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Abstract: The fusion of machine learning and biomedical research offers novel ways to understand, 1

diagnose, and treat various health conditions. However, the complexities of biomedical data, coupled 2

with the intricate process of developing and deploying machine learning solutions, often pose 3

significant challenges to researchers in these fields. Our pivotal achievement in this research is the 4

introduction of the Automatic Semantic Machine Learning Microservice Framework (AIMS). AIMS 5

addresses these challenges by automating various stages of the machine learning pipeline, with a 6

particular emphasis on the ontology of machine learning services tailored for the biomedical domain. 7

This ontology encompasses everything from task representation, service modeling, and knowledge 8

acquisition to knowledge reasoning and the establishment of a self-supervised learning policy. 9

Our framework has been crafted to prioritize model interpretability, integrate domain knowledge 10

effortlessly, and handle biomedical data with efficiency. Additionally, AIMS boasts a distinctive 11

feature: it leverages self-supervised knowledge learning through reinforcement learning techniques, 12

paired with an ontology-based policy recording schema. This enables it to autonomously generate, 13

fine-tune, and continually adapt to machine learning models, especially when faced with new 14

tasks and data. Our work has two standout contributions of demonstrating that machine learning 15

processes in the biomedical domain can be automated, while integrating a rich domain knowledge 16

base and providing a way for machines to have a self-learning ability, ensuring they handle new tasks 17

effectively. To showcase AIMS in action, we’ve highlighted its prowess in three case studies from 18

biomedical tasks. These examples emphasize how our framework can simplify research routines, 19

uplift the caliber of scientific exploration, and set the stage for notable advances. 20

Keywords: AI automation; Biomedical; Machine learning; Microservices; Knowledge Graph; Seman- 21

tic Web Services 22

1. Introduction 23

The fusion of machine learning and biomedical and bioengineering research has 24

brought a paradigm shift in the way we understand, diagnose, and treat an array of health 25

conditions. With rapid advancements in technology and an influx of high-dimensional 26

data, the role of Machine Learning (ML) and especailly the AutoML has become central 27

to the process of knowledge discovery in these fields [1]. Providing a machine learning 28

solution often creates a burden for biomedical and bioengineering researchers, who must 29

seek additional support to develop or test different tools for each step of their study. The 30

burgeoning complexity of biomedical research underscores the need for the automatic 31

generation and optimization of machine learning models that can keep pace with this data- 32

driven evolution [2]. The impetus for our research stemmed from challenges faced by our 33

university’s biomedical research group. They grappled with integrating a myriad of tools, 34

algorithms, and domain-specific knowledge in their investigative pursuits. We responded 35

by devising a framework tailored for these exact scenarios. This methodology represents 36

an innovative approach, unprecedented in its application across any other research domain. 37
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Such distinctiveness makes our contribution particularly fitting for this special issue on 38

Machine Learning Technology in Biomedical Engineering. In this paper, we are going to 39

investigate the novel approach of applying advanced ontology and context enforcement 40

learning approach that can support automation of machine learning process for biomedical 41

and bioengineering research. This work has a great potential to apply on other domain area 42

but the background ontology requires to be updated according to the domain knowledge. 43

AutoML frameworks provide a robust solution to this rising demand. They offer 44

end-to-end pipelines that encompass all necessary steps from data pre-processing to hy- 45

perparameter tuning and model evaluation, automating labor-intensive and error-prone 46

manual tasks [3]. By significantly reducing the time taken for the model development pro- 47

cess, they allow researchers to focus on interpreting and applying results, thus accelerating 48

the pace of discovery in the biomedical and bioengineering field. 49

Despite the undeniable potential of AutoML, several gaps and challenges persist in its 50

implementation in biomedical and bioengineering research. First, biomedical data, with 51

its unique characteristics including high dimensionality, heterogeneity, and inherent noise, 52

require specialized preprocessing and analytical approaches. Current general-purpose 53

AutoML frameworks may not adequately address these needs. Second, these frameworks 54

often lack interpretability, a crucial requirement in the medical field, where understanding 55

the decision-making process of a model is as essential as its predictive accuracy [4]. Fi- 56

nally, integrating domain knowledge into the AutoML process remains an open challenge, 57

although it could greatly improve the quality of models generated and the applicability 58

of their predictions [5]. Addressing these challenges requires a novel framework that en- 59

ables machines to learn domain-specific knowledge and apply this knowledge to automate 60

decisions in the AutoML process. 61

This paper introduces an Automatic Semantic Machine Learning Microservice Frame- 62

work designed to bridge these gaps. We refer to each microservice in our framework as 63

AIMS, and these should be implemented based on domain-specific knowledge. It is tailored 64

to the specific needs of biomedical and bioengineering research and places emphasis on 65

enhancing model interpretability, incorporating domain knowledge, and handling the 66

intricacies of biomedical data. Our proposed framework aims to streamline the research 67

process, augment the quality of scientific exploration, and provide a foundation for sig- 68

nificant self-learning AutoML in biomedical research. Additionally, three case studies are 69

tested and discussed at the end. 70

2. Related Work, Limitations and Technology Background 71

Working with biomedical and bioengineering research community, the most important 72

challenge is to searching different tools working on the different datasets and tasks. Our 73

research also begins by examining existing automation technologies and tools. 74

2.1. Related work and current limitations 75

There is a multitude of AI tools currently available to aid biomedical research and 76

various automation frameworks have emerged to streamline the process. For instance, 77

machine learning platforms like Google’s TensorFlow [6] and Scikit-learn [7] have been 78

widely utilized in biomedical research for tasks such as image analysis, genomics, and drug 79

discovery. 80

Google’s AutoML [8], TPOT (A Tree-Based Pipeline Optimization Tool) [9] and H2O’s 81

AutoML [10,11] are some of the popular AutoML tools used for automating the machine 82

learning pipeline. These platforms optimize the process by automating tasks like data 83

pre-processing, feature selection, model selection, and hyperparameter tuning, which are 84

traditionally labor-intensive and error-prone. AutoML offers expedited results, bypassing 85

much of the manual work involved in traditional machine learning, which is especially 86

advantageous for prototype testing or gauging initial user reactions to AI applications. 87

Moreover, AutoML solutions are less prone to becoming obsolete as they can stay updated 88

with rapid advancements in AI technology, largely due to the investment capacity of major 89
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tech vendors. Additionally, AutoML platforms, being hosted solutions, reduce the overhead 90

of building surrounding infrastructure. TPOT aims to simplify the construction of ML 91

pipelines by merging a versatile expression tree depiction of these pipelines with random 92

search techniques like genetic programming. It leverages the scikit-learn library in Python 93

as its foundation for machine learning functionalities. H2O’s AutoML streamlines the 94

machine learning process by autonomously training and fine-tuning various models within 95

a time frame set by the user. Additionally, H2O incorporates several model interpretability 96

techniques applicable to both AutoML collections and distinct models, such as the leader 97

model. These explanations can be effortlessly produced with a singular function, offering 98

an intuitive means to probe and elucidate the AutoML models. 99

Other than these general-purpose tools, there are also specialised AI platforms tai- 100

lored for biomedical research. DeepChem [12], for instance, is a machine learning library 101

specifically designed for drug discovery and toxicology, offering specialized features not 102

available in general-purpose libraries. 103

However, while these tools have made significant strides in advancing biomedical 104

research, there are several limitations associated with their use. 105

General-purpose ML and AutoML tools, such as TensorFlow and Google’s AutoML, 106

are not specifically designed for handling the unique characteristics of biomedical data 107

such as high dimensionality, heterogeneity, and inherent noise. This often necessitates 108

significant manual pre-processing before data can be fed into these tools [13]. 109

Furthermore, these tools often lack interpretability, an essential requirement in biomed- 110

ical research where understanding the decision-making process of a model is as important 111

as its predictive accuracy [4]. 112

While specialised tools like DeepChem offer features tailored for biomedical appli- 113

cations, they do not cover the entire spectrum of biomedical research and are limited in 114

their scope. Additionally, the automatic integration of domain knowledge into the machine 115

learning process is an ongoing challenge and is not well-addressed by current tools [4]. 116

Therefore, there are many recent discussions on multiple-biomedical task handling 117

with self-learning, self-optimisations and self-configuration processes such as [14] focuses 118

on data science processing automation with optimisation and [3] focuses on feature selection 119

and model training. 120

2.2. Multiple-task AI system research 121

Making the system automatic by learning the solution knowledge about the different 122

tasks is also challenging. Industrial AI leading research groups such as Google AI and Meta 123

AI understood that data-driven AI technologies have issues with performing complex tasks. 124

For example, creating human conversations with contextual understanding, or detecting 125

early signs of disease from images. In addition, data-driven AI is resource intensive 126

and suffers from algorithm bias [15]. Thus, the multiple-task enabled AI systems with a 127

knowledge-driven approach present a pathway toward a solution to these problems. Why 128

is it thought that a knowledge-driven approach is necessary and crucial for the multiple-task 129

system? There are two reasons: 130

• The information acquired from different tasks may present value that can be used 131

as the basis to build new ML models for new tasks without requiring the high-cost 132

processing to re-capture the same feature characteristics. 133

• Updating knowledge through validation is a relatively consistent process that will be 134

less prone to bias from noisy data. 135

On completion of this research, two new ideas from Google and Meta have been 136

published. 137

Google present an experimental process based on knowledge-mutation [16,17]. Here 138

the knowledge refers to base neural network transformers. To begin with, the experimental 139

environment contains transformers which can work on different tasks (different image 140

datasets for the classification problems). Then, when a new task arrives, the most related 141

transformer will be triggered to do a mutation process. The mutation process can edit 142
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the base model by inserting a new layer, removing a layer, or doing both according to the 143

performance optimisation. In the end, a new mutated adapter is created to enable dealing 144

with a similar task next time. Whenever a new task with a new dataset arrives, the mutation 145

process is executed based on the latest mutated model. 146

Meta research group presents a world model approach to acquiring knowledge very 147

much in the spirit of actor-critic reinforcement learning [18]. The system architecture is a 148

combination of smaller modules - configurator, perception, world model, cost, short-term 149

memory, and actor - that feed into each other. The world model module is responsible 150

for maintaining a model of the world that can then be used to both; estimate missing 151

information about the world, and predict plausible future states of the world. The per- 152

ception module will receive signals to estimate the current state of the world and for a 153

given task the configurator module will have trained the perception module to extrapolate 154

the relevant signal information. Then in combination, the perception, world model, cost, 155

short-term memory, and actor modules feed into the configurator module which configures 156

the other modules to fulfil the goals of the task. Finally, the actor module is handed the 157

optimal action to perform as an action. This has an effect on the real world which the 158

perception module can then capture which in turn triggers the process to repeat. That is, 159

each action will produce a piece of state-changing knowledge feedback to the world model 160

for continuous learning. 161

Both Google and Meta’s visions derive from the previous hyperparameter optimisation- 162

based AutoML processes [19], For example, AutoKeras [20], a neural architecture auto- 163

search framework is proposed to perform network morphism guided by Bayesian opti- 164

misation and utilising a tree-structured acquisition function optimisation algorithm. The 165

searching framework selects the most promising Keras implemented NN for a given 166

dataset. 167

The above experimental results show improvements in tackling complex AI tasks 168

and possible pathways toward human-level AI systems. However, there are two main 169

limitations: 170

• The knowledge definition is too narrow and only uses the generated neural network 171

as the knowledge limits the capability of recording all valuable outcomes through the 172

learning experience. 173

• There is no unified knowledge representation structure for knowledge inference 174

(machine thinking). 175

Do we already have a knowledge representation framework from our AI research in 176

the past 70 years? The answer is yes. 177

2.3. Knowledge representation and reasoning 178

Knowledge representation and reasoning (KRR) are always the core research areas in 179

AI systems [21]. Knowledge Representation and Reasoning (KRR) is a core area of artificial 180

intelligence (AI) that deals with how to symbolically represent information in a way that 181

a computer system can use to reason about the world. This involves understanding 182

and emulating human-like thinking and the ability to make deductions, inferences, or 183

predictions. KRR aims to enable machines to represent knowledge in a manner that they 184

can reason with it as humans do. Here are the main components: 185

Knowledge Representation (KR): This is about how to store, retrieve, and modify 186

knowledge in an intelligent system. Various paradigms like semantic networks, frames, 187

rules, and ontologies have been developed for this purpose. 188

Semantic Networks: Graph-based structures used to represent knowledge, where 189

nodes represent concepts and edges represent relationships between concepts. 190

Frames: Data structures for representing stereotypical situations They contain at- 191

tributes (or slots) and associated values. 192

Rules: Represent knowledge in terms of if-then statements. 193
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Ontology: Define a set of representational primitives with which to model a domain 194

of knowledge. Ontologies are used in modern AI applications, especially in the Semantic 195

Web. 196

Knowledge Reasoning: It’s about using the stored knowledge to draw conclusions, 197

make decisions, or infer new knowledge. 198

The knowledge-enhanced machine learning approach attracts less attention that the 199

data-driven approaches. However, KRR is still key in developing the future generation 200

of AI systems development [22], even Deep Neural Networks (DNN) can create KRR but 201

just in a different form [23]. In our vision, the KRR should not only extract knowledge 202

from data but also learn knowledge from system actions that can support the reasoning 203

process. Knowledge reasoning can be seen as the fundamental building block that allows 204

machines to simulate humankind’s thinking and decision-making [24]. With generations of 205

development on KRR, the current most promising approach is the knowledge graph (KG) 206

[25] derived from the semantic web [26] community. A knowledge graph has two layers of 207

representation structure: 1. pre-defined ontology and vocabularies and 2. instances of triple 208

statements (e.g. dog isA Animal, where the dog is an instance, isA is a predict while Animal 209

is a concept vocabulary defined in the ontology). The reasoning part is to apply the logical 210

side of the ontology, such as description logic (e.g. is the dog an animal? reasoning result 211

is ’Yes’) [27]. There are many complex types of ontologies developed in the last decade 212

to solve different KRR problems and applications. The most important development of 213

ontology-driven reasoning is to encode dynamic uncertainty [28], probability [29] and 214

causality [30]. Therefore, the KG-based KRR framework can be applied to implement our 215

proposed vision. 216

2.4. Services and Machine Learning Ontologies 217

The web services community has researched auto-configuration or service composition 218

for many years by applying a variety of dynamic integration methods. There are two trends 219

in service composition research: 220

• Directly extracts the services description file (e.g. WSDL) and Quality of Services (QoS) 221

into a mathematical model with a logical framework for composing services such as 222

a linear logic approach [31] and genetic algorithms [32,33]. The major limitation is 223

that there are no formal specifications for modelling and reasoning. Therefore, the 224

processes are mostly hard-coded to match the logic framework. 225

• The other trend is to apply Semantic Web standards for semantically encoding services 226

description and their QoS properties (Semantic Web Services SWS)[34,35]. The main 227

benefit is that semantic annotation has an embedded logical reasoning framework to 228

deal with composition tasks. 229

On the one hand, the semantic web services (SWS) trend has greater strength for integrating 230

the KRR approach with the same semantic infrastructure and reasoning logic. Currently, 231

there are three standards of OWL-S (composition-oriented ontology), WSMO (task-goal 232

matching oriented ontology), and WSDL-S (invocation-oriented ontology). On the other 233

hand, there are two differences between our vision’s microservice to normal SWS. The 234

first one is that AIMSs have simpler input and output requirements to perform an efficient 235

composition process. The other is that the purpose of each microservice is to deal with 236

data analytic or machine learning tasks. Therefore, the AIMS ontology needs to be defined 237

by modifying current machine learning ontology standards. Researchers have realised 238

that there is a need to have a machine learning ontology and some recent proposals in this 239

domain are: the Machine Learning Schema and Ontologies (MLSO) introduces twenty-two 240

top-layer concepts and four categories of lower-layer vocabularies (the detailed ontology 241

design is in [36]); the Machine Learning Ontology (MLO) proposes to describe machine 242

learning algorithms with seven top layer concepts of Algorithm, Application, Dependencies, 243

Dictionary, Frameworks, Involved, and MLTypes [37]. 244

Existing ontology and schema provide a foundational base that can be integrated and 245

augmented to define a more comprehensive schema for generating automotive AI solutions 246
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in the biomedical domain. The primary enhancement required is to effectively present the 247

knowledge acquired from each task. Additionally, a self-learning policy is essential to aid 248

machines in comprehending the task context and devising the most optimal pathway to 249

offer a solution. 250

2.5. Generative AI 251

Recently, generative AI technology, such as ChatGPT and its associated APIs, has 252

marked a significant advancement in AI research. These technologies are primarily de- 253

signed to engage in text-based conversations, providing solutions to queries and problems 254

in a natural, human-like manner. This form of AI has shown tremendous utility in diverse 255

fields, from customer service to education, demonstrating its versatility. 256

However, when applied to more complex domains like biomedical research, there 257

are notable limitations. Specifically, the ability of these models to generate code or au- 258

tomated solutions for multi-step biomedical problems is limited. The key issue lies in 259

the representation and understanding of data tokens within these problem spaces. In 260

biomedical research, data tokens can represent complex and highly specific biological or 261

medical entities, procedures, or relationships, which can be challenging for AI models to 262

comprehend. 263

Generative AI models like ChatGPT operate best when dealing with structured data 264

and clear-cut problem domains. Yet, biomedical research often involves dealing with 265

unstructured or semi-structured data, highly domain-specific language and concepts, and 266

complex multi-step processes. 267

Another significant challenge for generative AI, particularly in highly specialized 268

fields such as biomedical research, is the integration and expansion of domain-specific 269

human knowledge within the existing large language model. 270

Generative AI models are usually trained on extensive and diverse datasets, covering 271

a broad range of topics and languages. As a result, they can effectively generate text that 272

mimics human language in many situations. However, these models typically lack the 273

ability to learn continuously or integrate new knowledge once they’ve been trained. Their 274

knowledge is essentially frozen at the point of their last training update. 275

This limitation becomes particularly problematic when attempting to apply these 276

models in rapidly advancing fields such as biomedical research, where new discoveries and 277

innovations continually push the boundaries of existing knowledge. As the model cannot 278

natively integrate this new information, it struggles to provide up-to-date and accurate 279

solutions to complex, domain-specific problems. This limitation also extends to learning 280

from user interactions over time, a process which could theoretically allow the model to 281

fine-tune its responses and become more accurate. 282

Furthermore, the vast and generalized knowledge base of these models can be a 283

double-edged sword. While it allows them to engage with a wide variety of topics, it can 284

also lead to dilution of specialist, domain-specific knowledge. The models may struggle to 285

produce in-depth, nuanced responses to specialized queries due to the sheer breadth of 286

their training data. 287

In summary, while generative AI has shown significant promise, its limitations in 288

integrating and extending domain-specific human knowledge, coupled with its inability to 289

learn continuously, present considerable challenges for its application in specialized fields 290

like biomedical research. Overcoming these challenges will require novel approaches to 291

model training and updating, making it an exciting area for future AI research and develop- 292

ment. A potential strategy could involve using pre-trained, domain-specific transformers 293

as a base model. This would facilitate the use of customized small research datasets to 294

efficiently produce a high-quality model. However, this approach necessitates a base model 295

framework to select the most suitable transformer effectively. 296
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Figure 1. The vision of the self-knowledge learning approach with semantic ML Microservices

2.6. The gaps 297

By reviewing the current state of the art, we found that there are remaining research 298

gaps to achieve our goal. 299

• Self-supervised knowledge generation during the machine learning process and so- 300

lution creation. In the past, knowledge generation system mainly refers to expert 301

systems that acquire knowledge from human expertise or systems that transform exist- 302

ing knowledge from one presentation to the other. Enable understanding the common 303

knowledge in biomedical domain is crucial. [30] presents an automatic process of 304

disease causality knowledge generation from HTML-text documents. However, it still 305

doesn’t fully address the problem of how to automatically learn valuable knowledge 306

from the whole task-solution-evaluation machine learning life cycle. Considering 307

human-level intelligence, we always learn either directly from problem-solving or 308

indirectly through other human expertise (e.g. reading a book or watching a video) or 309

a combination of bother (e.g. reflecting on the opinions of others). 310

• Provisioning knowledge-guided auto-ML solution. In contrast to the first gap, there 311

are no significant research works on using the knowledge to assist in providing an 312

AI solution. Again, compared to human-level intelligence, we always try to apply 313

acquired knowledge or knowledge-based reasoning to solve the problem. We can 314

consider that the transformer process [38] is a step forward in this direction. We can 315

treat well-trained AI models as a type of knowledge to apply to different tasks in a 316

similar problem domain. However, there is still no defined framework that can specify 317

what knowledge is required and how to use the knowledge to find a solution to new 318

tasks [16]. 319

3. The Framework Architecture 320

Figure 1 represents our vision of Self-supervised Knowledge Learning with the AIMSs 321

Engineering approach. The left part of the Figure 1.A presents the initial settings of the 322

intelligent environment. The initial environment only contains default AIMSs information 323

such as purposes, I/O requirements, and invokable URI (detailed AIMS metadata ontology 324

will be introduced in the next section). However, the initial settings are ready for doing 325

four things: 326
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• Registering new AIMSs (Automatic Semantic Machine Learning Microservices) from 327

outside the environment. The registration process is through the interactive interface 328

according to the defined microservice ontology (see Figure 4). Therefore, human 329

involvement in Machine Leanring microservice engineering is a core part of this 330

vision, which defines humans as an educator to teach basic skills and capabilities to 331

deal with different tasks. Then, the environment will reuse these skills and capabilities 332

to acquire knowledge. The knowledge will provide powerful reasoning sources to 333

independently deal with complex tasks, decision-making, and creating new pipelines. 334

Specific to the biomedical research, the registration ontology can refer to biomedical 335

engineering ontologies including Disease Ontology, Foundational Model of Anatomy 336

(FMA), Human Phenotype Ontology (HPO) and many others [39]. 337

• Taking tasks with a variety of inputs, such as CSV data files, images, text and audio 338

data. The environment auto-configures on the default AIMSs and provides solutions to 339

the tasks. The success or failure outcome will be recorded as knowledge. Microservices 340

Auto-Configuration refers to the automated setup and configuration of individual 341

microservices in a pipeline to serve a machine learning task in our context. The 342

microservice human engineering process will start if there are no suitable AIMSs to 343

deal with the task. 344

• The environment can compose multiple AIMSs to complete a task if one single mi- 345

croservice cannot achieve it. 346

• The environment can start learning, representing, and storing knowledge in the 347

knowledge space as knowledge graph data. The knowledge is derived from processing 348

input data, the auto-configuration process, and task outcomes. The knowledge size 349

will increase and thus provide better optimisations, auto-configuration, and feedback 350

to the system user. 351

To realise the vision presented in Figure 1, we will discuss the related existing tech- 352

nologies and their research outcomes that can be adapted into our research next. 353

4. Self-supervised Knowledge Learning for Solution Generation 354

The self-supervised knowledge learning approach involves three types of autoconfig- 355

uration transfer learning methods. Figure 2 presents the overall learning framework. 356



Version September 25, 2023 submitted to Journal Not Specified 9 of 20

The first method is knowledge space searching and transferring: A task with a dataset 357

(referred to as a task-context) arrives, and there is no previous knowledge related to the 358

task-context. Therefore, the knowledge space will be searched to try to find a possible 359

microservice that can match the context to complete the task or search for a pipeline 360

(workflow) that contains multiple I/O compatible AIMSs together towards the best and 361

successful completion which can be optimised. The task-context and the optimized solution 362

are recorded as task input and output knowledge. The evaluation will generate rewards for 363

the policy knowledge space(we will demo a detail process in the sections of Experimental 364

Implementation and Scenario Evaluation and Lesson Learned later). In addition, the 365

knowledge learnt from the process will be recorded to update the world knowledge space. 366

The second one is the mutation of a previously generated context-matched solution 367

(a composition transfer learning process, we will demo a detail process in the section of 368

Scenario Evaluation and Lesson Learned later). If the new task-context matches with a 369

previously recorded task-context in the knowledge space, then the previous solution will be 370

loaded to adapt to the new datasets and the optimisation process. Finally, a new mutated 371

solution is created and recorded as new knowledge with the new evaluation rewards and 372

world knowledge of the KRR environment. 373

The third one is the continuous learning mutation method based on the reinforcement 374

learning approach. With the growth of the KRR statements, the auto-mutation will take 375

place using world knowledge to re-train the solutions according to the rewards. The third 376

learning method takes place offline only but continues doing an update when KRR is 377

updated. 378

5. Experimental Implementation 379

Figure 3 shows a three-layer implementation of the vision. This structure reflects to 380

our vision that AI system should have three major capabilities of learning knowledge, 381

reasoning (thinking) and re-acting to the problem. The figure also shows how these layers 382

map to the automotive solution provisioning process. 383

• Request layer takes tasks and inputs from AI applications to trigger the solution 384

searching and self-learning processes. Task-context is semantically encoded to enable 385

starting the policy knowledge to explore the environment for learning, creating, or 386

finding solutions. 387

• Reasoning layer takes the request layer’s semantic reasoning tasks for semantic 388

matching, reasoning and doing reinforcement learning mechanism. Finally, the policy 389

will be recorded in the knowledge graph layer. In addition, the newly added AIMSs 390

are registered to the environment with semantic annotations through knowledge 391

registration and generation components. 392

• Knowledge Graph layer remembers the knowledge data in the knowledge graph 393

triple store based on different types of knowledge schema. 394

5.1. Knowledge ontology implementation 395

AIMS registration ontology defines 9 parameters (see Figure 4). 396

• name - must be no duplication in the system, and the registration process will check 397

the name’s legibility. 398

• description - a short presentation of the AIMS for human understanding. 399

• framework - indicates the programming framework used to develop the AIMS. Nor- 400

mally, it should be just one framework as AIMS is designed to be decoupled and 401

ideally single responsibility. 402

• dependency - describes the required programming libraries that need to be pre-configured 403

to enable the AIMS to work. The schema includes id, library install port URI and 404

version. 405

• input and output - specifies the parameters that should be in the input and output 406

messages. 407
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Figure 5. Reinforcement learning policy generation for the knowledge layer

• category - tells what AI-related domain the ms works on, such as supervised classifica- 408

tion, unsupervised clustering, image classification base model, and more. 409

• license - identifies the use conditions and copyright of the AIMS. 410

• invoke path - contains the portal for accessing the AIMS. The path can be a local path or 411

URI of a restful API. 412

Each given task triggers a context knowledge creation that collects the knowledge of: 413

• the type of input data - a controlled variable that majorly includes normal dataset (e.g. 414

tableau data stored in CSV file, image, and text). 415

• task domain - free text to record the specific application domain 416

• desire output type - records the output required to complete the task successfully. 417

• the parameters - the dataset or data presents the initial characters of the input data. 418

For example, the number of columns and column names of the tableau data will be 419

remembered as part of the context knowledge of the task. 420

The output of the performed task can be categorised into two types failure and success. 421

Both failure and success need to update the policy knowledge link to the task-input context. 422

Failure has no solution registered to the knowledge but records which AIMSs have been 423

successfully invoked (can be an empty list) until the step that cannot continue going further. 424

So the failure experience will tell the system administrators (people) what AIMS(s) are 425

required to create a solution. The success registers the solution location and changes the 426

policy with the reward value. If the solution contains a workflow of composed AIMSs, then 427

the workflow will also be registered as knowledge with the normalized rewards for each of 428

the AIMS. 429

The policy ontology was designed as: 430

• policy context - links to a task-context 431

• policy state - 1 is success and 0 is failure, the binary state only presents whether 432

the whole workflow is work or not but inside the workflow context that shows 433

the continuous measure of individual component’s potential contribution toward to 434

success in other possible solution (see Figure 5). 435

• solution iloc - the location where the solution can be loaded and executed. 436

• workflow - presents a pipeline solution that composes multiple AIMSs. 437

• solution reward - the reward value stored for the policy that can be the recommended 438

guidance for supporting the creation of a new task solution. 439

The individual microservice can be rewarded in a failure pipeline if the individual 440

step is invoked and running successfully. Therefore, the rewarded micorservice can be 441

reused when searching for the alternative success composition solution. Figure 5) shows 442

that failure workflow at run-time provide one of third reward to the successful individual 443

microservices but no final solution model is created comparing to the second searching 444

which created a successful workflow pipeline and recalculated rewards to all four microser- 445

vices. The successful workflow will reward the total reward value 1 divided by the number 446

of microservices (n) involved times (n - order number). 447
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Figure 6. Scenario 1 - Heart disease classification solution building and knowledge learning process

The world knowledge ontology presents the facts learned from the task solution 448

creation process and outputs. There are three types of world knowledge recorded in the 449

current environment: 450

• feature optimisation outcomes - the features selected in the optimisation are valuable, 451

and these features will be reused to create a classification model if the new dataset 452

features are the same. 453

• answers for a certain text topic - a generated text answer for a question. The answer 454

quality will be reported as a reward value feedback from humans back to the policy 455

knowledge. 456

• image RBG vectors - map to a classification label. The reward process is the same as the 457

answers. 458

More world knowledge can be expanded in the environment. By having these com- 459

monsense and policy records, reinforcement can be performed to improve the solution 460

accuracy incrementally. 461

5.2. Environment initialization 462

The experiment environment is developed by Python in a local single-computer 463

environment. We simplified the AIMS as a .py module in the environment to be invoked 464

and registered. The full implementation can be found in GitHub repository (https://github. 465

com/semanticmachinelearning/AISMK). We initialised the environment with three types 466

of AIMS 467

1. Data Processing AIMSs that include CSV file to a Panda service, Data training 468

and split service, data quality control services, data normalisation service, Image process 469

Service, data quality control service. 470

2. ML AIMSs that include clustering services, classification services, GPT-neo-1.3B 471

text generation services [40,41], ViT image classification transformers [42] and Seanborn 472

visualisation services. 473

3. RFECV optimisation services. 474

6. Scenario Evaluation and Lesson Learned 475

6.1. Heart disease classification scenario 476

Figure 6 presents one of our use case scenarios in the medical domain. The task context 477

is: 478

• input: 335 clinical CSV heart disease files labelled 0 (no disease) and 1 and 1 (confirmed 479

disease) 480

• domain: medical 481

• desire output: an optimised classification pipeline model 482

Additionally, the columns of the data are: 483

• age: The person’s age in years 484

(https://github.com/semanticmachinelearning/AISMK)
(https://github.com/semanticmachinelearning/AISMK)
(https://github.com/semanticmachinelearning/AISMK)
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• sex: The person’s sex (1 = male, 0 = female) 485

• cp: chest pain type - Value 0: asymptomation, Value 1: atypical angina, Value 2: 486

non-anginal pain, Value 3: typical angina. 487

• trestbps: The person’s resting blood pressure (mm Hg on admission to the hospital) 488

• chol: The person’s cholesterol measurement in mg/dl 489

• fbs: The person’s fasting blood sugar (> 120 mg/dl, 1 = true; 0 = false) 490

• restecg: resting electrocardiographic results 491

• thalach: The person’s maximum heart rate achieved 492

• exang: Exercise induced angina (1 = yes; 0 = no) 493

• oldpeak: ST depression induced by exercise relative to rest (‘ST’ relates to positions on 494

the ECG plot. 495

• Slope: the slope of the peak exercise ST segment — 0: downsloping; 1: flat; 2: upsloping. 496

• ca: The number of major vessels (0–3) 497

• thal: A blood disorder called thalassemia Value 498

• target Heart disease (1 = no, 0= yes) 499

The application domain is medical and the desired output is an optimised classifi- 500

cation pipeline model. Figure 6 illustrates the process. The procedure commences with 501

the input of a CSV file containing the Heart Disease dataset, accompanied by a query 502

pertaining to the generation of a predictive model. Following this, the framework attempts 503

to retrieve relevant knowledge via the request layer and its associated functions, as shown 504

in Figure 3. Given the absence of pre-existing knowledge, the system initiates a reasoning 505

process through the reasoning layer. This layer, utilizing the knowledge representation 506

of existing microservices, crafts a workflow. The formulated workflow incorporates four 507

AI microservices: data loading from the CSV, data partitioning, creation of a classification 508

pipeline, and optimization. The culmination of this process results in a model boasting an 509

accuracy rate of 96.8%. Throughout the procedure, various knowledge components are 510

assimilated and documented within the system’s environment. The unique insight derived 511

from the general knowledge context is that eight features are deemed more significant than 512

other columns in determining the classification results. These features are: sex, cp, thalach, 513

exang, oldpeak, slope, ca, and thal. The reason these columns are highlighted as the most 514

crucial is because the optimization microservice identified them in generating the most 515

accurate model. 516

6.2. Parkinson disease classification scenario 517

The second task-context is: 518

• input: csv Parkinson disease clinical example data with labelled 0 (no disease) and 1 519

(confirmed disease) 520

• domain: medical 521

• desired output: an optimised classification pipeline model 522

Figure 7 depicts the scenario in which a similar task of classifying Parkinson’s disease 523

is fed in, the framework starts searching for a solution. As the system environment has 524

pre-knowledge, gained through the previous heart disease classification, and since the only 525

difference is the dataset when comparing to the heart disease classification context, the 526

framework can use the classification pipeline and retrain it to be optimised for the new 527

dataset. We can call this process a composition transfer learning process. The novelty is 528

that the system environment can solve different tasks by applying contextual knowledge 529

of the problem. Thus, the framework can automatically deal with all types of data if the 530

required models are semantically registered in the framework. Through this composition 531

transfer learning, the whole automatic pipeline can produce a 94.6% accurate model. 532

6.3. A complex scenario: mouse brain single-cell RNASeq downstream analysis 533

In this section, we use a clustering analysis case study to highlight how the proposed 534

framework can solve a real-world downstream single-cell data analysis task. The clustering 535

analysis of single-cell data offers a powerful tool for a myriad of applications ranging 536
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Figure 7. Scenario 2 - Parkinson disease pipeline transfer classification process

Figure 8. AnnData Structure
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Figure 9. Quality control microservice semantic description

from understanding basic biological processes to the development of clinical strategies for 537

treating diseases. The clustering analysis task works on a mouse brain single-cell RNASeq 538

dataset. The dataset is publicly available through a workshop tutorial at [43]. There are 539

five sequential processing and analysis steps: 540

1. Data semantic transforming and loading: For instance, applying AnnData structure 541

[44], where AnnData stores observations (samples) of variables/features in the rows 542

of a matrix (see Figure 8). 543

2. Data quality control: This aims to find and remove the poor quality cell observation 544

data which were not detected in the previous processing of the raw data. The low- 545

quality cell data may potentially introduce analysis noise and obscure the biological 546

signals of interest in the downstream analysis. 547

3. Data normalisation: Dimensionality reduction and scaling of the data. Biologically, 548

dimensional reduction is valuable and appropriate since cells respond to their envi- 549

ronment by turning on regulatory programs that result in the expression of modules 550

of genes. As a result, gene expression displays structured co-expression, and dimen- 551

sionality reduction by the algorithm such as principle component analysis can group 552

those co-varying genes into principle components, ordered by how much variation 553

they explained. 554

4. Data feature embedding: Further dimensionality reduction using advanced algo- 555

rithms, such as t-SNE and UMAP. They are powerful tools for visualising and under- 556

standing big and high-dimensional datasets. 557

5. Clustering analysis: Group cells into different clusters based on the embedded 558

features. 559

Based on the above five steps, we developed extra four microservices which include 560

AnnData loading, two feature embedding services (t-SNE and UMAP), and clustering 561

services (Louvain graphical clustering algorithms). The other existing microservices can 562

be involved should be different types of normalisation (PCA or CPM algorithm), K-mean 563

clustering algrithm. 564

The microservices were semantically registered into the framework through the inter- 565

face. Figure 9 depicts an example of quality control microservice semantic description in 566

the knowledge graph repository. 567
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Figure 10. Visualisations of analysis steps

With all the microservices registered, researchers can start expressing the analysis task 568

to stop, interact and provide feedback at any stage during the process of automatically 569

creating the solution. The researchers can also see visualisations of outputs produced by 570

different steps (see Figure 10). Therefore, researchers can provide preferences for selecting 571

microservices if there are options. 572

A realistic example is that a researcher can specify a clustering task applied to the 573

mouse brain single-cell RNASeq dataset. The framework will first try to see if a single 574

microservice can complete this task. The answer is ’no’ because no semantic-matched 575

microservice can take the RNASeq CSV input and provide the clustering output. At 576

this juncture, the microservice that can take the RNASeq CSV will be invoked to process 577

the data into the next step with the output of AnnData. If there are multiple choices in 578

the composition sequence, all possibilities will be invoked to run unless the previous 579

knowledge in the policies has a priority. The possibilities have multiple solutions at the 580

end for researchers to analyse for giving professional feedback to the system. The feedback 581
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Figure 11. Two clustering outcomes from automatic process

will help greatly with the knowledge graph policies. For example, suppose the researcher 582

gives feedback to the system that UMAP is the better embedding method than t-SNE but 583

has no priority on the clustering methods. In that case, the framework will produce two 584

possible clustering results shown in Figure 11. 585

7. Discussion 586

By evaluating the performance of the test scenarios, we believe the combination of 587

KRR and automation of AIMSs offers a viable strategy for developing human-level AI 588

systems. We’ve created an environment with AIMSs capable of handling text, CSV files, 589

and images as default settings. This environment supports data splitting, classification, 590

prediction, and optimization AIMSs. These findings suggest the system’s capability to 591

generate and optimize solutions for various tasks by applying or creating knowledge. 592

However, there remain some challenges that future work needs to address: 593

• The advantage of using a triple KG structure to encode KRR elements lies in its 594

unification, standardization, and adaptability across diverse applications. Nonetheless, 595

as the KG expands, its referencing efficiency diminishes, particularly with intricate 596

graph queries. This inefficiency is exacerbated when different knowledge types are 597

stored separately, making union queries on the graph resource-intensive. A proposed 598

solution is to embed the Knowledge Graph into a more efficient vector space [45]. To 599

achieve this, we plan on investigating state-of-the-art embedding techniques, such 600

as graph neural networks, that can maintain the relationships between entities while 601

offering efficient querying. 602

• The current system architecture doesn’t support multi-modal inputs pertaining to a 603

singular task (Multi-modal Machine Learning). While humans can seamlessly inte- 604

grate visual, auditory, and other sensory data to accomplish tasks, machines struggle 605

to synthesize multiple data types [46–48]. Moving forward, we aim to explore fusion 606

techniques, both at the feature and decision levels, to facilitate more comprehensive 607

input processing. 608

• During the initial stages of our manuscript’s preparation, Google released research 609

papers detailing the mutation of Neural Networks (NN) to handle diverse image 610

classification tasks [16,17]. These papers have illuminated the potential of not just 611

mutating data or services, but also the possibility of adding or removing NN hidden 612

layers as a form of knowledge storage for future considerations. Our intent is to delve 613

deeper into the dynamics of such mutations and explore frameworks that allow for 614

flexible and dynamic architectural changes in neural networks. 615

8. Conclusions 616

Our proposed Automatic Semantic Machine Learning Microservice Framework (AIMS) 617

presents a novel approach to managing the complex demands of machine learning in 618

biomedical and bioengineering research. The AIMS framework utilizes a self-supervised 619

knowledge learning strategy to ensure automatic and dynamic adaptation of machine 620
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learning models, making it possible to keep pace with the evolving nature of biomedical 621

research. By placing emphasis on model interpretability and the integration of domain 622

knowledge, the framework facilitates an improved understanding of the decision-making 623

process, enhancing the relevance and applicability of the generated models. A significant 624

finding of this research is our demonstration that knowledge-based systems can play a 625

pivotal role in self-learning AI systems for biomedical research. Such systems offer the 626

capability to store domain-specific knowledge with reusability and bolster the reinforce- 627

ment learning processes for machines. Furthermore, the potential of these systems extends 628

beyond biomedical research, suggesting applicability to AI applications in other domains. 629

The three case studies presented underscore the framework’s effectiveness in various 630

biomedical research scenarios, demonstrating its capacity to handle different types of data 631

and research questions. As such, the AIMS framework not only offers a robust solution 632

to current challenges in biomedical and bioengineering research but also sets a promising 633

direction for future developments in automated, domain-specific machine learning. Further 634

studies are required to evaluate the AIMS framework’s performance across a wider range 635

of biomedical and bioengineering applications and to refine its capabilities for even more 636

efficient and precise knowledge discovery. 637
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