox VE is an open-

source virtual operating system widely used by

virtualization users. Proxmox has many

features, including a virtual machine [3]. The

virtual machine functions to run the OS just like

we use a real machine. Each VM resides on a

single host, so they share physical resources,

including network connections.

Virtual networking is a network in which

several virtual networks are built on the

physical network. On this network, we can

create and manage multiple virtual networks at

the software level without disturbing each

other [4]–[6] and allows multiple

heterogeneous virtual networks to coexist on a

physical basis [7]. VSwitch connects network

interface controllers (NICs) and VMs to

http://ejournal.radenintan.ac.id/index.php/IJECS/index
https://doi.org/10.24042/ijecs.v3i1.16524
mailto:khairan.marzuki@universitasbumigora.ac.id
file:///C:/Users/My%20Windows/Downloads/(https:/creativecommons.org/licenses/by-sa/4.0/)

12 Int. J. Electron. Commun. Syst, 3 (1) (2023) 11-20

ensure network connection and virtual

machine topology discovery [8]. Virtual

networking connects each virtual machine that

is built to a virtual switch port. The Proxmox

server supports Open VSwitch as a virtual

switch. Open virtual switch (OVS), an

alternative virtual switch quite popular among

cloud developers, can be a solution for

managing traffic between VMs with

communication from outside. Virtualization

can be implemented in various types, such as

Network Virtualization, namely VLAN. VLAN

(Virtual Local Area Network) is a technology

that can configure a logical network

independent of the physical network

structure[2], [9]. On manageable switches,

VLAN configurations can be performed. VLANs

have a limited number of configurable 1

switches, namely 4096 VLANs. According to

researchers, this number is very large, but it is

different if the VLAN is applied to ISPs (Internet

Service Providers) with numerous customers

or providers. Cloud AWS or Google Cloud,

which has customers worldwide, needs a

solution to overcome the problem of how to

segment the network with the number of 4096,

namely by implementing VXLAN (Virtual

eXtensible Local Area Network). VXLAN has a

24-bit Segment ID called VNI (Virtual Network

identifier) so that it can allow 16 million VXLAN

segments that can be created in one

administrative domain [10]–[12].

Manage open VSwitch-based virtual

networking, which includes creating VLANs

and VXLANs. It requires accuracy and a range of

human errors occurs, and what about the

customer needs of providers who already have

customers all over the world, namely in leasing

cloud servers, when cloud server rentals at

providers increase, so that the configuration of

virtual network devices following the many

cloud server leases. Managing the configuration

of virtual network devices manually and

repeatedly becomes inefficient, takes a long

time, and ranges from human error [13]–[15].

For this reason, a solution is needed so that the

manufacturing process becomes faster and

minimizes manual configuration errors,

manufacturing time, and human error. The

implementation of configuration management

using the Ansible tool can streamline the

manual configuration process. Automation

replaces human power with machine power

that automatically performs and manages work

so that it no longer requires human supervision

(in industry and so on) [16]. Ansible is a simple

Information Technology (IT) automation

engine that can automate cloud provisioning,

configuration management, application

deployment, intra-service orchestration, and

other IT needs [17], [18].

Ansible automation is built in the form of

a playbook file containing tasks related to

Virtual networking, namely VLAN and VXLAN.

Trials related to the playbook that are made

include functionality trials. With this research,

the authors would like to provide a solution for

configuring Open VSwitch-based virtual

networks on Proxmox ve to be more structured

and efficient. They also provide insight

regarding open VSwitch-based virtual network

automation on Proxmox.

METHOD

The research method used in this study is

the Network Development Life Cycle (NDLC). Of

the six stages in NDLC, the authors only use

three stages, namely Analysis, Design, and

Simulation Prototyping, in Figure 1.

Figure 1. NDLC Methodology

Analysis

At the Analysis stage, the researcher

collected data by studying the literature,

namely several scientific articles that discussed

open VSwitch and the application of virtual

Int. J. Electron. Commun. Syst, 3 (1) (2023) 11-20 13

local area networks on virtual machine

networks. In addition, the authors also collect

data and information from various sources

such as the internet, books, papers, e-books,

and scientific articles. Based on the results of

data collection, research related to Open

VSwitch as a Virtual Network [19], [20] and

Ansible tool as an automation tool[21]–[23]

have been done before. In the open VSwitch

research, previous research focused on the

application and performance analysis of the

Open VSwitch [24]–[26]. However, Open

VSwitch has not been implemented on the

Proxmox server. In previous research, it was

implemented manually and had not been

implemented using the Ansible tool as an

automation tool. And in previous Ansible tool

research focusing on implementing

configuration management on cloud

servers[27], it has not been implemented on the

Proxmox Ve server. This research will focus on

implementing Open VSwitch on the Proxmox

server and automating configuration

management using the Ansible tool.

Design stages

This stage makes a design that includes a

trial network design, interface design on PVE1

and PVE2 servers, IP safety design, automation

system design, and hardware and software

requirements.

Trial Network Design

The test network design used in this

study is shown in Figure 2.

Figure 2. Test Network Design

The design of the test network is

simulated using virtualization on one computer

with the Windows 10 operating system in

which the VMware Workstation 16 hypervisor

is installed. In the VMware Workstation, 4

(four) Virtual Machines (VMs) are created,

namely Centos 7, Server Proxmox Virtual

Environment 1 (PVE1) and Server PVE2, and

Mikrotik CHR. Centos 7 is an Ansible server that

is used as an automation engine. In comparison,

the PVE1 and PVE2 Servers are the targets of

the automation engine, namely virtual network

configuration management based on

automated Open VSwitch (OVS). Finally,

Mikrotik CHR is an Internet gateway for the

three VMs connected to the Internet network.

Virtual Network Interface Design on PVE1

and PVE2 Servers

The virtual network interface design will

be implemented on the PVE1 server, as shown

in Figure 3.

Figure 3. PVE1 Virtual Network Server

Interface Design

In the design of the virtual network

interface for the pve1 server, there is vmbr1 as

an interface that is directly connected to the

physical interface of the pve1 server, namely

ens33, interface vtep0 as the endpoint interface

of the overlay network or virtual network path,

interface vxlan0 as a tunneling interface or

tunnel for inter-VLAN communication lines

different servers, the vmbr2 interface is the

connecting interface between VLAN11 to

14 Int. J. Electron. Commun. Syst, 3 (1) (2023) 11-20

VLAN20. The VLAN11 and 20 interfaces

connect containers, namely CT11 and CT12, on

the pve1 server. While the virtual network

interface design will be implemented on the

PVE2 server, as shown in Figure 4.

Figure 4. PVE2 Virtual Network Server Interface

 Design.

In the design of the virtual network

interface for the pve2 server, there is vmbr1 as

an interface that is directly connected to the

physical interface of the pve2 server, namely

ens33, interface vtep0 as the endpoint interface

of the overlay network or virtual network path,

interface vxlan0 as a tunneling interface or

tunnel for inter-VLAN communication lines

different servers, the vmbr2 interface is the

connecting interface between VLAN11 to

VLAN20. The VLAN11 and 20 interfaces

connect containers, namely CT13 and CT14, on

the pve2 server.

Virtual Network Automation System

Design

The design of an Open VSwitch (OVS)

based virtual network automation system will

be implemented on each PVE server using

Ansible, as shown in Figure 5.

Figure 5. Automation System Design

There are 5 (five) stages in the design of

the virtual network automation system, namely

the first stage is to define the inventory by the

Administrator on CentOS 7 regarding the target

machines to be automated, namely the PVE1

and PVE2 servers. In the second stage, the

Administrator creates a playbook file in YAML

format, which contains tasks that will be

executed according to the test scenario:

creating, adding, and deleting OVS-based

virtual networks on each PVE server. The third

stage is that the playbook that has been created

is executed using the Ansible Automation

Engine (AAE)[28]. The execution of the third

phase will impact stages four and five, namely

OVS-based virtual network object management

on each PVE server.

IP Address Design

In the design of IP addresses for virtual

networking automation test networks on

servers pve1 and pve2, there are 4 (four) class

C network addresses that are used, namely

192.168.169.0/24, 192.168.11.0/24,

192.168.12.0/24, 192.168.13.0 /24. Detailed

information on the allocation of IP addresses

Int. J. Electron. Commun. Syst, 3 (1) (2023) 11-20 15

for each virtual machine and client Windows 10

can be seen in Table 1.

Table 1. Design of IP Addresses

Hardware and Software Requirements

The hardware and software

requirements in this research are Hardware

Requirements. 1 (one) laptop with the

following specifications, Intel Core i3-6006U

Processor 2.00GHz CPU, 250GB SSD, 1TB Hard

Drive, 12GB Memory, Windows 10 Operating

System On the Windows operating system. The

laptop is installed with VMware Workstation

16, and 4 (four) Virtual Machines (VM) were

created, namely the PVE1 server, PVE2 server,

Ansible server, and Mikrotik CHR. Each VM has

the following specifications, one pve1 server

and pve2 server: 1 core processor, 40 GB hard

drive, Memory: 3 GB, 1 Ansible server, one core

processor, 20 GB hard drive, 2 GB memory, 1

Mikrotik CHR, one core processor, 64 MB hard

drive, 256 MB memory.

Software Requirements, Proxmox Virtual

Environment, or Proxmox VE, is an operating

system used on PVE1 and PVE2 servers, Centos

7 operating system used as an automation

engine for PVE1 servers and PVE2 servers,

Linux Container Template CentOS 7 as OS on

computer servers and used for an operating

system installation on CT on PVE1 servers and

PVE2 servers.

VMware Workstation 16 is software for

running virtual machine centos7, CHR proxy,

PVE1 servers, and PVE2 servers. Mikrotik CHR

is an operating system used as an internet

gateway so virtual machines can connect to the

internet network, Puty is software used to

remote servers, and Google Chrome Browser is

used to access the PVE server GUI web

dashboard.

Simulation Prototyping

A trial simulation will be carried out at this

stage, including installation and configuration

on each virtual machine and testing scenarios

on the system being built.

Installation and Configuration Stage

At this stage, installation and configuration
will be carried out for each virtual machine
based on the trial design. PVE1 and PVE2 server
installation and configuration include IP
addressing and installation of packages such as
open VSwitch, Python-pip, Proxmoxer, and
ifupdown2. Centos 7 server installation and
configuration include IP addressing and
installation of packages such as Epel-release,
Ansible, Jinja2, and creation of the Ansible
playbook. Configuration on the client includes
IP address configuration so the client can access
the Graphical User Interface (GUI) web from the
PVE server.

Trial Scenario

At this stage, it contains the installation

and configuration test results using several trial

scenarios in carrying out test scenarios such as

creating, adding, and deleting virtual networks

manually and automatically. It also calculates

the time needed to manually create and

automate virtual network creation. The details

of the trial scenario are shown in Table 2.

No NamaVirtual

Machine

Interface IP

Address

SubnetMask

1 Centos 7 Ens33 192.168.

169.3

255.255.255.0

2 Server Pve1 Ens32 192.168.

169.1

255.255.255.0

3 Server Pve2 Ens32 192.168.

169.2

255.255.255.0

4 Mikrotik CHR Ether2 192.168.

169.254

255.255.255.0

5 Container

111

veth 192.168.

11.111

255.255.255.0

6 Container

112

veth 192.168.

12.112

255.255.255.0

7 Container

113

veth 192.168.

13.113

255.255.255.0

8 Container

114

veth 192.168.

14.114

255.255.255.0

9 Client Win 10 Vmnet1 192.168.

169.253

255.255.255.0

16 Int. J. Electron. Commun. Syst, 3 (1) (2023) 11-20

Table 2. Trial Scenario

RESULTS AND DISCUSSION

The system design made at the design

stage is outlined as an Ansible playbook. There

are 3 (three) Ansible playbook structures

generated to automate OVS-based virtual

network configuration management, namely

the playbook for the virtual network creation

(initialization) process, the playbook for

updating (adding) virtual networks, and the

playbook for deleting virtual networks. Ansible

playbook structure for creating virtual

networks, as shown in Figure 6.

Figure 6. The Structure of Ansible Playbook in Creating
 Virtual Network

The Create-Virtual-Network.yml file is an

Ansible playbook that contains tasks related to

creating an OVSBridge type bridge on each PVE

server with the names vmbr1 and vmbr2, and

vtep0 of type OVSIntPort including setting the

IP address on the interface. In addition, it also

loads the task of creating 10 (ten) VLANs with

IDs 11 to 20, including the IP address on the

interface with data sourced from the variable-

VLAN-pve1.yml and variable-VLAN-pve2.yml

files and creating a VXLAN interface type

OVSTunnel on each PVE server to form a tunnel

so that hosts on the same VLAN but on different

PVE servers can still communicate with each

other. Making the vxlan0 interface on the PVE1

server using the Jinja2 template stored in the

templates.j2 file. Whereas on the PVE2 server,

it uses the templatess.j2 file. Finally, the Ansible

playbook also contains a task to restart the

networking service to activate virtual network

configuration changes to the

/etc/network/interfaces file. Snippet content

from the Ansible playbook file Create-Virtual-

Network.yml with tasks executed on the PVE1

server, as shown in Figure 7.

Figure 7. Ansible Playbook File Content Snippet

Creating a Virtual Network for PVE1 Server.

Meanwhile, the Ansible playbook structure

for adding (updating) virtual networks is

shown in Figure 8.

Gambar 8. Struktur Ansible Playbook

Pembaharuan () Virtual Network

Figure 8. Ansible Playbook Structure Update

The main playbook file from the process

of adding or updating the virtual network is

called Update-virtual-network.yml, which

contains tasks including the addition of 10 (ten)

Trials Process Deskription

Five trials

on creating,

adding, and

deleting on

server pve1

and server

pve2

Manual

(through web

GUI PVE1 and

PVE2)

Calculate the minimum, and

maximum, and average time

of creating, adding, and

deleting virtual networks.

Five trials

in creating,

adding, and

deleting on

server pve1

and server

pve2

Automation

(Created using

the Ansible)

Calculate the minimum, and

maximum, and average time

of creating, adding, and

deleting virtual networks.

Int. J. Electron. Commun. Syst, 3 (1) (2023) 11-20 17

new VLANs with IDs 21 to 30, including the IP

address on the interface with data sourced from

the update file -VLAN-pve1.yml to deploy on

PVE1 servers and update-VLAN-pve2.yml to

deploy on PVE2 servers. Besides that, it also

loads a task to restart the networking service so

that the virtual network configuration changes

made to the /etc/network/interfaces file can be

activated. In contrast, the Ansible playbook

structure for deleting virtual networks is

shown in Figure 9.

Figure 9. The structure of Ansible Playbook in
Creating Virtual Network.

The main playbook file of the virtual

network deletion process is called Delete-

virtual-network.yml, which contains tasks

covering all VLANs on each PVE server[3] with

data sourced from the variable-delete-

VLAN.yml file. Besides that, it also loads the task

to delete the vmbr1, vmbr2, and vxlan0 bridge

interfaces. It restarts the networking service so

that the virtual configuration changes to the

/etc/network/interfaces file can be activated.

Manual and Automated Virtual Network
Configuration System Testing.

Testing of the virtual network

configuration system was carried out either

manually through the web GUI of each PVE

server or by automation for 5 (five) attempts.

Testing automation is done by executing the

command "ansible-playbook Create-Virtual-

Network.yml" on the CentOS 7 server, which

functions as the Ansible control machine. The

snippet of the results of verifying the creation

of the virtual network automatically via the

Web GUI from the PVE1 server as shown in

Figure 10.

Figure 10. Automated Verification of Virtual
Network Creation Results on

Server PVE1.

It can be seen that virtual network

interfaces, including vmbr1, vmbr2, vtep0,

vxlan0, and ten VLANs, each with ID 11 and 20,

have been successfully created, including the IP

address settings on each of these interfaces.

While the operation to add a virtual network is

carried out by executing the command "ansible-

playbook Update-virtual-network.yml." On the

other hand, the virtual network deletion

operation is carried out by executing the

command "ansible-playbook Delete-virtual-

network.yml" in the terminal from the CentOS 7

server.

Analysis of Virtual Network Configuration

Automation System.

The following analysis is obtained based

on the test results of the OVS-based virtual

network configuration automation system that

has been carried out on 2 (two) PVE servers.

The created Ansible Playbook can be used to

automate the OVS-based virtual network

creation process on each PVE server and add

ten virtual networks new VLANs, and deletion

of the virtual network. Connection verification

test between containers on the same VLAN but

different PVE servers was successfully carried

out using the ping utility to indicate VXLAN is

functioning properly. Comparison of time for

creating OVS-based virtual networks in each

PVE server conducted 5 (five) trials manually

and automatically Table 3.

18 Int. J. Electron. Commun. Syst, 3 (1) (2023) 11-20

Tabel 3. Perbandingan Waktu Pembuatan
Jaringan Virtual Manual dan Otomatis
pada Server PVE1 & PVE2

Trial Create

Time

Manuals Automatic

First 12 Minute 18

Second

02 Minute 36

Second

Second 11 Minute 53

Second

02 Minute 25

Second

Third 11 Minute 11

Second

02 Minute 23

Second

Fourth 10 Minute 06

Second

02 Minute 20

Second

Fifth 10 Minute 10

Second

02 Minute 21

Second

Average 11 Minute 08

Second

02 Minute 25

Second

Minimun

(Fastesttime)

10 Minute 06

Second

02 Minute 20

Second

Maximum (Longest

time)

12 Minute 18

Second

02 Minute 36

Second

Table 3 shows that the average time for

manually creating a virtual network is 11

minutes and 8 seconds, while for automation, it

is 02 minutes and 25 seconds. Creating a virtual

network automatically is 08 minutes 42

seconds faster than manually. On the other

hand, the fastest time for creating a virtual

network manually was 10 minutes 06 seconds,

and the longest was 12 minutes 18 seconds.

Meanwhile, automatically, the fastest

production time is 02 minutes 20 seconds, and

the longest is 02 minutes 36 seconds. The time

comparison for the process of adding an OVS-

based virtual network on each PVE server is 10

(ten) VLANs with IDs 21 to 30, which were

carried out in 5 (five) trials both manually and

automatically using the Ansible playbook, as

shown in Table 4.

Table 4. Comparison of Time to Add VLANs on Server

PVE1 & Server PVE2

Trial Create

Time

Manuals Automatic

First 11 minutes 00

seconds

02 minutes 01

seconds

Second 10 minutes 23

seconds

01 minute 51

seconds

Third 08 minutes 44

seconds

01 minute 41

seconds

Fourth 10 minutes 23

seconds

01 minute 43

seconds

Fifth 09 minutes 51

seconds

01 minute 40

seconds

Average 10 minutes 04

seconds

01 minute 47

seconds

Minimum (Fastest time) 08 minutes 44

seconds

01 minute 40

seconds

Maximum (Longes time) 11 minutes 00

seconds

02 minutes 01

second

Table 4 shows that the average time to

manually add a virtual network is 10 minutes 4

seconds, while automatically, it is 01 minutes

47 seconds. Automatically adding a virtual

network is 08 minutes 17 seconds faster than

manually. On the other hand, the fastest time to

add a virtual network manually was 08 minutes

44 seconds, and the longest was 11 minutes.

Meanwhile, the fastest addition time

automatically is 01 minutes 40 seconds, and the

longest is 02 minutes 01 seconds. Comparison

of the time for the OVS-based virtual network

deletion process on each PVE server which was

carried out 5 (five) attempts manually and

automatically using the Ansible playbook, as

shown in Table 5.

Table 5. Comparison of Time to Delete Virtual
Network on Server PVE1 & Server
PVE2.

Try to Delete
Time

Manuals Automatic

First 03 Minute 48

Second

02 Minute 37 Second

Second 03 Minute 03

Second

02 Minute 41 Second

Third 03 Minute 39

Second

02 Minute 36 Second

Fourth 03 Minute 10

Second

02 Minute 38 Second

Fifth 03 Minute 05

Second

02 Minute 43 Second

Average 03 Minute 21

Second

02 Minute 39 Second

Minimum

(Fastest time)

03 Minute 03

Second

02 Minute 36 Second

Maximum

(Longes time)

03 Minute 36

Second

02 Minute 43 Second

CONCLUSION

Based on the results of the trials that have

been carried out, it can be concluded that the

automation system created using Ansible was

successfully used to manage OVS-based virtual

network configurations on 2 (two) PVE servers,

Int. J. Electron. Commun. Syst, 3 (1) (2023) 11-20 19

including the operations of creating and adding

and deleting both bridges, VLANs, and VXLANs.

The automation system can speed up the virtual

network management process compared to the

manual method based on 5 (five) experiments,

namely when the manufacturing operation has

an average time of 08 minutes and 42 seconds

faster. Whereas when the addition operation

has an average faster time of 08 minutes 17

seconds. On the other hand, when the deletion

operation has an average time of 42 seconds

faster.

SUGGESTION

The suggestions for developing this

research further are to apply Ansible Roles to

enable the development of reusable OVS-based

virtual network configuration management

automation system components, in addition to

implementing OVS-based virtual network

configuration management automation on

cluster-based PVE systems.

REFERENCES

[1] Y. R. Adi, O. D. Nurhayati, and E. D.
Widianto, “Perancangan Sistem Cluster
Server untuk Jaminan Ketersediaan
Layanan Tinggi pada Lingkungan
Virtual,” J. Nas. Tek. Elektro dan Teknol.
Inf., vol. 5, no. 2, 2016, doi:
10.22146/jnteti.v5i2.228.

[2] K. Marzuki, N. Hanif, and I. P. Hariyadi,
“Application of Domain Keys Identified
Mail, Sender Policy Framework, Anti-
Spam, and Anti-Virus: The Analysis on
Mail Servers,” Int. J. Electron. Commun.
Syst., vol. 2, no. 2, pp. 65–73, 2022, doi:
10.24042/ijecs.v2i2.13543.

[3] M. Simon and L. Huraj, “VirtualBox and
Proxmox VE in Network Management: A
User-Centered Comparison for
University Environments,” pp. 486–495,
2023, doi: 10.1007/978-3-031-35317-
8_44.

[4] M. Geo, U. Putra, K. Utomo, F. T. Elektro,
and U. Telkom, “Perancangan Dan
Analisis Performansi Open VSwitch
Untuk Jaringan Virtual Universitas
Telkom,” vol. 2, no. 2, pp. 2705–2712,
2015.

[5] C. N. Bangun, “Jaringan Komputer

Cindya Novira Bangun 212406025 Kom
A’21 Program Studi D-3 Teknik
Informatika Fakultas Vokasi Universitas
Sumatera Utara Medan 2022,” no.
January, 2023.

[6] A. Fischer, J. F. Botero, M. T. Beck, H. De
Meer, and X. Hesselbach, “Virtual
Network Embedding: A Survey,” IEEE
Commun. Surv. Tutorials, vol. 15, no. 4,
pp. 1888–1906, 2013, doi:
10.1109/SURV.2013.013013.00155.

[7] Q. Lu, K. Nguyen, and C. Huang,
“Distributed parallel algorithms for
online virtual network embedding
applications,” Int. J. Commun. Syst., vol.
36, no. 1, pp. 1–24, 2023, doi:
10.1002/dac.4325.

[8] Y. Yang et al., “C2QoS: Network QoS
guarantee in VSwitch through CPU-cycle
management,” J. Syst. Archit., vol. 116, no.
April, p. 102148, 2021, doi:
10.1016/j.sysarc.2021.102148.

[9] W. N. Hidayat et al., “Mikrotik Training to
Improve Computer Network
Administration Competence for MTCNA
Certification Preparation for Teachers
and Students at SMKN 10 Malang,” J.
Abdimas Berdaya, vol. 6, pp. 38–44,
2023.

[10] P. Rito et al., “Aveiro Tech City Living
Lab: A Communication, Sensing and
Computing Platform for City
Environments,” in ArXiv, 2022, pp. 1–21.

[11] R. L. Bull and J. N. Matthews, “Critical
Analysis of Layer 2 Network Security in
Virtualised Environments,” Int. J.
Commun. Networks Distrib. Syst., vol. 17,
no. 3, pp. 315–333, 2016, doi:
10.1504/IJCNDS.2016.080113.

[12] A. N. Mian, A. Mamoon, R. Khan, and A.
Anjum, “Effects of Virtualization on
Network and Processor Performance
Using Open VSwitch and Xen Server,”
Proc. - 2014 IEEE/ACM 7th Int. Conf. Util.
Cloud Comput. UCC 2014, pp. 762–767,
Jan. 2014, doi: 10.1109/UCC.2014.124.

[13] R. D. H. Ontoseno, M. N. Haqqi, and M.
Hatta, “Limitasi Pengguna Akses
Internet Berdasarkan Kuota Waktu dan
Data Menggunakan PC Router Os
Mikrotik,” Tek. Eng. Sains J., vol. 1, no. 2,
p. 125, Dec. 2017, doi:
10.51804/tesj.v1i2.134.125-130.

[14] R. Zhang, M. Xie, and L. Yang, “Isoflat: Flat

20 Int. J. Electron. Commun. Syst, 3 (1) (2023) 11-20

Provider Network Multiplexing and
Firewalling in OpenStack Cloud,” IEEE
Int. Conf. Commun., vol. 2019-May, May
2019, doi: 10.1109/ICC.2019.8761652.

[15] S. W. Nourildean, Y. A. Mohammed, and
H. A. Attallah, “Virtual Local Area
Network Performance Improvement
Using Ad Hoc Routing Protocols in a
Wireless Network,” Comput. 2023, Vol.
12, Page 28, vol. 12, no. 2, p. 28, Jan. 2023,
doi: 10.3390/COMPUTERS12020028.

[16] R. A. Prayoga and C. Mukmin, “Analisis
Peningkatan Jarak Jangkauan Signal
Pada Jaringan Nirkabel SMK
Muhammadiyah 2 Palembang,” Bina
Darma Conf. Comput. Sci., vol. 3, no. 2, pp.
329–338, 2021.

[17] Muhammad M and Hasan I, “Analisa Dan
Pengembangan Jaringan Wireless
Berbasis Mikrotik Router Os V.5.20 Di
Sekolah Dasar Negeri 24 Palu,” J.
Elektron. Sist. Inf. dan Komput., vol. 2, no.
1, pp. 10–19, 2016.

[18] R. Christyo, “Modernisasi Laboratorium
Fiber Optik untuk Meningkatkan
Kompetensi Siswa Jurusan Teknik
Komputer Jaringan,” Dewantara Semin.
Nas. Pendidik., 2023.

[19] M. V. Bernal, I. Cerrato, F. Risso, and D.
Verbeiren, “Transparent Optimization of
Inter-Virtual Network Function
Communication in Open VSwitch,” Proc.
- 2016 5th IEEE Int. Conf. Cloud
Networking, CloudNet 2016, pp. 76–82,
Dec. 2016, doi:
10.1109/CLOUDNET.2016.26.

[20] S. Shanmugalingam, A. Ksentini, and P.
Bertin, “DPDK Open VSwitch
Performance Validation with Mirroring
Feature,” 2016 23rd Int. Conf.
Telecommun. ICT 2016, Jun. 2016, doi:
10.1109/ICT.2016.7500387.

[21] R. Acheampong, T. C. Balan, D. M.
Popovici, and A. Rekeraho, “Security
Scenarios Automation and Deployment
in Virtual Environment Using Ansible,”
IEEE Int. Conf. Commun., 2022, doi:
10.1109/COMM54429.2022.9817150.

[22] M. Gupta, M. N. Chowdary, S. Bussa, and
C. K. Chowdary, “Deploying Hadoop
Architecture Using Ansible and
Terraform,” 2021 5th Int. Conf. Inf. Syst.
Comput. Networks, ISCON 2021, 2021,
doi:

10.1109/ISCON52037.2021.9702299.
[23] J. O. Benson, J. J. Prevost, and P. Rad,

“Survey of Automated Software
Deployment for Computational and
Engineering Research,” 10th Annu. Int.
Syst. Conf. SysCon 2016 - Proc., Jun. 2016,
doi: 10.1109/SYSCON.2016.7490666.

[24] A. W. Manggala, Hendrawan, and A.
Tanwidjaja, “Performance Analysis of
White Box Switch on Software Defined
Networking Using Open VSwitch,” IEEE,
Apr. 2016, doi:
10.1109/ICWT.2015.7449257.

[25] R. Yang, X. Chang, J. Mišić, and V. B. Mišić,
“Performance Modeling of Linux
Network System with Open VSwitch,”
Peer-to-Peer Netw. Appl., vol. 13, no. 1,
pp. 151–162, Jan. 2020, doi:
10.1007/S12083-019-00723-
5/METRICS.

[26] P. Emmerich, D. Raumer, S. Gallenmüller,
F. Wohlfart, and G. Carle, “Throughput
and Latency of Virtual Switching with
Open VSwitch: A Quantitative Analysis,”
J. Netw. Syst. Manag., vol. 26, no. 2, pp.
314–338, Apr. 2018, doi:
10.1007/S10922-017-9417-
0/METRICS.

[27] P. Masek, M. Stusek, J. Krejci, K. Zeman, J.
Pokorny, and M. Kudlacek, “Unleashing
Full Potential of Ansible Framework:
University Labs Administration,” Conf.
Open Innov. Assoc. Fruct, vol. 2018-May,
pp. 144–150, Sep. 2018, doi:
10.23919/FRUCT.2018.8468270.

[28] S. S. Valente Renato, Carlos Senna, Pedro
Reto, “Federated Learning Framework
to Decentralize Mobility Forecasting in
Smart Cities,” IEEE, 2022, doi:
https://doi.org/10.1109/NOMS56928.2
023.10154456.

